Atmung

aus Wikipedia, der freien Enzyklopädie
Dies ist eine alte Version dieser Seite, zuletzt bearbeitet am 14. Oktober 2016 um 23:10 Uhr durch Nescimus (Diskussion | Beiträge) (→‎Gasaustausch: ein Satz zur Therapie). Sie kann sich erheblich von der aktuellen Version unterscheiden.
Zur Navigation springen Zur Suche springen

Atmung (lat.: Respiratio) bezeichnet

  • im allgemeinen Sprachgebrauch das Ein- und Ausatmen (nicht in diesem Artikel behandelt, siehe dazu Ventilation),
  • den Gasaustausch zwischen Umgebung und Blut, Blut und Zelle sowie den Gastransport durch den Körper. Denn es ist erforderlich, dass der Luftsauerstoff durch die innere Lungenoberfläche diffundiert, mithilfe des Blutes zu den Geweben und Zellen weitergeleitet wird und das Kohlenstoffdioxid aus Zellen und Geweben über das Blut zur Lunge geleitet und schließlich ausgeatmet wird.
  • Nach einem umfassenderem Begriffsverständnis werden alle Prozesse von der Aufnahme eines reduzierbaren Stoffs (bei Aerobiern ist das Sauerstoff, O2) und dessen Transport in die Zielzellen über seine Reduktion mit Hilfe der Atmungskette (Endprodukt im Falle der aeroben Atmung: Wasser) und die Speicherung eines möglichst großen Teils der freigesetzten Energie in Form von chemisch energiereichen Biomolekülen (meistens ATP) bis zur Abgabe (Ausatmung) des Kohlenstoffdioxids (Abbauprodukt der organischen Stoffe) zur Atmung gerechnet. In diesem Sinne lässt sich verallgemeinernd formulieren: Die Atmung ist die Oxidation eines energiereichen Stoffs (Reduktans), beispielsweise Glucose, unter Reduktion eines externen Elektronen akzeptierenden Stoffs (Oxidans, beispielsweise Sauerstoff), wobei ein (großer) Teil der freiwerdenden Energie dieser Redoxreaktion durch Synthese energiereicher Moleküle chemisch gespeichert wird.

Das Atmungssystem ist artspezifisch organisiert: Säuger etwa können kein Wasser atmen, viele Fische keine Luft. Der Grund für Letzteres liegt darin, dass die Kiemenblättchen, die ihre Ausbreitung durch das Wasser erhalten, in der Luft trocknen und miteinander verkleben, womit der Gasaustausch über die sehr zarte Austauschfläche zum Erliegen kommt. Andererseits kann in die Lungenbläschen eindringendes Wasser aufgrund seines – im Vergleich zu Luft – hohen spezifischen Gewichtes nur schwer gegen die Schwerkraft-Wirkung ausgeatmet werden und schließlich ist der Sauerstoffgehalt des Wassers ganz erheblich geringer als der der normalen Atem­luft, sodass es zum Ersticken kommt.

Innere und äußere Atmung

In der Biologie wird nach anatomisch/physiologischen und biochemischen Aspekten die innere von der äußeren Atmung unterschieden:

Innere Atmung

Als innere Atmung werden jene Stoffwechselprozesse bezeichnet, welche dem Energiegewinn der Zellen dienen. Insbesondere versteht man hierunter die biochemischen Vorgänge der Atmungskette (bei Eukaryoten in der inneren Membran der Mitochondrien ablaufend), an deren Ende ATP synthetisiert wird.

Äußere Atmung

Roentgenaufnahme eines weiblichen Alligator mississippiensis bei der Atmung.

Eine äußere Atmung gibt es nur bei Aerobiern, da Anaerobier nicht als Mehrzeller auftreten. Folgende Komponenten können unterschieden werden, sie können auch in Kombination vorkommen.

Gasaustausch

Von Gasaustausch ist nur die Rede bei gasförmigen Substraten, also nicht bei Eisen-, Nitrat-, Fumarat oder Schwefelatmung.

Der Gasaustausch erfolgt primär immer über Diffusion. Dies ist ein Vorgang der Physik, bei dem sich Substanzen durch zufällige Bewegung räumlich verteilen: Von Bereichen mit hoher Konzentration breiten sie sich zu Bereichen mit niedrigerer Konzentration aus, bis im Idealfall überall die gleiche Konzentration herrscht. Bei mehrzelligen differenzierten Organismen sind oft spezielle Organe als Teil der äußeren Atmung für den Gasaustausch verantwortlich. Die Lunge ist anatomisch für den Gasaustausch optimiert, indem sie durch die Lungenbläschen (Alveolen) über eine große Oberfläche mit geringer Diffusionsstrecke verfügt (siehe erstes ficksches Gesetz). CO2 diffundiert dabei 20-mal besser als Sauerstoff: Zwar ist der Diffusionskoeffizient für CO2 in der Alveolarmembran aufgrund der größeren Molekülgröße etwas schlechter, dafür ist die Löslichkeit 24-mal größer, was einen ebensoviel größeren Konzentrationsunterschied bedeutet.

Das Lungenemphysem erzeugt eine Diffusionsstörung durch Verkleinerung der Austauschfläche. Das Lungenödem erzeugt eine Diffusionsstörung durch Vergrößerung der Diffusionsstrecke. Störungen der Oxygenierung des Blutes können zudem durch zu geringe oder falsch verteilte Durchblutung der Lunge entstehen. Isolierte respiratorische Störungen äußern sich in Hypoxie ohne Hyperkapnie, da die CO2-Diffusion aus den genannten Gründen noch gut funktioniert, wenn die Sauerstoffdiffusion längst deutlich eingeschränkt ist. Respiratorische Störungen können bei intakter Atempumpe ventilatorisch kompensiert werden: Dabei wird durch vertiefte Atmung der Sauerstoffpartialdruck in den Alveolen erhöht, was den Konzentrationsunterschied und damit die Diffusionsgeschwindigkeit erhöht. Dabei muss jedoch ein erniedrigter CO2-Partialdruck in den Alveolen in Kauf genommen werden, der sich auf das Blut überträgt und den Säure-Basen-Haushalt stört (respiratorische Alkalose). Die symptomatische Therapie von Gasaustauschstörungen erfolgt durch Gabe von Sauerstoff.

Zusammensetzung der Ein- und Ausatemluft

Inspiratorische Fraktion Gas Exspiratorische Fraktion[1]
78 % Stickstoff 78 %
21 % Sauerstoff 17 %
0,04 % Kohlenstoffdioxid 4 %
1 % Edelgase 1 %

Einatmungsluft von atmosphärischer Luft gemittelter Zusammensetzung. Schon in von Menschen genutzten Innenräumen mit – zugunsten von Heizung oder Kühlung, und Schutz vor Wind und Staub – begrenzter Lüftung liegen höhere CO2-Konzentrationen vor. MIK-Wert = 0,30 % CO2, Arbeitsplatzgrenzwert AGW (ersetzt den früher gebräuchlichen MAK-Wert) = 0,50 % CO2.

Aerobe und anaerobe Atmung

Aerobe Atmung gibt es erst, seit elementarer Sauerstoff in der Atmosphäre und im Wasser zur Verfügung steht. Seine Bildung geht auf die ersten photosynthetisch aktiven Prokaryoten zurück, wahrscheinlich Vorläufer der heutigen Cyanobakterien. Vorher und in sauerstoffarmer Umgebung kann/konnte nur eine anaerobe Atmung stattfinden.

Etliche Organismen sind zu mehreren Atemtypen befähigt. So kann beispielsweise Escherichia coli unter anaeroben sowie aeroben Bedingungen leben. Andere Organismen beherrschen nur einen Atmungstyp. Säugetiere, zu denen auch der Mensch zählt, sind obligate Aerobier, sind also auf Sauerstoff zum Leben angewiesen.

Bei der Oxidation energiereicher Verbindungen (anorganische Stoffe oder organische Stoffe wie Glucose) werden Elektronen in gebundener Form freigesetzt. Diese werden durch eine in der Regel lange Kette von Redoxreaktionen, aus denen Energie zur Bildung von ATP abgezweigt wird, schließlich auf einen terminalen Elektronenakzeptor übertragen (Atmungskette). Letzterer ist bei der aeroben Atmung stets Sauerstoff, bei anaerober Atmung kommen verschiedene organische und anorganische Stoffe als Elektronenakzeptor vor.

Aerobe Atmung

Bei der aeroben Atmung wird Sauerstoff benötigt. In der Regel werden organische Verbindungen wie Kohlenhydrate oder Fettsäuren oxidiert und in einer Atmungskette schließlich auf O2 als terminalen Elektronenakzeptor übertragen. Wenn Glucose als Substrat genutzt wird, dann wird bei der aeroben Atmung Kohlenstoffdioxid und Wasser produziert. Das Redoxpotential E0' beträgt 0,82 V. Die Summengleichung lautet:

Aus einem Molekül Glucose und sechs Molekülen Sauerstoff werden sechs Moleküle Kohlenstoffdioxid und sechs Moleküle Wasser

Mikroorganismen können zur Energiegewinnung nicht nur organische, sondern auch anorganische Stoffe oxidieren. So nutzt beispielsweise das Archaeon Acidianus ambivalens Schwefel in einer Schwefeloxidation gemäß:[2]

Die Oxidation von Ammoniak (NH3) kommt bei Bakterien und Archaeen vor.[3][4] Dabei wird Ammoniak zu Nitrit (NO2) oxidiert:

Anaerobe Atmung

Bei der anaeroben Atmung, welche nur von Prokaryoten betrieben wird, werden die aus der Oxidation eines Energieträgers gewonnenen Elektronen anstatt auf Sauerstoff auf andere externe, reduzierbare Substrate übertragen. Dies darf nicht mit Formen der Gärung verwechselt werden, bei welcher die Elektronen auf Stoffwechselendprodukte übertragen werden und somit die Möglichkeit der Elektronentransportphosphorylierung nicht besteht.

Die verschiedenen anaeroben Atmungen werden anhand des „veratmeten“ Substrates oder der Stoffwechselendprodukte klassifiziert.

In die Tabelle wurde nur eine Auswahl anaerober Atmungstypen aufgenommen (weitere siehe Hauptartikel):

Atmungstypen
Atmungstyp Organismen „wesentliche“ Reaktion
aerobe Atmung obligate und fakultative Aerobier (z. B. Eukaryoten) O2 → H2O
Eisenatmung fakultative Aerobier, obligate Anaerobier (z. B. Desulfuromonadales) Fe3+ → Fe2+
Nitratatmung fakultative Aerobier (z. B. Paracoccus denitrificans, E. coli) NO3 → NO2
Fumaratatmung fakultative Aerobier (z. B. Escherichia coli) Fumarat → Succinat
Sulfatatmung obligate Anaerobier (z. B. Desulfobacter latus) SO42− → HS
Thiosulfatatmung z. B. Ferroglobus H2S2O3 → 2 H2S
Methanogenese (Carbonatatmung) methanogene und obligate Anaerobier (z. B. Methanothrix thermophila) CO2 → CH4
Schwefelatmung fakultative Aerobier und obligate Anaerobier (z. B. Desulfuromonadales) S → HS
Veratmung von Arsenat Pyrobaculum AsO42− → AsO3
Acetogenese (Carbonatatmung) homoacetogene und obligate Anaerobier (z. B. Acetobacterium woodii) CO2 → CH4

Siehe auch

Literatur

  • Lexikon der Biologie. 2. Band, Spektrum Akademischer Verlag, Heidelberg 2004, ISBN 3-8274-0327-8.

Weblinks

Commons: Atmung – Sammlung von Bildern, Videos und Audiodateien
Wiktionary: Atmung – Bedeutungserklärungen, Wortherkunft, Synonyme, Übersetzungen

Einzelnachweise

  1. ohne Wasserdampf, berechnet nach: Stefan Silbernagl, Agamemnon Despopoulos: Taschenatlas der Physiologie. 6. korrigierte Auflage. Thieme, 2003, ISBN 3-13-567706-0, S. 107.
  2. Imke Schröder, Simon de Vries: Respiratory Pathways in Archaea. In: Paul Blum (Hrsg.): Archaea: New Models for Prokaryotic Biology. Caister Academic Press, 2008, ISBN 978-1-904455-27-1, S. 2f.
  3. Sergej Nikolaevitch Winogradsky: Ueber die Organismen der Nitrification. In: Vierteljahresschrift der Naturforschenden Gesellschaft Zürich. Band 36, 1891, S. 176–208.
  4. S. Leininger, T. Urich, M. Schloter, L. Schwark, J. Qi, G. W. Nicol, J. I. Prosser, S. C. Schuster, C. Schleper: Archaea predominate among ammonia-oxidizing prokaryotes in soils. In: Nature. Vol. 442, 2006, S. 806–809.