Hypoxie (Medizin)

aus Wikipedia, der freien Enzyklopädie
Wechseln zu: Navigation, Suche

Der Begriff Hypoxie bezeichnet die den ganzen Körper oder Teile davon betreffende Mangelversorgung des Gewebes mit Sauerstoff. Einen Sauerstoffmangel im arteriellen Blut nennt man dagegen Hypoxämie[1]. Trotz dieser Unterscheidung werden die beiden Begriffe häufig auch synonym verwendet.[2] Das vollständige Fehlen von Sauerstoff wird als Anoxie bezeichnet.

Symptome[Bearbeiten]

Betroffene Menschen zeigen u. a. eine graue oder bläuliche (zyanotische) Hautfarbe, livide Lippen, Trommelschlägelfinger, es kommt zu Bewusstseinstrübungen bis hin zur Ohnmacht, Atemnot und Muskelschwäche.

Normwerte[Bearbeiten]

Der normale Wert des paO2 ist altersabhängig und errechnet sich nach der Formel:

paO2 = 102 - (Lebensalter in Jahren × 0,33) mmHg[3]

Ein gesunder 20-jähriger hat somit einen paO2 in Höhe von 95 mmHg, während dieser Wert bei einem gesunden 60-jährigen etwa bei 82 mmHg liegen sollte.

Der Sauerstoffpartialdruck im Blut nimmt von den Arterien über die kapillaren Blutgefäßen zu den Zielzellen im Gewebe deutlich ab. Findet man in den Lungenvenen und den Arterien des Körperkreislaufes einen paO2 von 80 - 100 mmHg (s. o.), so verringert er sich in den Arteriolen bereits auf ca. 40 - 60 mmHg und liegt in den Verbrauchsorganellen der Zellen, den Mitochondrien, nur noch zwischen 4 und 20 mmHg.[4]

Ursachen[Bearbeiten]

Als Ursachen kommen insbesondere Gefäßverengungen, respiratorische oder pulmonale Erkrankungen (Lungenerkrankungen), partiell oder komplett abgeschnittene Versorgung von Organen durch Herzinsuffizienz, Thrombose(n), Embolie(n), oder andere Faktoren oder Krankheiten, die die Sauerstoffzufuhr behindern, in Frage – wie Reaktion auf Höhenluft, Sauerstoffverwertungsstörung in Zellen, Anämie insbesondere durch zu geringe Sauerstoffbindung an rote Blutkörperchen usw.

Je nach Ursache unterscheidet man:

  • Hypoxämische Hypoxie: Sauerstoffmangel mit Folge der Unterversorgung von Organen, auch aufgrund von Lungenerkrankungen oder zu anderen Mangel an Sauerstoffsättigung, etwa auch in dünner Höhenluft (über 3.000 Meter bzw. 10.000 ft).
  • Anämische Hypoxie: Blutmangel, sodass nicht ausreichend Sauerstoff transportiert werden kann
  • Ischämische (stagnierende) Hypoxie: Einschränkung der Organdurchblutung; der Sauerstoff erreicht sein Ziel nicht (auch als Synonym für Ischämie) Dabei kann die Organdurchblutung sowohl aufgrund einer Verengung (Makroangiopathie, z. B. Arterio- oder Atherosklerose) oder eines Verschlusses (Embolie, z. B. Lungenembolie, oder Thrombosierung, z. B. Herzinfarkt, (thrombotischer) Schlaganfall) größerer Arterien, als auch einer Schädigung der Mikrozirkulation im Bereich der kleinen Arteriolen, Venolen und insbesondere der Kapillaren vermindert sein.
  • Histotoxische Hypoxie, auch zytotoxische Hypoxie: Die Zellen können den Sauerstoff nicht verwerten (beispielsweise bei Zyankali-Vergiftung, durch Überkonsum an Alkohol, Schlafmitteln oder Anti-Brechmittel)
  • Hypobare Hypoxie, Höhenexposition geht einher mit einer Erniedrigung des Umgebungsluftdruckes bei gleichbleibender Sauerstoffkonzentration (von ungefähr 20 %)
  • Normobare Hypoxie, die Sauerstoffkonzentration wird verringert (z. B. durch Zufuhr von Stickstoff oder Kohlendioxid), bei unverändertem Luftdruck. Der Sauerstoffpartialdruck sinkt. Diesen Effekt kann man erreichen, wenn man in eine Plastiktüte atmet.

Pathophysiologie[Bearbeiten]

Computertomographie nach generalisierter Hypoxie des Gehirns

Zerebrale Hypoxie[Bearbeiten]

Im Gehirn sind bei Hypoxie bestimmte Bereiche besonders betroffen, die Nervenzellschäden treten in diesen Regionen zuerst auf. Dazu gehören die Purkinje-Zellen des Kleinhirns und der CA1-Bereich des Ammonshornes. Die Zellen reagieren auf die äußeren Einflüsse mit der Aktivierung sogenannter Heat-Shock-Proteine. Diese und weitere Produkte aus der C-Fos und G-Jun Proteinfamilie ändern bestimmte Zellfunktionen, die das Überleben oder das kontrollierte Absterben der Zellen regulieren sollen.

Morphologisch beobachtet man in geschädigten Bereichen des Gehirns Nekrosen, Schrumpfungen des Hirnmantels und vor allem einen selektiven Untergang der Neuronen. Letztere schrumpfen zu einem charakteristischen Dreieck mit homogenem Aussehen zusammen und können von Pathologen unter dem Mikroskop diagnostiziert werden.

Wenn Säuglinge und Kleinkinder nach einer zerebralen Hypoxie mit reinem Sauerstoff beatmet werden, könnte das laut einer Studie die Hirnschäden noch vergrößern.[5] Zu einer zerebralen Hypoxie kann es etwa bei der Geburt oder durch Beinahe-Ertrinken kommen. Hinweise für die Vermutung, dass reiner Sauerstoff die Hirnschäden nur verschlimmert, ergaben Versuche mit Mäusen: Sie erhielten nach einer Hypoxie für 30 Minuten 100-prozentigen Sauerstoff. Im Vergleich zu Tieren, die normale Luft geatmet hatten, war die Myelinbildung stärker gestört, und sie hatten mehr motorische Defizite, ähnlich denen einer Zerebralparese. Außerdem kam es bei den Tieren zur Anhäufung von hoch reaktiven Sauerstoffverbindungen wie Nitrotyrosin, und eine Population von unreifen Gliazellen im Cortex ging zugrunde. Durch Zugabe eines Antioxidans ließ sich das vermeiden. Nach der Studienhypothese könnten die Myelinschäden in der weißen Hirnsubstanz durch oxidativen Stress zustande kommen.[5]

Bereits eine 3 Minuten andauernde Hypoxie kann zu einer irreversiblen Schädigung der Gehirnzellen führen. Ab einem paO2 von 70mmHg konzentriert sich der Körper auf die Versorgung lebenswichtiger Organe mit Sauerstoff, vorrangig auf das Gehirn. Dieser Kompensationszustand bricht ab einem paO2 von 50mmHg zusammen: Die Herzfrequenz fällt ab (Bradykardie) und der Blutdruck nimmt ab (Hypotonie). Ein paO2 ab 30mmHg wird als letale Schwelle angesehen[6]

Hypoxie im Bereich der unteren Extremitäten (Füße und Unterschenkel)[Bearbeiten]

Weil die Zuckerkrankheit (Diabetes mellitus) die Blutgefäße schädigt, resultiert häufig eine Durchblutungsstörung der unteren Extremitäten. Ein häufiges Krankheitsbild ist deshalb das diabetische Fußsyndrom, mit chronischen Wunden aufgrund der geringen Sauerstoffversorgung der unteren Extremitäten. Überaus häufig sind auch schlecht heilende Unterschenkelgeschwüre (Ulcus cruris, „offene Beine“, geschätzt etwa 1,5 Millionen Betroffene in Deutschland) aufgrund venöser Stase oder (seltener) arterieller Durchblutungsstörungen.

Zur Abschätzung des Sauerstoffgehaltes einer Haut mit chronischen Wunden wird häufig der transkutane Sauerstoffpartialdruck (tcPO2) bestimmt. Er wird aus der Menge des Sauerstoffs ermittelt, die durch die Haut nach außen diffundiert und lässt sich nicht-invasiv bestimmen. An jeder Stelle der Haut ist der tcPO2 eine Funktion von lokal und systemisch wirksamen Faktoren. So spielt die allgemeine Sauerstoffversorgung ebenso eine Rolle wie die lokalen metabolischen Zustände der Haut und der darunter liegenden Gewebe sowie die Diffusionsfähigkeit des Sauerstoffs durch die Haut. In gesunder Haut findet man zumeist einen transkutanen Sauerstoffpartialdruck der über 40 mmHg liegt [7][8]. Im Falle von chronischen Wunden, die aufgrund einer Sauerstoffunterversorgung bei einer chronisch venöse Insuffizienz oder im Rahmen eines Diabetes mellitus [7] entstanden sind, liegen die periulzeral gemessenen transkutanen Sauerstoffpartialdrücke deutlich unter 40 mmHg[9] und können, je nach Krankheitsgrad, bis auf 0 mmHg absinken [7][10][11]. Für die reparativen Prozesse der Wundheilung werden aber Partialdrücke von über 35 mmHg als notwendig beschrieben[12][10].[13] Insbesondere für die Synthese von Kollagenen ist aufgrund des hohen Sauerstoffbedarfes der beteiligten Enzyme ein Sauerstoffpartialdruck von etwa 50 - 100 mmHg notwendig[12][14].

Therapieansätze[Bearbeiten]

Basis jeder Behandlung einer chronischen Wunde ist, wie auch in den relevanten klinischen Leitlinien beschrieben, die jeweilige kausale Behandlung der zugrunde liegenden Erkrankung (z. B. der Zuckerkrankheit oder eines Blutgefäßverschlusses) oder zumindest die Kompensation der ursächlichen Faktoren (z. B. Entstauung des Gewebes bei venöser Insuffizienz), sowie eine feuchte, phasenadaptierte lokale Wundbehandlung. Noch wenig etabliert sind dagegen Ansätze, die direkt auf eine Verbesserung des Sauerstoffgehaltes in der Wunde abzielen. Die systemische hyperbare Sauerstoffzufuhr (hyperbare Oxygenierung: HBO), deren Wirksamkeit beim diabetischen Fußsyndrom gezeigt wurde[15] konnte sich bislang in einer breiten klinischen Anwendung nicht etablieren. Daneben wurden Therapien mittels topischer Emulsionen oder Sprays zur topischen Verwendung entwickelt, die entweder Sauerstoff beinhalten, direkt freisetzen oder aber als Sauerstoffträger den atmosphärischen Sauerstoff an den Wundgrund bringen [7][16][17][18], die zu einer verbesserten Wundregeneration beitragen können. So konnte in verschiedenen Studien und Heilversuchen gezeigt werden, dass die lokale Bereitstellung von zusätzlichem Sauerstoff, z. B. über ein Spray mit Hämoglobin als Sauerstoffträger, die Wundregeneration fördert und zu einer Abheilung langjährig existierender Wunden führen kann [7][17][18][10]. Topische Peroxidformulierungen können durch spontane oder enzymatische Reaktionen Sauerstoff freisetzen. Sie werden aber aufgrund ihrer antibakteriellen Wirkung lokalen Zytotoxizität primär in der Wundreinigung eingesetzt. Sauerstoffgesättigte topische Emulsionen in Kombination mit synthetischen Sauerstoffträgern, wie Perfluorcarbon lassen bislang nur begrenzte Einsatzmöglichkeiten bei akuten Behandlungen erkennen[2].

Siehe auch[Bearbeiten]

Weblinks[Bearbeiten]

 Wiktionary: Hypoxie – Bedeutungserklärungen, Wortherkunft, Synonyme, Übersetzungen

Literatur und Einzelnachweise[Bearbeiten]

  1.  Hans Walter Striebel: Die operative Intensivmedizin: Sicherheit in der klinischen Praxis. S. 41. Schattauer, Stuttgart 2007, ISBN 9783794524808.Online: eingeschränkte Vorschau in der Google-Buchsuche
  2. a b  Rolf Rossaint: Die Anästhesiologie: allgemeine und spezielle Anästhesiologie, Schmerztherapie und Intensivmedizin, S. 806. Springer, Berlin, Heidelberg 2004, ISBN 9783540000778.Online: eingeschränkte Vorschau in der Google-Buchsuche
  3. "Burchadi, Larsen, Schuster, Suter: Die Intensivmedizin 9. Auflage, Springer Verlag, 2004, S. 105. ISBN 3-540-00882-9
  4. Law R, Bukwirwa H. The physiology of oxygen delivery; Update in Anaesthesia. 1999; 10: 8-14
  5. a b Ärzte Zeitung, 3. Juli 2008, zitiert nach Journal of Cerebral Blood Flow and Metabolism 28, 2008, 1294
  6. Kretz Schäffer Eyrich: Anästhesie Intensivmedizin Notfallmedizin Schmerztherapie S. 200; Springer Verlag 1996, 2. Auflage; ISBN 3-540-57677-0
  7. a b c d e Barnikol WKR, Teslenko A, Pötzschke H. Eine neue topische Behandlung chronischer Wunden mit Hämoglobin und Sauerstoff: Verfahren und erste Ergebnisse. Zeitschr Wundheilung. 2005; 10: 98-108
  8. Stücker M, Memmel U, Altmeyer P, Transkutane Sauerstoffpartialdruck und Kohlendioxidpartialdruckmessung – Verfahrenstechnik und Anwendungsgebiete. Phlebologie. 2000; 29: 81-91
  9. Sheffield, PJ. Tissue oxygen measurements with respect to soft-tissue wound healing with normobaric and hyperbaric oxygen. HBO Rev. 1985; 6: 18-46
  10. a b c Dissemond J, Körber A, Jansen T, Schneider LA. Sauerstoff in der Therapie des Ulcus cruris. Zeitschr Wundheilung. 2005; 10: 252-6
  11. Jünger M, Hahn M, Klyscz T, Stein A,. Role of microangiopathy in the development of venous leg ulcers. In: Messmer K, editor. Microcirculation in Chronic Venous Insufficiency (Progress in Applied Microcirculation Vol. 23). Basel: Karger; 1999: 180-91
  12. a b Dissemond J. Die Bedeutung von Sauerstoff in der Genese und Therapie von chronischen Wunden. Hartmann Wundforum. 2001 (2/2001): 16-9
  13. Padberg FT, Back TL, Thompson PN, Hobson RW., 2nd Transcutaneous oxygen (TcPO2) estimates probability of healing in the ischemic extremity. J Surg Res. 1996; 60: 365-9
  14. La Van FB, Hunt TK. Oxygen and wound healing. Clin Plast Surg. 1990; 17: 463-71
  15. Löndahl M, Katzman P, Nilsson A, Hammarlund C. Hyperbaric oxygen therapy facilitates healing of chronic foot ulcers in patients with diabetes. Diabetes Care. 2010; 33: 998-1003
  16. Davis SC, Cazzaniga AL, et al. Topical oxygen emulsion. Arch Dermatol. 2007; 143: 1252-1256
  17. a b Arenberger P, Engels P, Arenbergerova M, Gkalpakiotis S, García Luna Martínez FJ, Villarreal Anaya A, Jimenez Fernandez L. Clinical results of the application of a hemoglobin spray to promote healing of chronic wounds. GMS Krankenhaushyg Interdiszip. 2011; 6: Doc 05 (20111215)
  18. a b Barnikol WKR, Pötzschke H.: Complete healing of chronic wounds of a lower leg with haemoglobin spray and regeneration of an accompanying severe dermatoliposclerosis with intermittent normobaric oxygen inhalation (INBOI): a case report. GMS Ger Med Sci. 2011; 9: Doc 08 (20110330)
  • Schreml S, Szeimies RM, Prantl L, Karrer S. Landthaler M, Babilas P, Oxygen in acute and chronic wound healing. In: Br J Dermatol. 2010, 163: 257-68
Gesundheitshinweis Bitte den Hinweis zu Gesundheitsthemen beachten!