Diboran

aus Wikipedia, der freien Enzyklopädie
Wechseln zu: Navigation, Suche
Strukturformel
Struktur von Diboran
Allgemeines
Name Diboran
Andere Namen
  • Borethan
  • Diborhexahydrid
Summenformel B2H6
CAS-Nummer 19287-45-7
Kurzbeschreibung

farbloses Gas mit abstoßend süßlichem Geruch[1]

Eigenschaften
Molare Masse 27,67 g·mol−1
Aggregatzustand

gasförmig

Dichte

1,17 kg·m−3 (15 °C, 1 bar)[1]

Schmelzpunkt

−164,85 °C[1]

Siedepunkt

−92,5 °C[1]

Dampfdruck

2,8 MPa (0 °C)[1]

Sicherheitshinweise
GHS-Gefahrstoffkennzeichnung [1]
02 – Leicht-/Hochentzündlich 04 – Gasflasche 06 – Giftig oder sehr giftig

Gefahr

H- und P-Sätze H: 330​‐​220​‐​280
P: 260​‐​210​‐​304+340​‐​315​‐​377​‐​381Vorlage:P-Sätze/Wartung/mehr als 5 Sätze​‐​405​‐​403 [1]
EU-Gefahrstoffkennzeichnung [2][1]
Hochentzündlich Sehr giftig
Hoch-
entzündlich
Sehr giftig
(F+) (T+)
R- und S-Sätze R: 12​‐​26
S: 9​‐​16​‐​38​‐​45
Thermodynamische Eigenschaften
ΔHf0

36,4 kJ/mol[3]

Soweit möglich und gebräuchlich, werden SI-Einheiten verwendet. Wenn nicht anders vermerkt, gelten die angegebenen Daten bei Standardbedingungen.
Vorlage:Infobox Chemikalie/Summenformelsuche nicht möglich

Diboran ist eine chemische Verbindung aus den Elementen Bor und Wasserstoff. Es besitzt die Summenformel B2H6 und ist die einfachste Verbindung aus der Stoffklasse der Bor-Wasserstoff-Verbindungen (Borane).

Geschichte[Bearbeiten]

Diboran wurde zum ersten Mal im 19. Jahrhundert durch Hydrolyse von Metallboriden synthetisiert, aber nicht eingehend untersucht. Von 1912 bis 1936 erforschte der große Pionier der Chemie der Borhydride Alfred Stock diese Verbindungen, was zu Methoden für die Synthese und Handhabung der sehr reaktiven, flüchtigen und oft giftigen Borhydride führte. Er schlug zuerst eine dem Ethan ähnliche Struktur für Diboran vor.[4] Die Beugung von Elektronenstrahlen nach Versuchen von S.H. Bauer unterstützte die von ihm vorgeschlagene Struktur.[5][6]

In der Kommunikation von H. I. Schlesinger mit L. Pauling (der ebenfalls die Ethanstruktur annahm), wurde die Dreizentrenbindung in seiner klassischen Überprüfung in den frühen 1940er-Jahren aber nicht ausdrücklich diskutiert.[7] Die Überprüfung diskutierte jedoch die C2v Struktur tiefgreifend: "Es ist zu erkennen, dass diese Annahme leicht viele der chemischen Eigenschaften von Diboranen erklärt ...".

Im Jahre 1943 veröffentlichte der Bachelor-Student am Balliol College in Oxford Christopher Longuet-Higgins zusammen mit R. P. Bell die heute akzeptierte Struktur von Diboran.[8] Diese wurde allerdings schon im Jahre 1921 in der damaligen Sowjetunion beschrieben.[9][10][11] In den Jahren nach dem Vorschlag von Longuet-Higgins/Bell gab es eine umfangreiche Diskussion über die richtige Struktur. Die Debatte endete 1951 mit den Elektronenbeugungs-Messungen von K. Hedberg und V. Schomaker, welche die bis heute anerkannte Struktur von Diboran bestätigten.[12]

William Nunn Lipscomb Jr. bestätigte die molekulare Struktur der Borane durch Röntgenstrukturanalyse in den 1950er-Jahren und entwickelte Theorien zur Erklärung dieser Bindung. Später nutzte er die gleichen Methoden für ähnliche Probleme, einschließlich der Struktur von Carboranen. Lipscomb erhielt für seine Bemühungen 1976 den Nobelpreis für Chemie.

Vorkommen[Bearbeiten]

Diboran kommt nicht natürlich vor.

Gewinnung und Darstellung[Bearbeiten]

Zur Herstellung von Diboran gibt es mehrere Möglichkeiten:[13]

Reaktion von Lithiumhydrid mit Bortrifluorid:

\mathrm{6 \ LiH \ + \ 8 \ BF_3 \rightleftharpoons 6 \ Li[BF_4] \ + \ B_2H_6}

Reaktion von Lithiumtetrahydroaluminat mit Bortrichlorid in Diethylether:

\mathrm{3 \ Li[AlH_4] \ + \ 4 \ BCl_3 \rightleftharpoons 3 \ Li[AlCl_4] \ + \ 2 \ B_2H_6}

Reaktion von Natriumboranat mit Bortrifluorid in Ethylenglycoldimethylether:

\mathrm{3 \ NaBH_4 \ + \ 4 \ BF_3 \rightleftharpoons 3 \ NaBF_4 \ + \ 2 \ B_2H_6}

Reaktion von Natriumboranat mit Iod in Ethylenglycoldimethylether oder THF:[14]

\mathrm{2 \ NaBH_4 \ + \ I_2 \rightleftharpoons B_2H_6 \ + \ 2 \ NaI \ + \ H_2}

Technische Herstellung[Bearbeiten]

Boran wird technisch durch Hydrierung von Dibortrioxid (B2O3) mithilfe von metallischem Aluminium und Aluminiumchlorid als Katalysator bei Temperaturen oberhalb 150 °C und bei einem Wasserstoffdruck von 750 bar hergestellt.

\mathrm{B_2O_3 \ + \ 2 \ Al \ + \ 3 \ H_2 \ + \ AlCl_3 \longrightarrow (BH_3)_2 \ + \ 3 \ AlOCl}

Eigenschaften[Bearbeiten]

Bindungslängen und -winkel im Diboran

Diboran ist ein farbloses, brennbares, hochgiftiges Gas mit stechendem, süßlichem, widerlichem Geruch. Es ist eine bei Standardbedingungen metastabile Verbindung. Oberhalb von 50 °C beginnt seine Zersetzung zu Wasserstoff und höheren Boranen (Tetraboran, Pentaboran, Hexaboran, Decaboran und andere). Die Zündtemperatur des reinen Diborans liegt bei 145 °C. Enthält es Spuren höherer Borane, kann es sich an der Luft spontan selbstentzünden und verbrennt es unter starker Wärmeentwicklung.

\mathrm{B_2H_6 \ + \ 3 \ O_2 \longrightarrow B_2O_3 \ + \ 3 \ H_2O \ \ \Delta H = -2137,7 kJ}

In der Praxis zündet es daher schon bei etwa 45 °C. Bei einem Luftvolumenanteil von 0,8 bis 88 % bildet es explosive Gemische. Da das Gas deshalb mit Vorsicht zu handhaben ist, lässt man es meist mit Aminen (\mathrm{R}) zu Aminoboran-Komplexen reagieren.[15]

\mathrm{2 \ R_3N \ + \ B_2H_6 \rightleftharpoons \ 2 \ R_3N-BH_3}

Diese (flüssigen) Substanzen dienen als Vorstufe für Diboran und können ohne Gefahr aufbewahrt und transportiert werden. Die Wiedergewinnung erfolgt durch Zugabe starker Säuren (z.B. Salzsäure).

\mathrm{2 \ R_3N-BH_3 \ + \ 2 \ HCl \rightleftharpoons \ 2 \ R_3NH^+ \ + \ 2 \ Cl^- \ + \ B_2H_6}

Beim Lösen in Wasser reagiert Diboran mit diesem. Im Labormaßstab kann man Diboran durch Oxidation von Natriumborhydrid mit Iod in Diglyme darstellen.

Struktur[Bearbeiten]

Diboran ist die einfachste Verbindung aus der Stoffklasse der Borane, da monomeres Boran (BH3) nicht stabil ist und das metastabile Addukt Diboran bildet. Die Borkerne sind hierbei tetraedrisch von vier Wasserstoffkernen umgeben. Die beiden verbrückenden Wasserstoffkerne bilden eine 2-Elektronen-3-Zentren-Bindung aus, um den Elektronenmangel der Borkerne zu kompensieren. Zwei Elektronen befinden sich hierbei in einem über drei Atome verteilten Orbital.

Räumliche Struktur des Diboran: jedes Boratom ist tetraedrisch von vier Wasserstoffatomen umgeben. Die bindenden Orbitale zwischen den B-Atomen enthalten jeweils ein H-Atom und lediglich zwei Elektronen. Die nichtbindenden Orbitale sind der Übersichtlichkeit wegen weggelassen.

Chemische Eigenschaften[Bearbeiten]

Das Bor im Diboran besitzt bedingt durch die Zwei-Elektronen-Dreizentrenbindungen zu den beiden Brücken-Wasserstoffatomen einen Elektronenmangel. Dadurch ist Diboran eine einwertige Lewis-Säure und reagiert unter Bildung von koordinativen Bindungen zu Lewis-Basen (wie Ammoniak) unter Spaltung in monomere Borane. Mit gasförmigem Ammoniak bildet sich entsprechend BH3·NH3.[16]

\mathrm{B_2H_6 \ + \ 2 \ NH_3 \ \longrightarrow \ 2 \ BH_3 \leftarrow NH_3}

Die Salze von Diboran enthalten das Monoboranat/Tetrahydroboranat/Tetrahydridoboranat Ion BH4 und werden Monoboranate/Tetrahydroboranate genannt. Ein wichtiger Vertreter ist das durch Umsetzung von Diboran mit Natriumhydrid entstehende Natriumboranat.

\mathrm{2 \ NaH \ + \ B_2H_6 \longrightarrow \ 2 \ NaBH_4}

Verwendung[Bearbeiten]

Diboran ist das wichtigste Reagenz für Hydroborierungen, wobei Alkene (R ein beliebiger Rest) über die B–H-Bindungen zu Trialkylboranen verbunden werden.

\mathrm{3\;RCH=CH_2 \ + \ (THF)BH_3 \rightarrow (RCH_{2}CH_{2})_{3}B\! \ + \ THF}

Diese Reaktion ist regioselektiv und die entstehenden Trialkylborane können leicht in andere nützliche organische Derivate umgewandelt werden.

Diboran wird auch als Reduktionsmittel etwa als Ergänzung zu der Reaktivität von Lithiumaluminiumhydrid verwendet. Die Verbindung reduziert leicht Carbonsäuren zu den entsprechenden Alkoholen. Es wurde auch als Raketentreibstoff in Erwägung gezogen, allerdings erwies es sich als völlig ungeeignet, da es bei der Verbrennung Bortrioxid bildet, das die Triebwerke verstopft. Diboran wird weiterhin für die Gummivulkanisierung verwendet. Borverbindungen werden allgemein als Katalysatoren bei der Polymerisation von Kohlenwasserstoffen oder bei der Herstellung von Anti-Markownikow-Produkten verwendet.

Sicherheitshinweise[Bearbeiten]

Die Inhalation von Diboran führt zu Husten, Halsschmerzen, Schwindel, Atembeschwerden, Übelkeit und Mattigkeit. Es ist hochgiftig und hochentzündlich.

Einzelnachweise[Bearbeiten]

  1. a b c d e f g h Eintrag zu Diboran in der GESTIS-Stoffdatenbank des IFA, abgerufen am 12.11.2007 (JavaScript erforderlich)
  2. Seit dem 1. Dezember 2012 ist für Stoffe ausschließlich die GHS-Gefahrstoffkennzeichnung zulässig. Bis zum 1. Juni 2015 dürfen noch die R-Sätze dieses Stoffes für die Einstufung von Gemischen herangezogen werden, anschließend ist die EU-Gefahrstoffkennzeichnung von rein historischem Interesse.
  3. David R. Lide (Hrsg.): CRC Handbook of Chemistry and Physics. 90. Auflage. (Internet Version: 2010), CRC Press/Taylor and Francis, Boca Raton, FL, Standard Thermodynamic Properties of Chemical Substances, S. 5-6.
  4.  A. Stock: The Hydrides of Boron and Silicon. Cornell University Press, New York 1933.
  5.  S. H. Bauer: The Structure of Diborane. In: Journal of the American Chemical Society. 59, 1937, S. 1096, doi:10.1021/ja01285a041.
  6.  S. H. Bauer: Structures and Physical Properties of the Hydrides of Boron and of their Derivatives. In: Chemical Reviews. 31, 1942, S. 43–75, doi:10.1021/cr60098a001.
  7.  H. I. Schlesinger, A. B. Burg: Recent Developments in the Chemistry of the Boron Hydrides. In: Chemical Reviews. 31, 1942, S. 1–41, doi:10.1039/JR9430000250.
  8.  H. C. Longuet-Higgins, R. P. Bell: The structure of the boron hydrides. In: Journal of the Chemical Society. 1943, S. 250–255, doi:10.1039/JR9430000250.
  9.  W. Dilthey: Drehbrenner mit fester Gaszuführung. In: Zeitschrift für angewandte Chemie. 34, 1921, S. 594, doi:10.1002/ange.19210349504.
  10.  B. V. Nekrassov: In: J Gen Chem USSR. 10, 1940, S. 1021.
  11.  B. V. Nekrassov: In: J Gen Chem USSR. 10, 1940, S. 1056.
  12.  K. Hedberg, V. Schomaker: A Reinvestigation of the Structures of Diborane and Ethane by Electron Diffraction. In: Journal of the American Chemical Society. 73, 1951, S. 1482–1487, doi:10.1021/ja01148a022.
  13. F. A. Cotton, G. Wilkinson: Anorganische Chemie: Eine zusammenfassende Darstellung für Fortgeschrittene. übers. v. Heinz P. Fritz. 4., völlig neu bearb. Auflage. erster Nachdruck. VCH, Weinheim 1985.
  14. A. S. B. Prasad, J. V. B. Kanth, M. Periasamy: Tetrahedron. 1992, 48, S. 4623–4628.
  15. James Arthur Campbell: Allgemeine Chemie: Energetik, Dynamik und Struktur chemischer Systeme. 2., durchgesehene Auflage. Verlag Chemie (VCH), Weinheim 1985.
  16. Arnold F. Holleman, Nils Wiberg: Lehrbuch der Anorganischen Chemie. 102. stark umgearbeitete und verbesserte Auflage. de Gruyter, Berlin u. a. 2007, S. 1066.

Weblinks[Bearbeiten]

 Commons: Diboran – Sammlung von Bildern, Videos und Audiodateien