Kambrische Explosion

aus Wikipedia, der freien Enzyklopädie
Wechseln zu: Navigation, Suche
Verhältnis zwischen Zeit (Evolution) und Diversität

Als kambrische Explosion, kambrische Artenexplosion oder auch kambrische Radiation (vgl. Adaptive Radiation) wird das fast gleichzeitige, erstmalige Vorkommen von Vertretern fast aller heutigen Tierstämme in einem geologisch kurzen Zeitraum von 5 bis 10 Millionen Jahren zu Beginn des Kambriums vor etwa 543 Millionen Jahren bezeichnet. Die grundlegenden Körperbaupläne vieler mehrzelliger Tierstämme, die seitdem die Erde bevölkern, sind in Gesteinen dieser Epoche erstmals eindeutig überliefert.

Das erste Auftreten von Vielzellern datiert man auf 1,2 Milliarden Jahre vor unserer Zeit (erste Vielzeller: vielzellige Algen). Wann genau die ersten vielzelligen Tiere (Metazoa) auftraten, ist nach wie vor stark umstritten. Aus dem Vergleich des Genoms heutiger Tierarten mit den Methoden der molekularen Uhr ergeben sich z. T. sehr frühe Zeitpunkte für die letzten gemeinsamen Vorfahren zahlreicher Tierstämme, ohne dass aus diesen Epochen Fossilien gefunden worden wären.[1] Meist nimmt man an, dass die ersten Vielzeller sehr klein waren und weder ein Skelett noch andere Hartteile besaßen, so dass ihre fossile Überlieferung sehr unwahrscheinlich wäre.

Aus den Erdzeitaltern vor dem Kambrium sind daher wesentlich weniger Fossilien bekannt als aus den Zeiten danach, so dass der gesamte Zeitraum von der Entstehung der Erde (vor ca. 4,56 Milliarden Jahren) bis zur kambrischen Explosion vor 542 Millionen Jahren als Präkambrium bezeichnet wird. Heute kann man diesen langen Zeitraum auch ohne Zuhilfenahme von Leitfossilien besser aufgliedern (→ Geologische Zeitskala).

Die präkambrische Tierwelt[Bearbeiten]

Im Ediacarium, der jüngsten Formation im Präkambrium, treten erstmals Fossilien größerer und komplexerer Tiere auf (Ediacara-Fauna). Die Verwandtschaft dieser Formen zu den später lebenden Tieren ist unklar[2]. Viele Forscher interpretieren sie als Diploblasten, d. h. Lebewesen, die wie die heutigen Quallen und Rippenquallen nur zwei Keimblätter besitzen. Der Körperbau einiger Formen erinnert etwa an Seefedern. Sie wurden aber auch schon als riesenhafte Einzeller interpretiert, die ein eigenes, ausgestorbenes Reich neben Tieren, Pilzen und Pflanzen bildeten (sog. Vendobionten). Möglicherweise handelt es sich auch um flechtenähnliche, fossile Landpflanzen[3]. Da diese schalen- und skelettlosen Lebewesen jeweils nur mehr oder weniger undeutliche und häufig schwer interpretierbare Abdrücke hinterlassen haben, ist eine sichere Interpretation kaum möglich. Am weitesten entwickelt und im Zusammenhang mit der kambrischen Explosion am interessantesten unter den ediacarischen Fossilien ist die berühmte Kimberella, bei der es sich mit einiger Sicherheit um einen sehr urtümlichen Mollusken, also eine „Urschnecke“, handelt. Ein weiteres Fossil, das als Vorläufer der kambrischen Fauna gelten kann, ist Spriggina, ein segmentiertes Fossil, das möglicherweise einen anneliden Wurm darstellt. Vermutlich etwa genauso alt wie die Ediacara-Fauna sind winzige, plastisch (d. h. nicht nur als Abdrücke) erhaltene Mikrofossilien aus Phosphatgesteinen der sog. Doushantuo-Formation aus China, die oft als Larven oder Embryonen vielzelliger Tiere gedeutet werden[4], obwohl diese Deutung nach jüngeren Untersuchungen an Wahrscheinlichkeit verloren hat[5]. Einige Forscher interpretieren Funde aus dieser Epoche (Vernanimalcula) als Überreste kleiner wurmartiger Tiere, die dem Überstamm der Deuterostomia angehören[6]. Diese Deutung wird aber von anderen Wissenschaftlern bestritten[7].

Bedeutung[Bearbeiten]

Mit der kambrischen Explosion erscheinen zwei neue, grundlegende Muster für Körperbaupläne. Die Fossilien des Kambriums belegen erstmals Lebewesen sowohl mit einer radialsymmetrischen Struktur als auch mit rechts-links-Symmetrie und einer zusätzlichen von oben nach unten verlaufenden Längsachse des Körpers. Diese als „Zweiseitentiere“ (Bilateria) bezeichneten Tiere stammen vermutlich alle von einem gemeinsamen Vorfahren ab. Diese Annahme liegt durch die Entdeckung der sog. Hox-Gene nahe, die die grundlegenden Körperbaupläne aller Tiere steuern. Die Hox-Gene aller Bilateria sind homolog, d. h. ihre DNA-Sequenzen entsprechen sich so stark, dass man die Entstehung aus demselben ursprünglichen Gen annehmen muss. Amorphe Mehrzeller benötigen nur ein Hox-Gen für ihren Körperbauplan. Radialsymmetrische Lebewesen erfordern zwei Hox-Gene als genetische Grundausstattung (bei den heutigen Nesseltieren verwirklicht). Die heute lebenden Nachfahren der komplexeren Lebewesen des Kambriums hingegen weisen mindestens einen Hox-Cluster aus vier Hox-Genen und dazu einen Para-Hox-Cluster mit ebenfalls vier Hox-Genen auf. Für den Vorfahren aller Bilateria („Urbilateria“) wird aus den heute vorhandenen Genen ein Grundbauplan mit sieben Hox-Genen rekonstruiert. Bei den heutigen Protostomia gibt es acht Hox-Gene, bei den Chordaten vierzehn. Bei den höheren Wirbeltieren existieren 39 Hox-Gene in vier Clustern; hier nimmt man eine Entstehung aus den ursprünglichen vierzehn Genen durch zweimalige Verdoppelung des gesamten Genoms (mit anschließendem Verlust einiger Gene) an. Die zunehmende Komplexität der genetischen Baupläne erklärt sich leicht, denn zusätzlich zum geometrischen Körperbauplan müssen die Gene eine räumliche und zeitliche Codierung für die Spezialisierung unterschiedlicher Zellen an unterschiedlichen Orten vorgeben[8][9].

Eine weitere wichtige Neuheit bei der Fauna des Kambriums ist das erstmalige Auftreten von Tieren, die harte Schalen oder ein Skelett besitzen. Auch bei Tieren ohne kalkige Skelettelemente treten stabile Körperhüllen z. B. aus Chitin oder Knorpelsubstanz auf, wie sie z. B. bei den kambrischen Fossilien aus den sog. Burgess-Schiefern überliefert sind. Außerdem sind (von einigen Vertretern der rätselhaften Ediacara-Fauna abgesehen) Tiere mit größerem Körper vorher nicht aufgetreten.

Da mit dem Kambrium auch erstmals in größerem Umfang Sedimente mit Ichnofossilien, d.h. fossilierten Spuren von Tieren auftreten, ist davon auszugehen, dass auch die Entstehung von Tieren, die auf dem Meeresboden kriechen oder in ihm graben können, auf diese Epoche zurückgeht. Tatsächlich ist die Basis des Kambriums nicht durch ein Körperfossil, sondern durch das erste komplexe Spurenfossil definiert. Die als Treptichnus pedum beschriebene Spur geht wahrscheinlich auf einen Priapuliden zurück[10].

Deutungen[Bearbeiten]

Das plötzliche, parallele Auftreten so vieler Tiere mit ganz unterschiedlichen Körperbauplänen in einer geologisch kurzen Epoche stellt für die Evolutionsforschung, seitdem es im 19. Jahrhundert entdeckt worden ist, ein wichtiges Problem dar. Frühere Versuche, sie ausschließlich durch den Zufall der fossilen Überlieferung zu erklären, sind heute nicht mehr glaubwürdig, weil inzwischen weltweit zahlreiche Fossillagerstätten neu entdeckt und ausgewertet worden sind. Die kambrische Explosion gilt heute deshalb übereinstimmend als ein reales Phänomen. Obwohl ein weit höheres Alter vieler Tierstämme weiterhin durchaus möglich erscheint, können entsprechende Vertreter bestenfalls millimetergroße, weichhäutige Geschöpfe gewesen sein. Ansonsten müsste man inzwischen Fossilien von ihnen, oder zumindest von ihren Spuren, entdeckt haben. Über buchstäblich jedes in Frage kommende ältere Fossil, das entsprechend gedeutet wurde, wird zwischen verschiedenen Forschern erbittert gestritten.[11] Erklärungsbedürftig ist vor allem, warum offensichtlich auf der jungen Erde das Leben vergleichsweise schnell entstanden ist, es dann aber viele hundert Millionen Jahre bis zum Auftreten komplexerer Vielzeller gedauert hat. Einigkeit über den Auslöser der kambrischen Explosion (oder das geologisch vergleichsweise kurz davor liegende Vorspiel der Ediacara-Fauna) gibt es innerhalb der Forschung bis heute nicht. Die diskutierten Theorien lassen sich in zwei Gruppen zusammenfassen:

  • biologisches „Wettrüsten“: Nach dieser Hypothese war es das Auftreten der ersten komplexen Vielzeller selbst, das die Entwicklung in Gang brachte. Die ersten Vielzeller hätten demnach nur sehr geringe adaptive Vorteile gehabt. Waren aber in einer langsamen Entwicklung daraus erst einmal bewegliche Tiere, möglicherweise mit räuberischer Ernährung, entstanden, stellten sie einen tiefgreifenden Selektionsfaktor dar. Schalen und Skelette könnten dann als Schutzmechanismus gegen Prädation entstanden sein.[12] Die Entstehung von Tieren mit grabender und wühlender Lebensweise war ebenfalls ein Schlüsselereignis. Sie zerstörte vermutlich die stabilen mikrobiellen Matten, die vorher den Ozeanboden bedeckten, und schuf dort vollkommen neue ökologische Bedingungen.[13]
  • abiotische Bedingungen: Andere Hypothesen gehen davon aus, dass das Entstehen höherer Vielzeller zu einem früheren Zeitpunkt unmöglich gewesen wäre, weil die Lebensbedingungen in den Ozeanen ihre frühere Entwicklung nicht zuließ. Demnach hätten sich die präkambrischen Meere in irgendeinem Schlüsselfaktor von den heutigen Meeren unterschieden. Die verbreitetste Hypothese nimmt an, dass der Sauerstoffgehalt im Meer erst zu diesem Zeitpunkt ein für höheres Leben ausreichendes Niveau erreichte.[14][15] Neuere Theorien weisen auf die mögliche Bedeutung zu hoher Temperaturen oder Salzgehalte im Ozean hin, beides Faktoren, die auch den Sauerstoffgehalt entscheidend beeinflussen können.[16] Schließlich wird auch über einen Einfluss des Calciumgehalts im Meerwasser nachgedacht.[17] – dieser Theorie zufolge wären die Schalen und Skelette zunächst so etwas wie Abfallprodukte gewesen, um überschüssiges Calcium auszuscheiden.

Eine weitere aus der geologischen Erforschung von Gesteinen aus dem ausgehenden Präkambrium bekannte Tatsache ist, dass damals sehr starke Eiszeiten auftraten. Viele Forscher interpretieren die Befunde so, dass so gut wie der gesamte Erdball, einschließlich der Meere, eisbedeckt war. Als „Schneeball Erde“ werden die Sturtische Vereisung und die darauf folgende Marinoische Eiszeit bezeichnet. Man nimmt an, dass das Auseinanderbrechen des Superkontinents Rodinia viel Flussbasalt freisetzte, dessen Verwitterung der Atmosphäre sehr viel Kohlendioxid entzog. Der dadurch reduzierte Treibhauseffekt führte zur Sturtischen Vereisung.[18][19]

Entwicklung[Bearbeiten]

Anomalocaris aus dem Burgess-Schiefer

In der dem Ediacarium folgenden untersten Stufe des Kambriums, im Tommotium, erscheinen erstmals Tiere mit Schalen, vor allem frühe Mollusken. Die Tommotium-Fauna wird auch „small shelly fauna“ genannt, denn es sind vorwiegend kleine, nur millimetergroße Fossilien überliefert. Ein Vertreter ist die in Geschieben (Glaukonitsandstein) vorkommende Gattung Mobergella, die man in Norddeutschland finden kann. Mobergella ist zudem eines der ältesten Körperfossilien Skandinaviens.

Darauf wiederum folgt die kambrische Explosion im engeren Sinne. Innerhalb von 20 Millionen Jahren breiten sich die Gliederfüßer massiv aus und werden zur vorherrschenden Gruppe in der damaligen Fauna. Vor allem zu nennen sind die Trilobiten, aber auch seltsam anmutende Formen wie Wiwaxia (wahrscheinlich ein bizarrer Annelide), Xenusion und Hallucigenia (vermutlich beides Vertreter der Lobopoden) oder der räuberische Anomalocaris (wahrscheinlich zu den Arthropoden zu zählen), sowie erste Vorläufer der Wirbeltiere.

Popularisierung[Bearbeiten]

Die kambrische Explosion wurde unter anderen durch Stephen Jay Goulds Buch Zufall Mensch. Das Wunder des Lebens als Spiel der Natur (1989) popularisiert. Er bezeichnet die oben erwähnten, nur im Kambrium nachgewiesenen Tierfamilien dort als „einmalig“, „rätselhaft“ oder „erstaunlich“, um das Thema einer breiten Öffentlichkeit nahezubringen.

Journalisten popularisierten die kambrische Radiation, deren wichtigste fossile Belege aus dem Burgess-Schiefer in Nordamerika stammen, in den USA weiter in Richtung Einmaligkeit. Das TIME-Magazin widmete dem Kambrium eine Cover-Story mit dem Titel Evolution's Big Bang (Ausgabe vom 4. Dezember 1995) und verglich dabei das Auftreten vieler neuer Tierarten und Stämme im Kambrium mit dem Urknall des Universums. Obwohl inzwischen immer mehr Vorläufer dieser Arten aus wesentlich älteren Formationen entdeckt wurden und dadurch die Einteilung der geologischen Zeitskala auch für das Präkambrium von Geologen verfeinert werden konnte, ging die Interpretation dieser journalistischen Artikel eher in Richtung eines einmaligen Ereignisses, bei dem viele Tierstämme in relativ kurzer Zeit entstanden sein sollen.

Einzelnachweise[Bearbeiten]

  1. Gregory A.Wray, Jeffrey S.Levinton, Leo H.Shapiro (2004): Molecular evidence for deep precambrian divergences among metazoan phyla. Science 1996: 568-573.
  2. James W.Valentine: Prelude to the Cambrian Explosion. Annual Review of Earth and Planet Science 30:285–306
  3. Gregory J. Retallack (2012): Ediacaran life on land. Nature 493: 89–92. doi:10.1038/nature11777
  4. vgl. z.B. Leiming Yin, Maoyan Zhu, Andrew H. Knoll, Xunlai Yuan, Junming Zhang, Jie Hu (2007): Doushantuo embryos preserved inside diapause egg cysts. Nature 446: 661-663. darin weitere Lit.
  5. John A. Cunningham, Ceri-Wyn Thomas, Stefan Bengtson, Stuart L. Kearns, Shuhai Xiao, Federica Marone, Marco Stampanoni, Philip C. J. Donoghue (2012): Distinguishing geology from biology in the Ediacaran Doushantuo biota relaxes constraints on the timing of the origin of bilaterians. Proceedings of the Royal Society Series B 279: 2369–2376. doi:10.1098/rspb.2011.2280
  6. Jun-Yuan Chen, David J. Bottjer, Paola Oliveri, Stephen Q. Dornbos, Feng Gao, Seth Ruffins, Huimei Chi, Chia-Wei Li, Eric H. Davidson (2004): Small Bilaterian Fossils from 40 to 55 Million Years Before the Cambrian. Science 305: 218-222
  7. Bengtson, S., Cunningham, J. A., Yin, C., Donoghue, P. C.J. (2012): A merciful death for the “earliest bilaterian,” Vernanimalcula. Evolution & Development 14: 421–427. doi:10.1111/j.1525-142X.2012.00562.x
  8. zur Evolution der hox-Gencluster vgl. z.B: Shigehiro Kuraku & Axel Meyer (2009): The evolution and maintenance of Hox gene clusters in vertebrates and the teleost-specific genome duplication. International Journal of Developmental Biology 53: 765-773.
  9. Jordi Garcia-Fernàndez (2005): The genesis and evolution of homeobox gene clusters. Natur Reviews Genetics 6: 881-892.
  10. Jean Vannier, Ivan Calandra, Christian Gaillard, Anna Żylińska (2010): Priapulid worms: Pioneer horizontal burrowers at the Precambrian-Cambrian boundary. Geology v. 38, no. 8: 711-714. doi:10.1130/​G30829.1
  11. zur fossilen Überlieferung vgl. z.B. Philip C. J. Donoghue & Mark A. Purnell (2009): Distinguishing heat from light in debate over controversial fossils. BioEssays 31:178–189.
  12. vgl. z.B. Jerzy Dzik (2005): Behavioral and anatomical unity of the earliest burrowing animals and the cause of the ‘‘Cambrian explosion’’. Paleobiology, 31(3): 503–521.
  13. David J. Bottjer, James W. Hagadorn,Stephen Q. Dornbos (2000): The Cambrian Substrate Revolution GSA Today 10(9)[1]
  14. Runnegar, B. (1982): The Cambrian explosion—animals or fossils. Journal of the Geological Society of Australia 29: 395– 411.
  15. Yanan Shen, Tonggang Zhang, Paul F. Hoffman (2008): On the coevolution of Ediacaran oceans and animals. Proceedings of the National Academy of Science 105(21): 7376-7381
  16. L. Paul Knauth (2005): Temperature and salinity history of the Precambrian ocean: implications for the course of microbial evolution. Palaeogeography, Palaeoclimatology, Palaeoecology 219: 53– 69.
  17. Sean T. Brennan, Tim K. Lowenstein, Juske Horita (2004): Seawater chemistry and the advent of biocalcification. Geology 32: 473-476
  18. Yannick Godderis, Yannick Donnadieu, A. Nédélec, B. Dupré, C. Dessert, A. Grard, G. Ramstein, L.M. François: The Sturtian 'snowball' glaciation: fire and ice. In: Earth and Planetary Science Letters. 211, Nr. 1-2, 15. Juni 2003, S. 1–12. ISSN 0012821X. doi:10.1016/S0012-821X(03)00197-3.
  19. Alan D. Rooney, F. A. Macdonald, J. V. Strauss, F. O. Dudas, C. Hallmann, D. Selby: Re-Os geochronology and coupled Os-Sr isotope constraints on the Sturtian snowball Earth. In: Proceedings of the National Academy of Sciences. 16. Dezember 2013. ISSN 0027-8424. doi:10.1073/pnas.1317266110.

Literatur[Bearbeiten]

Weblinks[Bearbeiten]