Primzahlzwilling

aus Wikipedia, der freien Enzyklopädie
Dies ist eine alte Version dieser Seite, zuletzt bearbeitet am 29. September 2016 um 01:15 Uhr durch DJGrandfather (Diskussion | Beiträge) (Rekord aktualisiert). Sie kann sich erheblich von der aktuellen Version unterscheiden.
Zur Navigation springen Zur Suche springen
Anzahl der Primzahl-Zwillingspaare kleiner gleich n

Ein Primzahlzwilling ist ein Paar aus zwei Primzahlen, deren Abstand 2 ist. Die kleinsten Primzahlzwillinge sind (3, 5), (5, 7) und (11, 13).

Geschichte

Der Begriff Primzahlzwilling wurde erstmals von Paul Stäckel benutzt.

Definition

Primzahlzwilling nennt man jedes Paar aus zwei Primzahlen und mit der Differenz .

Eigenschaften

Mit Ausnahme des Primzahlzwillings liegt zwischen den beiden Primzahlen eines Primzahlzwillings immer eine durch 6 teilbare Zahl. Jede ganze Zahl lässt sich nämlich in der Form , , , , oder darstellen, wobei eine ganze Zahl ist. Zahlen der Form , und sind durch 2 teilbar und können deswegen mit Ausnahme der Zwei keine Primzahlen sein. Zahlen der Form sind durch 3 teilbar und können deswegen mit Ausnahme der Drei auch keine Primzahlen sein. Somit haben alle Primzahlen über 3 die Form oder . Daraus folgt, dass jeder Primzahlzwilling mit Ausnahme von die Darstellung hat.

n (6n-1) (6n+1)
1 5 7
2 11 13
3 17 19
5 29 31
7 41 43
10 59 61
12 71 73
17 101 103
18 107 109
23 137 139
25 149 151
30 179 181
n (6n-1) (6n+1)
32 191 193
33 197 199
38 227 229
40 239 241
45 269 271
47 281 283
52 311 313
58 347 349
70 419 421
72 431 433
77 461 463
87 521 523
n (6n-1) (6n+1)
95 569 571
100 599 601
103 617 619
107 641 643
110 659 661
135 809 811
137 821 823
138 827 829
143 857 859
147 881 883
170 1019 1021
172 1031 1033
n (6n-1) (6n+1)
175 1049 1051
177 1061 1063
182 1091 1093
192 1151 1153
205 1229 1231
213 1277 1279
215 1289 1291
217 1301 1303
220 1319 1321
238 1427 1429
242 1451 1453
247 1481 1483
n (6n-1) (6n+1)
248 1487 1489
268 1607 1609
270 1619 1621
278 1667 1669
283 1697 1699
287 1721 1723
298 1787 1789
312 1871 1873
313 1877 1879
322 1931 1933
325 1949 1951
333 1997 1999

(Folge A001097 in OEIS) und (Folge A077800 in OEIS)

Mit Ausnahme von n=1 ist die letzte Ziffer eines n eine 0, 2, 3, 5, 7 oder eine 8, da im anderen Fall eine der beiden Zahlen 6n-1 bzw. 6n+1 durch 5 teilbar und damit keine Primzahl wäre.

Mit einer ganzen Zahl n lässt sich jede ungerade Zahl in der Form 30n+1, 30n+3, 30n+5, 30n+7, …, 30n+25, 30n+27, 30n+29 (letztere auch als 30n-1) darstellen. Primzahlen (außer 3 und 5) sind aber nie von einer der 7 Formen 30n+3, 30n+5, 30n+9, 30n+15, 30n+21, 30n+25 und 30n+27, da Zahlen dieser 7 Formen stets durch 3 oder durch 5 teilbar sind.

Daher hat jedes Primzahlzwillingspaar (außer (3, 5) und (5, 7)) mit einer ganzen Zahl n genau eine der drei Formen

(30n-1, 30n+1), (30n+11, 30n+13), (30n+17, 30n+19)

bzw. die letztere Darstellung, um die Symmetrie zu (30n+11, 30n+13) zu verdeutlichen, alternativ geschrieben als (30n-13, 30n-11).

Sonstiges

Das kleinste Paar von Primzahlzwillingen ist (3, 5); die Primzahlen 2 und 3 mit dem Abstand 1 sind gemäß Definition kein Paar von Primzahlzwillingen.

Das größte derzeit (Stand: 19. September 2016) bekannte Paar von Primzahlzwillingen ist

2996863034895 · 21290000 ± 1

das sind Zahlen mit 388.342 Ziffern. Die neuen Rekordzahlen[1] haben damit fast doppelt so viele Ziffern wie die Zahlen des bisherigen Rekords aus dem Jahr 2011. Das Zahlenpaar wurde von dem Volunteer-Computing-Projekt PrimeGrid gefunden.

Zwei Primzahlzwillinge mit dem Abstand von vier, also Folgen der Form nennt man Primzahlvierlinge.

Offene Fragestellung

Je größere Zahlen man betrachtet, desto weniger Primzahlen findet man dort. Obwohl unendlich viele Primzahlen existieren, ist es ungewiss, ob es unendlich viele Primzahlzwillinge gibt. Die Primzahlzwillings-Vermutung besagt, dass es unendlich viele Primzahlzwillinge gibt. Sie ist eine der großen offenen Fragen der Zahlentheorie.

Während die Summe der Kehrwerte der Primzahlen divergent ist (Leonhard Euler), hat Viggo Brun im Jahr 1919 bewiesen, dass die Summe der Kehrwerte der Primzahlzwillinge konvergiert. Daraus kann man weder schließen, dass es endlich, noch, dass es unendlich viele Primzahlzwillinge gibt. Der Grenzwert der Summe wird Brunsche Konstante genannt und beträgt nach der neuesten Schätzung von 2002 etwa 1,902160583104.

G. H. Hardy und J. E. Littlewood stellten 1923[2] eine Vermutung über die asymptotische Dichte der Primzahlzwillinge auf (und der von anderen Primzahlkonstellationen), bekannt als erste Hardy-Littlewood-Vermutung bzw. als Spezialfall derselben für Primzahlzwillinge. Danach ist die Anzahl der Primzahlzwillinge kleiner als x asymptotisch durch die Formel

mit der Primzahlzwillingskonstante (Folge A005597 in OEIS)

gegeben. Da die Primzahlen nach dem Primzahlsatz asymptotisch eine Dichte besitzen, ist die Vermutung durchaus plausibel, und auch numerisch lässt sich die asymptotische Form gut bestätigen. Sie ist aber wie die Primzahlzwillingsvermutung unbewiesen. Da aus der Vermutung von Hardy und Littlewood die Primzahlzwillingsvermutung folgt, heißt sie auch starke Primzahlzwillingsvermutung.[3]

Nachdem Paul Erdős 1940 gezeigt hatte,[4] dass eine positive Konstante c < 1 existiert, so dass für unendlich viele Paare aufeinanderfolgender Primzahlen , die Ungleichung gilt, bemühte man sich, immer kleinere Werte für c zu finden. Die Mathematiker Dan Goldston und Cem Yıldırım veröffentlichten 2003 einen Beweis, mit dem sie behaupteten, bewiesen zu haben, dass c beliebig klein gewählt werden kann, womit es in der unendlichen Folge der Primzahlen immer wieder kleine Abstände zwischen zwei aufeinanderfolgenden Primzahlen geben würde. Andrew Granville fand noch im selben Jahr einen Fehler in dem 25-seitigen Beweis. Im Februar 2005 konnten Goldston, Yıldırım und Pintz eine Korrektur vorlegen.[5] Diese wurde von den damaligen Fehlerfindern überprüft und als korrekt gewertet. Der neu vorgelegte Beweis verspricht nach Ansicht einiger Zahlentheoretiker, ein wichtiger Schritt zu einem Beweis der Primzahlzwillingsvermutung zu sein.[6]

Eine Verallgemeinerung der Primzahlzwillingsvermutung ist die Vermutung von Polignac (Alphonse de Polignac, 1849): für jede gerade Zahl n gibt es unendlich viele benachbarte Primzahlen mit Abstand n.[7] Die Vermutung ist offen. Über die Dichte der Primzahlabstände n gibt es analog zum Fall n=2 eine Vermutung von Hardy und Littlewood.

Yitang Zhang (University of New Hampshire) bewies im Mai 2013, dass es unendlich viele Primzahlpaare gibt, deren Abstand voneinander maximal 70.000.000 ist.[8][9][10] Auf diesem Ansatz basierend konnte die Zahl von 70.000.000 inzwischen auf nur 246 herabgesetzt werden.[11] Ein weiteres Reduzieren dieser Zahl bis auf 2 würde die Primzahlzwillings-Vermutung zwar beweisen; Experten halten dies mit dem von Zhang entdeckten Ansatz aber für unmöglich.[12] Schärfere Resultate als Zhang konnte im November 2013 James Maynard (ein Post-Doktorand an der University of Montreal) erzielen, der die Grenze mit einer alternativen Beweismethode auf 600 drückte. Er dehnte die Resultate auch auf höhere k-Tupel von Primzahlen aus und fand auch hier die Existenz unendlich vieler Cluster von Primzahlen mit oberen Schranken für den Abstand.[13][14]

Siehe auch

Literatur

Weblinks

Commons: Twin primes – Sammlung von Bildern, Videos und Audiodateien

Einzelnachweise

  1. Twin Prime Records
  2. G. H. Hardy, J. E. Littlewood: Some problems of ‘Partitio numerorum’; III: On the expression of a number as a sum of primes. (PDF; 2,5 MB) In: Acta Mathematica, 44, 1923, S. 1–70 (englisch)
  3. Eric W. Weisstein: Twin Prime Conjecture. In: MathWorld (englisch).
  4. Paul Erdős: The difference of consecutive primes. In: Duke Mathematical Journal, 6, 1940, S. 438–441 (englisch). Siehe Jerry Li: Erdos and the twin prime conjecture. (PDF; 157 kB) 2. Juni 2010 (englisch)
  5. D. A. Goldston, J. Pintz, C. Y. Yıldırım: Primes in tuples I. arxiv:math.NT/0508185, 2005 (englisch); vereinfacht in D. A. Goldston, Y. Motohashi, J. Pintz, C. Y. Yıldırım: Small gaps between primes exist. In: Proceedings of the Japan Academy, Series A 82, 2006, S. 61–65 (englisch)
  6. May 2005: Breakthrough in Prime Number theory beim American Institute of Mathematics (englisch)
  7. Polignac Conjecture. Mathworld
  8. Nature Online, 2013
  9. Mathematik: Chinese gelingt Beweis über Primzahlzwillinge. Spiegel Online, 22. Mai 2013
  10. Neues aus der Zahlentheorie: Ein Beweis der Primzahl-Zwillings-Vermutung rückt näher – Wissenschaft Hintergründe. Neue Zürcher Zeitung, 22. Mai 2013
  11. Bounded gaps between primes
  12. Terence Tao Bounded gaps between primes (Polymath8) – a progress report.
  13. James Maynard: Small gaps between primes. arxiv:1311.4600 Preprint 2013
  14. Erica Klarreich: Together and alone, solving the prime gap Simons Foundation, 2013