Unterbrechungsfreie Stromversorgung

aus Wikipedia, der freien Enzyklopädie
(Weitergeleitet von USV)
Wechseln zu: Navigation, Suche
USV ist eine Weiterleitung auf diesen Artikel. Weitere Bedeutungen sind unter USV (Begriffsklärung) aufgeführt.

Eine unterbrechungsfreie Stromversorgung (USV), englisch Uninterruptible Power Supply (UPS), wird eingesetzt, um bei Störungen im Stromnetz die Versorgung kritischer elektrischer Lasten sicherzustellen. Zu unterscheiden hierzu ist die allgemeine Ersatzstromversorgung (AEV, auch als „Netzersatzanlage“ bezeichnet), da diese bei der Umschaltung eine kurze Unterbrechung der Stromversorgung aufweist.

USVen finden daher vor allem in Krankenhäusern, Leitstellen, modernen Eisenbahn-Stellwerken und Rechenzentren Verwendung, mittlerweile aber ebenso in kleinen Büros (SoHo) oder zu Hause. Sie werden in die Stromzuleitung der zu sichernden Anlagen oder Geräte eingefügt.

Entgegen dem genauen Wortlaut der Bezeichnung kann bei einfachen Ausführungen der USV die Stromversorgung für einen kurzen Zeitraum unterbrochen werden, der von den angeschlossenen Verbrauchern ohne Funktionseinbußen toleriert wird. Normalerweise beträgt dieser Zeitraum aber nur wenige Millisekunden.

Beispiel einer kleinen USV

Störungen[Bearbeiten]

Je nach Aufbau schützt eine USV die angeschlossenen Systeme vor folgenden Störungen:

Größere Stromausfälle kommen in Westeuropa relativ selten vor. Durch das Schalten großer Ströme treten aber ständig ungewollte Rückwirkungen auf das Stromnetz auf. Zum Beispiel rufen Kurzschlüsse und die Einschaltströme von Schweißstromquellen oder größeren Elektromotoren Spannungsabsenkungen hervor. Spannungsanhebungen treten zum Beispiel durch das Abschalten großer Lasten oder durch entfernte Blitzeinschläge auf. Empfindliche Geräte können dadurch in ihrer Funktion beeinträchtigt oder beschädigt werden. Die Energieversorger regeln die Netzspannung und die Netzfrequenz an den Einspeisepunkten ins Stromnetz zwar ständig nach, gleichen dadurch aber nur die Summe der Störungen aus. Eine USV kann lokale Schwankungen und Ausfälle ausgleichen, indem sie angeschlossene Geräte mit elektrischer Energie aus Akkumulatoren speist, welche ständig aus dem Stromnetz nachgeladen werden.

Ausstattung[Bearbeiten]

Abschnitt Ausstattung und z.T. Kategorien ist nicht hinreichend mit Belegen (beispielsweise Einzelnachweisen) ausgestattet. Die fraglichen Angaben werden daher möglicherweise demnächst entfernt. Bitte hilf der Wikipedia, indem du die Angaben recherchierst und gute Belege einfügst. Näheres ist eventuell auf der Diskussionsseite oder in der Versionsgeschichte angegeben. Bitte entferne zuletzt diese Warnmarkierung.
Vor allem die Zahlenangaben müssten mit Nachweisen belegt werden! --BauingBob (Diskussion) 19:31, 23. Jun. 2013 (CEST)
Der Aufbau einer USV

Eine USV besteht aus Akkumulatoren, bei Einzelplatz-USV aus Blei-Vlies-Batterien (AGM) oder Blei-Gel-Batterien, bei Leistungs-USVen aus Bleiakkumulatoren, Stromrichtern und einer elektronischen Regelung. Als Energiespeicher werden auch NiCd-Akkus, die unempfindlicher gegenüber Temperaturschwankungen sind, und in seltenen Fällen Li-Ionen-Batterien eingesetzt.

In Serie hergestellte USVen sind ab einer Leistung von etwa 300 VA bis hin zu mehreren 100 kVA erhältlich. Die Leistung ist im Wesentlichen von der Belastbarkeit der Stromrichter abhängig. Ein weiteres wesentliches Merkmal einer USV ist die maximale Überbrückungszeit, die von der Kapazität der Akkumulatoren abhängt. Sie kann je nach Anforderung wenige Sekunden oder mehrere Stunden betragen. Eine USV, deren Überbrückungszeit durch zusätzliche Akkumulatoren verlängert werden kann, ist ab einer Leistung von etwa 1500 VA erhältlich. Bei großem Bedarf an Leistung und Überbrückungszeit kommen auch Stromerzeugungsaggregate zum Nachladen der Akkumulatoren zum Einsatz. Dazu werden heutzutage auch rotierende USV-Anlagen angeboten, welche den benötigten Strom aus kinetischer Energie gewinnen. Diese wird durch eine mehrere 100 kg schwere Schwungscheibe geliefert, welche durch die Netzspannung angetrieben wird und bei Stromausfall die gespeicherte Energie wieder abgibt. Jedoch ist dadurch die zeitliche Überbrückung eines Stromausfalls nur begrenzt möglich. Deswegen werden diese Anlagen meist in Verbindung mit einem Diesel-Aggregat geliefert, um eine zeitraumunabhängige Stromversorgung gewährleisten zu können. Dabei ist zu beachten, dass die USV-Anlage nur den Zeitraum überbrückt, den das Diesel-Aggregat zum Anlaufen benötigt. Diese Art der USV-Anlage ist allerdings erst ab einer gewissen Größe lieferbar und nicht für private Haushalte ausgelegt.

USV in einem Rechenzentrum

Computer in kleineren Rechenzentren werden bei einem Stromausfall automatisch heruntergefahren, bevor die Überbrückungszeit abgelaufen ist. Geöffnete Dateien, zum Beispiel sensible Datenbanken, werden so kontrolliert geschlossen, um Datenverlust zu verhindern. Server und USV kommunizieren zu diesem Zweck standardmäßig über Ethernet bzw. SNMP, vereinzelt aber auch über die Schnittstelle RS-232 oder auch über USB. Über diese Verbindung kann die USV auch überwacht, gesteuert und eingestellt werden. Bei einer Verbindung über Ethernet ist dazu üblicherweise keine spezielle Software, sondern lediglich ein Webbrowser notwendig. Die entsprechenden Funktionen sind in der Firmware der USV angelegt. Größere Rechenzentren haben Notstromgeneratoren; die Versorgung aus Akkumulatoren dient hier nur dem Zweck, die Zeit zu überbrücken, bis die Generatoren gestartet und auf Nennleistung gebracht wurden.

Die Grundfunktionen einer USV umfassen in der Regel alle 24 Stunden einen automatischen Belastungstest, bei dem die Akkumulatoren im laufenden Betrieb mit der angeschlossenen Last entladen werden. Bei 10-Jahres-Batterien sollten die Akkus spätestens nach acht Jahren, bei 5-Jahres-Batterien sollten die Akkus nach spätestens vier Jahren komplett ausgetauscht werden, um einen Ausfall der USV-Anlage durch eine defekte Batterieanlage vorzubeugen.

Bei der Frage der Umschaltzeiten ist zu berücksichtigen, dass Kondensatoren und Spulen der Netzteile ausreichend Energie für einige Millisekunden speichern. So müssen beispielsweise ATX-Netzteile Ausfälle bis 17 ms überbrücken können.

Bei empfindlichen Geräten, die nur sehr kurze oder gar keine Umschaltzeiten tolerieren, ist entweder eine Line-Interactive-USV (VI) oder eine Online-USV (VFI) erforderlich.

Beim Einsatz einer USV zur Absicherung von Laserdruckern oder Kopierern ist äußerste Vorsicht geboten. Diese Geräte verbrauchen in der Aufwärmphase ein Mehrfaches ihres normalen Energiebedarfs. Im schlimmsten Fall kann es zur Zerstörung der USV und der angeschlossenen Geräte kommen. Wenn überhaupt kann hier nur eine Online-USV zum Einsatz kommen. Jedoch raten namhafte Hersteller generell von der Verwendung einer USV zur Absicherung von Laserdruckern ab und verweigern mitunter jegliche Garantie.

Klassifizierung[Bearbeiten]

Klasse 1 nach IEC 62040-3 unterscheidet folgende Betriebsverhalten eines USVs

VFD (Voltage and Frequency Dependent bzw. Offline UPS/USV)[Bearbeiten]

Schematischer Aufbau einer offline USV - VFD

Eine USV dieser Kategorie (Kategorie 3 in der Norm EN 62040-3) leitet den Strom im Normalbetrieb direkt vom Eingang an den Ausgang weiter. Außerdem wird vom Eingang ein Gleichrichter versorgt, der die Akkumulatoren lädt. Sollte die Netzversorgung abbrechen, wird der Ausgang auf einen Wechselrichter umgeschaltet, der aus den Akkumulatoren gespeist wird. Die Umschaltung erfolgt je nach Modell mit einer Verzögerung von bis zu 10 Millisekunden (ms). Darüber hinaus werden nach EN 62040-3 Spannungsschwankungen unter 16 ms sowie Spannungsspitzen zwischen 4 und 16 ms kompensiert. Für einige sehr empfindliche Geräte kann dies bereits zu lange sein. Im Normalbetrieb ist die Höhe und die Frequenz der Ausgangsspannung direkt abhängig von der Eingangsspannung. Diese Art von USVen werden oft mit dem Begriff „Offline“ oder „passiv“ beschrieben.

VI (Voltage Independent bzw. Netzinteraktive UPS/USV)[Bearbeiten]

Schematischer Aufbau einer Line-Interactive USV - VI

In einer USV dieser Kategorie wird ein bidirektionaler Wechselrichter als zentrales Bauteil eingesetzt. Er erzeugt je nach Bedarf aus der Wechselspannung am Eingang die Gleichspannung zum Laden der Akkumulatoren oder aus der Gleichspannung der Akkumulatoren die Wechselspannung am Ausgang. Weil der Umrichter außerdem fortlaufend die Höhe der Spannung am Ausgang begrenzt, ist diese weitgehend unabhängig von der Höhe der Spannung am Eingang. Sofern eine Spannung am Eingang anliegt, bestimmt deren Frequenz aber die Frequenz der Spannung am Ausgang. Die Umschaltzeit bei Stromunterbrechung ist kürzer als bei VFD-USV und liegt bei etwa 2 bis 4 ms. Die Eingangsspannung ist synchron zur Ausgangsspannung.

VI-USVen schützen nicht nur vor den Folgen eines Stromausfalls, sondern auch vor Unterspannung und Überspannung (EN 62040-3 Kategorie 2). Sie werden auch mit den Begriffen „Line-Interactive“, „Single-Conversion“, „Delta-Conversion“ oder „aktiver Mitlaufbetrieb“ bezeichnet.

VFI (Voltage and Frequency Independent bzw. Online UPS/USV)[Bearbeiten]

Schematischer Aufbau einer Online USV - VFI

Bei einer USV dieser Kategorie ist der Eingang direkt auf einen Gleichrichter geführt, der die Akkumulatoren speist. Der Ausgang wird ausschließlich von einem Wechselrichter versorgt, der im Normalbetrieb, also bei vorhandener Netzspannung am USV-Eingang, die notwendige Energie über den Gleichrichter (GR) bezieht und bei Netzausfall über die Batterieanlage (Akkumulatoren) versorgt wird.

Die Wechselspannung am Ausgang wird in jedem Fall – unabhängig von der Qualität der Eingangsspannung – über einen nachgeschalteten Wechselrichter (WR) aus der Gleichspannung des sogenannten Zwischenkreises erzeugt. Zur Erhöhung der Versorgungssicherheit verfügt eine VFI-USV über eine so genannte Bypass-Schaltung, die parallel zur Gleichrichter/Wechselrichter-Kombi geschaltet ist. Bei Überlasten am USV-Ausgang oder Auftreten eines internen Fehlers im Gleichrichter/Wechselrichter-Zweig wird der angeschlossene Verbraucher „unterbrechungsfrei“ auf diesen Bypasszweig umgeschaltet und somit weiter versorgt. Da Gleichrichter und Wechselrichter ständig mit dem vollen Betriebsstrom belastet sind, müssen sie besonders hochwertig sein und machen diese Bauart zur teuersten. Außerdem treten sowohl bei der Gleich- als auch bei der Wechselrichtung Verluste auf, was den Wirkungsgrad verringert. In den Produktbeschreibungen von USV-Anlagen ist in der Regel der Wirkungsgrad bei voller Last angegeben. Da die meisten USV aber nicht voll ausgelastet eingesetzt werden, sind die in der Regel niedrigeren Wirkungsgrade bei Teillast für die korrekte Berechnung des Stromverbrauchs und Kosten entscheidend. Ein Wirkungsgrad von mehr als 95 % bei voller Last kann heute als Standard für eine VFI-USV bezeichnet werden.

Eine VFI-USV (EN 62040-3: Kategorie 1) schützt neben den Folgen eines Stromausfalls, Unterspannung und Überspannung auch vor Schwankungen der Frequenz und vor Oberschwingungen. Sie bieten ebenfalls sporadischen Schutz vor Blitzeinwirkungen und Spannungsverzerrungen (Burst). Sie werden auch mit den Begriffen „Online“, „Double-Conversion“, „Dauerbetrieb“ oder „Doppelwandler“ bezeichnet. USVen der Kategorie 1 werden bevorzugt in Anwendungsgebieten eingesetzt, die hohe Kriterien an die tolerierbaren Ausfallzeiten stellen, wie z.B. in der Stromversorgung eines Rechenzentrums.

Zu beachten ist, dass VFI-USV im Vergleich zu VFD- oder VI-USV den höchsten Eigenstrombedarf haben. Während z. B. eine 650 VA VFD-USV im Leerlauf (ohne angeschlossene Verbraucher) mit ca. 5 W auskommt, eine 850 VA VI-USV mit ca. 15 W, benötigt eine VFI-USV schon im Leerlauf erheblich mehr Strom (eine Faustregel besagt, dass sie ca. 10 % ihrer Nennleistung benötigt, sprich eine 850 VA VFI-USV benötigt im Leerlauf ca. 85 W an Eigenbedarf).

Literatur[Bearbeiten]

  • EN 62040: Unterbrechungsfreie Stromversorgungssysteme (USV)

Weblinks[Bearbeiten]

 Commons: Unterbrechungsfreie Stromversorgung – Sammlung von Bildern, Videos und Audiodateien