Elektrischer Strom

aus Wikipedia, der freien Enzyklopädie
Wechseln zu: Navigation, Suche

Der elektrische Strom ist die Verschiebung von elektrischer Ladung durch gerichtete Bewegung von Ladungsträgern. Im verallgemeinerten Sinn bezieht sich elektrischer Strom auch auf den Verschiebungsstrom, bei dem sich keine Ladungsträger bewegen, sondern sich der elektrische Fluss verändert. Dann wird unter dem elektrischem Strom die Gesamtheit der elektrischen Erscheinungen, die Ursache eines Magnetfeldes sind, verstanden.

Fließende Ladungsträger sind typischerweise Elektronen in einem Metall oder im Vakuum oder auch Ionen, z. B. in einem Elektrolyten oder einer Gasentladungslampe. Zu den Wirkungen des Stromes zählen magnetische, thermische und chemische Wirkungen sowie Leuchterscheinungen in Gasen.

In der Fachsprache wird mit „Strom“ oft dessen Stärke bezeichnet, also die physikalische Größe Stromstärke mit dem Formelzeichen I und der Einheit Ampere, in der Umgangssprache wird meist die Übertragung von elektrischer Energie gemeint oder auch bloß die Möglichkeit dazu in Form einer unter Spannung stehenden Installation.

Geschichte

Bereits Thales von Milet soll im 6. Jahrhundert v. Chr. entdeckt haben, dass Bernstein leichte Körper anzieht, wenn er vorher mit Tüchern gerieben wird. Eine Erklärung dafür konnte er zwar nicht finden, das Wort Elektrizität (vom griechischen „elektron“ für „Bernstein“) weist aber immer noch auf diese antike Entdeckung zurück.

Die technische Nutzung des elektrischen Stromes begann in der Mitte des 19. Jahrhunderts mit der Telegrafie und der Galvanik. Für beide Anwendungen reichte zunächst die Leistung von Batterien aus. Um 1866 fand Werner von Siemens das dynamoelektrische Prinzip und nutzte es bei der Entwicklung des ersten elektrischen Generators, den er als Zündmaschine für die Zündung von Sprengladungen vermarkten konnte. Ab 1880 entwickelten sich diese Generatoren immer mehr zu Großmaschinen, um den Strombedarf der immer größer werdenden Stromnetze befriedigen zu können. In erster Linie dienten diese Netze zur Bereitstellung von elektrischem Strom für die Beleuchtung mit Bogen- und Glühlampen in der Öffentlichkeit und den ersten Privathaushalten. Eine weitere Anwendung des elektrischen Stromes bestand in seinem Einsatz in Leuchttürmen, da die Bogenlampe eine wesentlich höhere Lichtstärke besitzt als die zuvor verwendeten Kerzen oder Petroleumlampen. Infolgedessen entstanden die ersten Kraftwerke, die zunächst noch mit einfachen Wasserturbinen und Dampfmaschinen angetrieben wurden. Seit Beginn des 20. Jahrhunderts stehen leistungsfähige Dampfturbinen zur Verfügung, die bis in die Gegenwart als Kraftmaschinen bei der Stromerzeugung dominieren.

In den letzten Jahren des 19. Jahrhunderts fiel nach dem sogenannten Stromkrieg die Entscheidung zwischen Gleichstrom- und Wechselstromsystem zugunsten des Wechselstroms.

Physikalische Zusammenhänge

Für quantitative Angaben zum elektrischen Strom verwendet man die physikalische Größe Stromstärke.

Entstehung des Stromflusses

Elektrischer Strom kann unterschiedliche Ursachen haben:

Zusammenhang mit der elektrischen Spannung

Wenn beispielsweise zwischen den Polen einer Batterie eine Potentialdifferenz besteht, spricht man von einer elektrischen Spannung. Aufgrund des dann bestehenden elektrischen Feldes wird eine Kraft auf die Ladungsträger ausgeübt; sie erfahren dadurch eine Beschleunigung, wenn sie beweglich sind. Das geschieht beispielsweise, wenn eine Glühlampe über Metalldrähte an die Pole angeschlossen ist. Die Driftgeschwindigkeit der Ladungsträger bei dieser gerichteten Bewegung entsteht im Wechselspiel mit Streuprozessen. Die Stromdichte lässt sich berechnen durch Multiplikation der Driftgeschwindigkeit mit der Raumladungsdichte.

Stromkreis mit Spannungsquelle: Stromstärke  I=U_0\;/\;(R_i+R_\mathrm V) =U_\mathrm{kl}/R_\mathrm V

Der Driftstrom wächst trotz der Beschleunigung nicht beliebig an; bei einer gegebenen Spannung U stellt sich eine begrenzte Stromstärke I ein. Diese Beobachtung erklärt man mit einem elektrischen Widerstand R. Definiert wird er durch das Verhältnis

R=U/I.

In vielen Leitermaterialien ist die Stromstärke bei konstanter Temperatur proportional zur Spannung. In diesem Fall wird der Zusammenhang als ohmsches Gesetz bezeichnet, bei dem der Proportionalitätsfaktor R von der Spannung und Stromstärke unabhängig ist.

In einem Stromkreis mit einer Spannungsquelle bestimmen deren feststehende elektrische Spannung und der Widerstand die konkrete Stromstärke. Hingegen baut bei Verwendung einer Stromquelle deren feststehende Stromstärke am Widerstand die konkrete Spannung auf. In der Praxis kommen allerdings Spannungsquellen viel häufiger als Stromquellen vor, wie beispielsweise in Stromversorgungen, weshalb sich der konkrete Wert der elektrischen Stromstärke nach dem Verbraucher (genauer: dessen Widerstand) richtet.

Stromleitung in Metallen

In Metallen sind ein Teil der Elektronen, die sogenannten Leitungselektronen, nicht jeweils an ein bestimmtes Atom gebunden, sondern ‘gehören’ allen Atomen gemeinsam, siehe metallische Bindung. Nach dem Drude-Modell ist die Leitfähigkeit von Metallen proportional zur Zahl der Leitungselektronen und ihrer Beweglichkeit. Realistischer ist das Bändermodell.

Ionenleiter

Bei Ionenleitern, man spricht von Leitern zweiter Klasse, kommt es bei Gleichstrom im Gegensatz zu Metallen im Regelfall zu einer stofflichen Veränderung des elektrischen Leiters. Dieser Effekt wird bei der Elektrolyse ausgenutzt. Da der Stromtransport dabei an einen stofflichen Transport von beweglichen, elektrisch geladenen Atomen (Ionen) gebunden ist, kommen als Ionenleiter vor allem ionisierte Gase und elektrisch leitfähige Flüssigkeiten in Frage kommen. Man nennt diese Ionenleiter Elektrolyte oder Plasma. Festkörper können in speziellen Fällen auch Ionenleiter sein. Ist ein solcher Materialtransport (beispielsweise bei einer Gasentladung) unerwünscht, kann er durch Wechselstrom weitgehend unterbunden werden.

Da keine elektronische Stromleitung vorliegt, können chemische Vorgänge die Beschaffenheit des Leiters so verändern, dass sich die elektrische Leitfähigkeit allmählich ändern kann.

Technische Stromarten

Gleichstrom

Als Gleichstrom (englisch direct current, abgekürzt DC) wird jener elektrische Strom bezeichnet, der über die Zeit seine Richtung und Stärke nicht ändert, also zeitlich konstant ist.

Praktisch alle elektronischen Geräte im Haushalt wie Radio- und Fernsehempfänger, Computer oder auch die Steuerungen heutiger Waschmaschinen benötigen für ihre Stromversorgung Gleichstrom. Aber auch in der Energietechnik werden Gleichströme eingesetzt, beispielsweise in der Schmelzflusselektrolyse zur Aluminiumgewinnung, für gut drehzahlregelbare Gleichstrommotoren (inzwischen zunehmend durch Stromrichter und Asynchronmotoren ersetzt), als Zwischenkreis in Stromrichtern, in Sendeanlagen und in Kraftfahrzeug-Bordnetzen.

Gleichstrom kann durch Gleichrichter aus Wechselstrom gewonnen werden. Diese werden daher überall dort eingesetzt, wo Gleichstrom benötigt wird, aber nur der Wechselstrom des öffentlichen Stromnetzes zur Verfügung steht. Seltener, weil erheblich teurer, verwendet man auch direkte Gleichstromquellen, wie z. B. galvanische Zellen und photovoltaische Zellen. Kuriose Sonderfälle ohne technische Bedeutung sind elektrische Maschinen, die direkt ohne Gleichrichter mittels der Unipolarinduktion Gleichstrom herstellen können.

Wechselstrom

Bei Wechselstrom (englisch alternating current, abgekürzt AC) kommt es zu einer periodischen Änderung der Stromrichtung. Jede Periode besteht aus aufeinanderfolgenden Zeitspannen mit positiven und negativen Augenblickswerten, die sich zu einer mittleren Stromstärke null ergänzen. Ausschlaggebend für den Erfolg des Wechselstroms war, dass die Spannung mit Hilfe von Transformatoren sehr einfach geändert werden kann. Alle öffentlichen Stromversorgungsnetze werden mit Wechselspannung betrieben,– in Europa und vielen weiteren Ländern mit der Netzfrequenz 50 Hz, in anderen Teilen der Welt 60 Hz, siehe Länderübersicht Steckertypen, Netzspannungen und -frequenzen.

Eine besondere Form von Wechselstrom ist der Dreiphasenwechselstrom (umgangssprachlich Stark-, Dreh- oder Kraftstrom), wie er in öffentlichen Stromnetzen zur elektrischen Energieverteilung großer Leistungen Verwendung findet. Diese Stromart ermöglicht besonders einfach gebaute und robuste Elektromotoren.

Mischstrom

oben: Gleichstrom gemäß Definition, teilweise als „reiner Gleichstrom“ verdeutlicht;
darunter: Mischstrom aus Gleichrichtung, teilweise als „pulsierender Gleichstrom“ bezeichnet

Eine Kombination aus Wechselstrom und Gleichstrom wird Mischstrom genannt. Dabei kommt es nicht unbedingt zu einer Richtungsänderung des Mischstromes, sondern der zeitlich konstante Gleichstromanteil wird durch den zusätzlich aufgebrachten Wechselstrom in seiner Stärke periodisch geändert (pulsierender Gleichstrom). Dieser Mischstrom tritt beispielsweise bei Gleichrichtern auf und wird mit Glättungskondensatoren oder Glättungsdrosseln in Netzteilen geglättet. Der dabei übrigbleibende (meist unerwünschte) Wechselanteil wird als Restwelligkeit bezeichnet, die mit einer Brummspannung verkoppelt ist.

Eingeprägter Strom

Von einem eingeprägten Strom spricht man, wenn die Stromstärke in einem weiten Bereich unabhängig vom Wert des Lastwiderstands ist. Dabei kann es sich um Gleichstrom oder um Wechselstrom beliebiger Frequenz und Kurvenform handeln.

Sogenannte Labornetzteile verfügen sowohl über eine einstellbare Begrenzung der Ausgangsspannung als auch über eine einstellbare Begrenzung der Ausgangsstromstärke und weisen so eine Rechteckkennlinie auf. Welche der beiden Begrenzungen erreicht wird, hängt von der Größe der Belastung ab. Wenn beispielsweise die Begrenzungen auf 30 V und 1,0 A eingestellt sind, dann wird bei einem Lastwiderstand von über 30 Ω (bis zum Leerlauf) die Spannungsbegrenzung erreicht. Ändert sich der Widerstand innerhalb des angegebenen Bereichs, so ändert sich nur die Stromstärke entsprechend. Die davon unverändert bleibende Spannung bezeichnet man als eingeprägte Spannung. Bei einem Lastwiderstand von weniger als 30 Ω (bis zum Kurzschluss) wird die Strombegrenzung erreicht. Ändert sich der Widerstand innerhalb des angegebenen Bereichs, so ändert sich nur die Spannung, die sich dazu passend auf Werte unterhalb von 30 V einstellt, während der trotz Belastungsänderung unverändert fließende Strom einen eingeprägten Strom darstellt.

Elektrischer Strom im Alltag

Elektrischer Leiterstrom bei geeigneter Spannung bedeutet Transport von elektrischer Energie. In den Industriestaaten ist das gesamte Leben von Bezug und Umformung dieser Energieform durchdrungen.

Stromverbrauch

Der umgangssprachliche Ausdruck „Strom verbrauchen“ ist, ähnlich wie beim Begriff „Energieverbrauch“, technisch gesehen nicht richtig. Aufgrund der Ladungserhaltung und da in technischen Geräten keine nennenswerten Aufladungen vorkommen, fließt genau der Strom, der in ein Gerät hineinfließt, auch wieder hinaus.

Auswirkungen des elektrischen Stroms auf den Menschen

Hauptartikel: Stromunfall

Elektrische Wechselströme im Bereich der Netzfrequenz sind ab 0,5 mA für den menschlichen Organismus spürbar und bei höheren Stromstärken über 10 mA, welche länger als 2 s einwirken, gefährlich. Gleichströme sind ab 2 mA spürbar und ab 25 mA, welche länger als 2 s einwirken, gefährlich.[1] Man spricht dann auch von einem Stromschlag.

Die folgende Tabelle gibt die Gefährlichkeit von Wechselstrom von 50–60 Hz wieder:[2]

Stromstärke Dauer physiologische Auswirkungen
unter 0,5 mA beliebig lange Wahrnehmbarkeitsschwelle: Unter diesem Wert sind elektrische Wechselströme für den Menschen nicht wahrnehmbar.
unter 10 mA über 2 s Es treten im Allgemeinen keine pathophysiologischen Wirkungen auf.
unter 200 mA unter 10 ms
unter 100 mA über 500 ms Starke unwillkürliche Muskelreaktionen, welche zu dauerhaften Schäden führen können.
unter 1 A unter 200 ms
über 100 mA über 500 ms Zusätzlich zu starken unwillkürlichen Muskelreaktionen, welche zu dauerhaften Schäden führen können, tritt Herzkammerflimmern mit Wahrscheinlichkeit von über 1 % auf.
über 1 A unter 200 ms

Bei elektrischen Energieversorgungsnetzen und im Bereich von höheren Spannungen, etwa in Hochspannungsanlagen und im Bereich der elektrischen Oberleitungen bei der Bahn, kommen auch Stromunfälle infolge der Lichtbogenwirkung vor. Der Stromunfall mit Lichtbogeneinwirkung ist fast ausnahmslos zusätzlich mit Verbrennungen verbunden und es entstehen in der Brandwunde meist toxische Verbrennungsprodukte.

Literatur

  •  Karl Küpfmüller, Wolfgang Mathis, Albrecht Reibiger: Theoretische Elektrotechnik und Elektronik. 19. Auflage. Springer-Vieweg, Berlin / Heidelberg 2013, ISBN 978-3-642-37939-0.
  •  Heinrich Frohne, Karl-Heinz Löcherer, Hans Müller, Thomas Marienhausen, Dieter Schwarzenau: Moeller Grundlagen der Elektrotechnik. 23. Auflage. Vieweg + Teubner, Wiesbaden 2013, ISBN 978-3-8348-1785-3.

Siehe auch

Weblinks

Einzelnachweise

  1.  IEC Report 60479-1 (Hrsg.): Effects of current on human beings and livestock. 3. Auflage. IEC, Genf 1994.
  2. nach 2007-05 DIN IEC/TS 60479-1: Wirkungen des elektrischen Stromes auf Menschen und Nutztiere – Teil 1: Allgemeine Aspekte – (IEC/TS 60479-1:2005 + Corrigendum Oktober 2006)