Stromnetz

aus Wikipedia, der freien Enzyklopädie
Wechseln zu: Navigation, Suche

Das Stromnetz ist ein weit gefasster Begriff und bezeichnet in der elektrischen Energietechnik ein Netzwerk aus elektrischen Stromleitungen wie Freileitungen und Erdkabeln und den dazugehörigen Einrichtungen wie Schalt-, Umspannwerke und die daran angeschlossenen Kraftwerke und Verbraucher.

Große, räumlich benachbarte und elektrisch verbundene Stromnetze werden als Verbundnetz bezeichnet. Kleine, räumlich getrennte Stromnetze als Inselnetz. Elektrische Stromnetze in Fahr- und Flugzeugen werden als Bordnetz bezeichnet. Historische Begriffe für das Stromnetz sind Lichtnetz, da in der Anfangszeit elektrischer Stromnetze elektrische Energie bei Glühlampen zur Beleuchtung diente.

Grobe Struktur eines Stromnetzes

Aufgaben[Bearbeiten]

Stromnetze dienen der Versorgung der Verbraucher mit Strom und stellen die Verbindung mit den stromerzeugenden Kraftwerken auf unterschiedlichen Spannungsebenen her. Bei der Übertragung von hohen Leistungen können hohe Verluste entstehen, die durch hohe Spannungen verringert werden. Hierdurch sinken der erforderliche Querschnitt der Stromleitungen und der Aufwand für die Schalteinrichtungen. Das Stromversorgungsnetz umfasst üblicherweise vier Spannungsebenen. Das übergeordnete Höchstspannungsnetz ist in Europa in der Regel auf 400.000 Volt (entsprechend 400 kV) bzw. 230.000 Volt (230 kV) ausgelegt. Im Hochspannungsnetz sind 110 kV üblich. Im nachgelagerten Mittelspannungsnetz sind Spannungsstufen zwischen 1 kV und 30 kV gebräuchlich. Das Niederspannungsnetz wird mit 400 V für Dreiphasenwechselstrom und 230 V für Einphasenwechselstrom betrieben. Als Netzfrequenz ist in Europa 50 Hertz (Hz) gebräuchlich.

In anderen Ländern und Kontinenten haben sich andere Spannungsebenen oder Frequenzen in den Stromnetzen entwickelt. Eine höhere Spannung wird beispielsweise in Polen bei der 750-kV-Leitung Rzeszów–Chmelnyzkyj verwandt. Im Höchstspannungsbereich werden beispielsweise in Asien auf der Drehstromleitung Ekibastus–Kökschetau mit 1,15 MV eingesetzt. In Nordamerika ist im Niederspannungsbereich das Einphasen-Dreileiternetz mit 120 V und 240 V Netzspannung und einer Netzfrequenz von 60 Hz üblich.

Eine Besonderheit in Deutschland stellt das Stromnetz der Deutschen Bahn dar, das mit Einphasenwechselstrom bei einer Frequenz von 16,7 Hz betrieben wird. In der Frühzeit der Elektroantriebe für Lokomotiven Anfang des 20. Jahrhunderts konnte die Funkenbildung an der Drehverbindung (Kommutator) nur dadurch begrenzt werden, dass der Betrieb bei niedriger Frequenz erfolgte.

Freileitungsnetze zur Verteilung von Elektroenergie werden auch zur Nachrichtenübertragung eingesetzt, mittels Trägerfrequenzverfahren auf den Leiterseilen, über die Erdseile oder über mitverlegte Nachrichtenkabel (meist Glasfaserkabel)[1] Die Nachrichtenübertragung wird von den Energieversorgern selbst verwendet oder auch anderen Nutzern angeboten.

Technik[Bearbeiten]

Strommast mit 110-kV-Freileitung und zwei Erdseilen

Spannungsebenen[Bearbeiten]

Stromnetze teilt man nach der Spannung ein, bei der sie elektrische Energie übertragen:

  • Höchstspannung: In Westeuropa in der Regel 230 kV oder 400 kV. In Kanada und in den USA werden 735 kV und 765 kV verwendet. In Russland existiert ein ausgedehntes 750-kV-Netz, von dem einzelne Leitungen auch nach Polen, Ungarn, Rumänien und Bulgarien führen. Eine 1150-kV-Leitung führt vom Kraftwerk Ekibastus (Kasachstan) zur Stadt Elektrostal (Russland). Sie wird heute jedoch mit 400 kV betrieben.
  • Hochspannung: 60 kV bis 150 kV. In Deutschland und Österreich wird fast durchgängig 110 kV verwendet. Daneben existieren noch in Schleswig-Holstein, bei Winsen (Aller), in der Nähe von Landesbergen, im Saarland und bei Phillipsthal Leitungen mit 60 kV Betriebsspannung.[2] In der Schweiz existiert kein einheitlicher Wert im Hochspannungsnetz.
  • Mittelspannung: 1 kV bis 35 kV. Für Netze mit hohem Freileitungsanteil, ausgedehnten ländlichen Regionen und bei neuen Installationen sind 20 kV bis 25 kV üblich. In städtischen Regionen, wo teilweise noch ältere Erdkabel in Papier-Blei-Ausführung mit Aluminium als Strom-Leiter dienen, deren Austausch teuer ist, wird eine niedrigere Mittelspannung mit 10 kV eingesetzt.[3]
  • Niederspannungsnetze: 230 V oder 400 V. In der Industrie sind auch andere Niederspannungen üblich, zum Beispiel 500 V oder 690 V.

Die Höchst-, Hoch- und Niederspannungen sind für Westeuropa weitgehend standardisiert. Bei der Mittelspannung ist das zu aufwändig, da man sehr viele alte Erdkabel uneinheitlicher Maximalbetriebsspannung austauschen müsste.

Funktion der einzelnen Netze[Bearbeiten]

  • Das Übertragungsnetz bedient sich der Drehstrom-Hochspannungs-Übertragung (DHÜ, engl. HVAC). Es verteilt die von Kraftwerken erzeugte und ins Netz eingespeiste Energie landesweit an Leistungstransformatoren, die nahe an den Verbrauchsschwerpunkten liegen. Auch ist es über sogenannte Kuppelleitungen an das internationale Verbundnetz angeschlossen.
  • Das in Europa üblicherweise mit 110 kV betriebene Verteilnetz sorgt für die Grobverteilung elektrischer Energie. Leitungen führen hier in verschiedene Regionen, Ballungszentren zu deren Umspannwerken oder große Industriebetriebe. Abgedeckt wird ein Leistungsbedarf von 10 bis 100 MW.
  • Das Mittelspannungsnetz verteilt die elektrische Energie an die regional verteilten Transformatorenstationen oder größere Einrichtungen wie zum Beispiel Krankenhäuser oder Fabriken. Stadtwerke, die ebenfalls kleinere Kraftwerke oft auch mit Kraft-Wärme-Kopplung betreiben, speisen ihren Strom in das Mittelspannungsnetz.
  • Die Niederspannungsnetze sind für die Feinverteilung zuständig. Die Niederspannung wird in Europa auf die üblichen 400 V bzw. 230 V transformiert und damit werden private Haushalte, kleinere Industriebetriebe, Gewerbe und Verwaltungen versorgt. Diese Leitungen werden auch als die letzte Meile bezeichnet. Kleine – etwa private – Photovoltaikanlagen speisen Überschussleistung auf dieser Niederspannungsebene ein.

Die Verteiltransformatoren im Mittelspannungsnetz haben im Allgemeinen ein festes Übersetzungsverhältnis. Um trotz der im Laufe eines Tages auftretenden großen Lastschwankungen die Netzspannung beim Verbraucher in etwa konstant halten zu können, kann das Übersetzungsverhältnis der Leistungstransformatoren zwischen Hoch- und Mittelspannungsnetz (z. B. 110 kV/20 kV) in Grenzen variiert werden. Dazu werden von der Primärwicklung mehrere Anzapfungen nach außen geführt. Ein extra dafür gebauter Schalter, ein sogenannter Stufenschalter, erlaubt das Umschalten zwischen den Anzapfungen, ohne den Transformator dazu abschalten zu müssen. Dieser Vorgang wird Spannungsregelung genannt. Für die einwandfreie Funktion vieler Geräte muss die Netzspannung innerhalb enger Grenzen gehalten werden. Zu hohe oder zu niedrige Spannungen können durch Störungen verursacht werden.

Daneben gibt es auch Leitungen mit hochgespanntem Gleichstrom für Übertragung über weite Strecken, insbesondere Seekabel in Form der Hochspannungs-Gleichstrom-Übertragung (HGÜ).

Verbindung der Stromnetze untereinander[Bearbeiten]

Die Verbindung von Stromnetzen mit unterschiedlichen Spannungsebenen erfolgt über Transformatoren, die in Umspannanlagen installiert sind. Der Stromfluss durch die Netze und zu Netzen mit gleicher Spannungsebene erfolgt über Schaltanlagen. Stromnetze mit unterschiedlicher Frequenz oder Phasenzahl oder Stromnetze, die nicht miteinander synchronisiert sind, müssen über HGÜ-Anlagen oder Motor-/Generator-Kombinationen miteinander gekoppelt werden.

Verbundnetz[Bearbeiten]

In einem Verbundnetz werden mehrere Kraftwerke und Abnehmerzentren zusammengefasst und der lokale Unterschied zwischen Angebot und Nachfrage von Momentanleistung kann innerhalb des Netzes besser ausgeglichen werden. Sie stellen somit den Gegenpol zu Inselnetzen dar.

Durch ein Verbundnetz ergeben sich Vorteile:

  • das Energiesystem wird stabiler, da so Überkapazitäten und Unterkapazitäten abgefangen werden bzw. sich ausgleichen können,
  • durch Leistungsaustausch können Lastschwankungen kurzfristig besser ausgeregelt werden als nur durch Regelung der Kraftwerke, und
  • die Betriebszuverlässigkeit des Netzes wird gesteigert.

Innerhalb eines Verbundsystems müssen alle Erzeuger synchron arbeiten. Dreiphasenwechselstrom führt zu höheren Übertragungsverlusten in den Kabeln, so dass er zum Beispiel bei einem Seekabel von über 30 km Länge nicht verwendet wird. In Mittel- und Westeuropa wird auf dem Gebiet der Union for the Co-ordination of Transmission of Electricity (UCTE) ein Europäisches Verbundsystem betrieben, die organisatorischen Belange wurden im Jahr 2009 durch die ENTSO-E übernommen.

Einspeisenetz[Bearbeiten]

Ein Einspeisenetz ist ein speziell für die Aufnahme und Weiterleitung von Strom aus erneuerbaren Energien ausgelegtes Stromnetz, welches mit dem Versorgungsnetz, häufig auch mit dem Übertragungsnetz verbunden ist. Einspeisenetze sind ein Grundbestandteil von Hybridkraftwerken. Im Unterschied zu öffentlichen Versorgungsnetzen sind Einspeisenetze weniger redundant und für geringere Volllaststunden ausgelegt und somit schnell und kostengünstig (als regionale Erdkabelnetze) zu errichten.[4] Einspeisenetze dienen insbesondere der Verbesserung der Systemintegration der erneuerbaren Energien im Strombereich.[5]. Ein Beispiel ist das Einspeisenetz von Enertrag in der Uckermark[6]

Verteilung[Bearbeiten]

110-kV-, 220-kV- und 380-kV-Leitungen in Himberg, Österreich

Die elektrische Energie kann in diesen Mengen nur drahtgebunden über HochspannungsleitungenFreileitungen und Erdkabel – übertragen werden. Beide Systeme haben Vor- und Nachteile.

Für den Einsatz von Freileitungen sprechen die geringeren Kosten sowie leichtere Lokalisierbarkeit und Behebbarkeit von Fehlern. Freileitungen sind Umwelteinflüssen (z.B. Stürmen) ausgesetzt, können das Landschaftsbild beeinträchtigen und können in seltenen Fällen Menschen, Tiere und Sachgüter gefährden.

Es gibt verschiedene Typen von Freileitungs-Masten. Zu speziellen Problemen im Leitungsbau bei der Überquerung von Hindernissen siehe Freileitungskreuzungen.

Erdkabel haben einen geringeren Platzbedarf, sind vor Umwelteinflüssen besser geschützt und bei der Bevölkerung akzeptierter. Ihr Bau ist aber deutlich teurer; der Wartungsaufwand bei Defekten ist hoch und es gibt technische Probleme, wenn unterirdische Hochspannungsleitungen gewisse Kabellängen überschreiten. Beispielsweise ist die Wärmeabfuhr bei Freileitungen durch die umgebende Luft gewährleistet, bei Erdkabeln nicht. Weitere Probleme entstehen durch die enorme Blindleistung, die wiederum durch die hohe Kapazität des Kabels bedingt ist.

Das deutsche Stromnetz ist etwa 1,78 Millionen Kilometer lang:

Im Jahr 2003 waren etwa 71 % unterirdisch verlegt. Ein Vergleich zu dem Wert für 1993 – etwa 64 % – zeigt die Tendenz, zufolge des Leitungsausbaus im Bereich der Niederspannungsnetze und teilweise Mittelspannung, die unterirdische Stromverteilung auszubauen. Im Hoch- und insbesondere Höchstspannungsbereich spielen die unterirdisch verlegten Erdkabelsysteme bezüglich Längenanteil kaum eine Rolle.

Netztopologien[Bearbeiten]

Stromnetze werden in ihrer Struktur verschiedenartig aufgebaut. Die Topologie richtet sich nach verschiedenen Kriterien wie der Spannungsebene, räumlichen Randbedingungen, Betriebskosten oder der Versorgungssicherheit. Die wichtigsten Netzformen sind:

Strahlennetz[Bearbeiten]

Das Netz wird von einer zentralen Speisestelle aus versorgt, die einzelnen Leitungen, als Stichleitung bezeichnet, laufen strahlenförmig zu den einzelnen Verbrauchsstellen. In dieser Topologie sind oft Niederspannungsnetze gestaltet. Der Vorteil besteht in geringen Planungsaufwand, einfache Fehlersuche und geringe Anforderungen an den Netzschutz. Nachteilig ist eine geringe Versorgungssicherheit, da bei Ausfall einer Stichleitung alle daran angeschlossenen Verbraucher einen Stromausfall erleiden.

Ringnetz[Bearbeiten]

Ringnetze werden von einer oder mehreren Stellen aus gespeist, die Versorgung der einzelnen Verbraucher erfolgt in Form einer Ringleitung: Ein Verbraucher kann also von zwei Seiten über den Ring versorgt werden. Bei einem technischen Defekt kann der Ring um die Fehlerstelle herum geöffnet werden, womit die Verbraucher abseits der Fehlerstelle weiter versorgt werden können. Der Vorteil ist eine erhöhte Versorgungssicherheit, der Nachteil die höhere Qualifikation des Wartungspersonals, da das Freischalten eines Netzabschnittes im Ring das Betätigen mehrerer Schaltstellen bedingt. Eine Sonderform, mit erhöhter Ausfallsicherheit, stellen doppelte Ringnetz dar, bei denen zwei Ringnetze räumlich parallel ausgeführt werden: Jeder Verbraucher kann dann wahlweise von einem der beiden Ringnetze versorgt werden. Anwendung finden Ringnetze bei größeren Niederspannungsnetzen, insbesondere in städtischen Bereichen, in Mittelspannungsnetzen und auf der 110-kV-Verteilnetzebene wo üblicherweise doppelte Ringleitungen mehrere untergeordnete Umspannwerke versorgen.

Maschennetz[Bearbeiten]

Maschennetze stellen verallgemeinerte Ringnetze dar, werden üblicherweise an mehreren Punkten gespeist und die Verbraucher verteilen sich in einem Netz, welches über mehrere Knoten und Zweige verfügt. Die Speisung einzelner Verbrauchspunkte erfolgt üblicherweise über zwei oder mehr Leitungen, die konkrete Form richtet sich primär nach den Leistungsanforderungen und räumlichen Bedingungen. Ein Maschennetz bietet bei entsprechender Auslegung die höchste Versorgungssicherheit, erfordert aber einen deutlichen komplexeren Netzschutz. Auch müssen Methoden zur Steuerung der einzelnen Leistungsflüsse auf einzelnen Zweigen, den Verbindungsleitungen innerhalb des Netzwerkes, bestehen, da jede Leitung nur eine beschränkte Transportleistung aufweist. Anwendung finden Maschennetze unter anderem in den Übertragungsnetzen mit Hoch- und Höchstspannung, wie der 380-kV-Ebene. Verbundnetze sind im Regelfall eine räumliche Kombination mehrerer Maschennetze.

Netzzustände[Bearbeiten]

Im Rahmen des Netzbetriebs wird zwischen verschiedenen Netzzuständen unterschieden, welche Auskunft darüber geben, ob das Versorgungsnetz seiner Aufgabe zur elektrischen Energieverteilung nachkommen kann. In den Regeln zum Netzbetrieb von Übertragungsnetzen wird zwischen vier verschiedenen Netzzuständen unterschieden, welche im Falle von Störungen von oben nach unten durchlaufen werden:[7]

  1. Der sichere Netzzustand ist der erwünschte Normalfall und dadurch gekennzeichnet, dass die zulässigen elektrischen Grenzwerte eingehalten werden, das N-1-Kriterium im gesamten Netz erfüllt ist, ausreichend Regelleistung zur Verfügung steht, um Lastschwankungen ausgleichen zu können, und alle Verbraucher versorgt werden können.
  2. Der gefährdete Netzzustand bedeutet, dass zwar alle Verbraucher versorgt werden können, aber weitere Kriterien wie Einhaltung des N-1-Kriteriums oder die Verfügbarkeit von ausreichend Regelleistung nicht sichergestellt ist.
  3. Der gestörte Netzzustand ist zusätzlich dadurch gekennzeichnet, dass nicht mehr alle Verbraucher versorgt werden können. Es kommt zu regionalen Stromausfällen.
  4. Der kritische Netzzustand ist dadurch gekennzeichnet, dass ein hohes Eintrittsrisiko für weitreichende Stromausfälle besteht und unmittelbare Handlungen wie beispielsweise das Trennen des Verbundnetzes in einzelne Teilnetze nötig sind.

Netzbetreiber[Bearbeiten]

Übertragungsnetzbetreiber (ÜNB)[Bearbeiten]

Hauptartikel: Übertragungsnetzbetreiber

Im Bereich der Höchstspannungsnetze sind die Netze der einzelnen Übertragungsnetzbetreiber über Hochspannungsleitungen zum nationalen Verbundnetz zusammengeschlossen.

Deutschland[Bearbeiten]

Höchstspannungsnetz Deutschland

In Deutschland sind vier Netzbetreiber (TSO, Transmission System Operator) tätig; sie haben sich zum deutschen Netzregelverbund zusammengeschlossen: Amprion, TransnetBW, Tennet TSO und 50Hertz Transmission.

Schweiz[Bearbeiten]

Das Schweizer Stromnetz ist von großer Bedeutung für den westeuropäischen Stromhandel; es dient traditionell als Drehscheibe für den Ausgleich von Spitzenbedarf und Spitzenproduktion der großen kontinentaleuropäischen Länder. Das Netz im engeren Sinne wurde 2009 aus den einzelnen Energieversorgungsunternehmen (EVU) in sogenannte Grid-Gesellschaften ausgegliedert und wurde in den landesweiten Transportnetzbetreiber (TSO) Swissgrid überführt.

Österreich[Bearbeiten]

APG-Hochspannungsnetz, Stand 2011

In Österreich wird das nationale Übertragungsnetz von der Austrian Power Grid (APG) betrieben.

Europäische Zusammenarbeit[Bearbeiten]

Die europäischen Übertragungsnetzbetreiber, die für den Betrieb des Höchstspannungs-Verbundnetzes zuständig sind, haben sich 2007 in einem Verband namens ENTSO-E formiert; davor gab es sechs alte Verbände („ETSO“). Sie reagierten damit auf das dritte Energie-Binnenmarktpaket der Europäischen Kommission; dieses wurde 2009 verabschiedet. ENTSO-E vertritt auch die Netzbetreiber gegenüber der Kommission.

Verteilnetzbetreiber (VNB)[Bearbeiten]

Hauptartikel: Verteilnetzbetreiber

Neben den Übertragungsnetzbetreibern gibt es eine Vielzahl Verteilnetze. In Deutschland gibt es etwa 900 kleinere Verteilnetzbetreiber, die Strom zu den Endverbrauchern liefern.

Die Netzbetreiber erhalten Netznutzungsentgelte für die Dienstleistung „Durchleiten von Strom vom Stromproduzenten zum Verbraucher“. Preise für diese Dienstleistung setzt in Deutschland die Bundesnetzagentur fest.

Stromnetze der Eisenbahnen[Bearbeiten]

Ein weiteres Energieversorgungsnetz in Deutschland, der Schweiz und Österreich betreibt die Bahn. Die DB Energie betreibt das größte zusammengeschaltete 110-kV-Netz in Deutschland. Es besteht üblicherweise aus vier Leitern, während andere 110-kV-Netze meist aus drei oder sechs Leitern besteht. Das Freileitungsnetz hat eine Länge von ca. 7.600 km an Bahnstromleitungen. Anders als im nationalen Verbundnetz beträgt im Bahnstromnetz die Netzfrequenz 16,7 Hz und es wird Einphasenwechselstrom verwendet.

Daneben existieren noch kleine regionale Stromnetze wie die mit Einphasenwechselstrom und mit einer Frequenz von 25 Hz betriebene Mariazeller Bahn in Österreich. Diese Bahn verfügt über ein kleines eigenes 27-kV-Netz.

In den übrigen Ländern erfolgt die Energieversorgung elektrischer Bahnen aus dem öffentlichen Stromnetz. Bei Gleichstrombahnen durch Gleichrichter in den Unterwerken, bei mit Einphasenwechselstrom mit einer Frequenz von 50 Hz betriebenen Bahnen werden die Phasen des Drehstromsystems im Unterwerk aufgespalten und verschiedenen Streckenabschnitten zugewiesen.

Geschichte[Bearbeiten]

Hauptartikel: Elektrifizierung und Stromkrieg

Der Stromkrieg war um 1890 ein Streit ob die von Thomas Alva Edison favorisierte Gleichspannung oder die von George Westinghouse favorisierte Wechselspannung die geeignetere Technik für die großflächige Versorgung der Vereinigten Staaten von Amerika mit elektrischer Energie und den Aufbau von Stromnetzen sei.

Literatur[Bearbeiten]

Weblinks[Bearbeiten]

 Commons: Stromnetze – Sammlung von Bildern, Videos und Audiodateien

Karten

Einzelnachweise[Bearbeiten]

  1. Udo Leuschner: Vom Telefondraht zum Lichtwellenleiter: Das Informationsnetz der Stromversorger
  2. Electricity distribution abgerufen am 22. Januar 2013
  3. Wienstrom Leitungsnetz mit technischen Informationen
  4. http://www.geni.ag/glossar.html
  5. http://www.bmu.de/files/pdfs/allgemein/application/pdf/systemintegration_ee.pdf
  6. https://www.enertrag.com/download/prospekt/o_e_profil_enertrag_einspeisenetz.pdf
  7. Transmission Code 2010. swissgrid, abgerufen am 20. Juli 2013 (PDF; 880 kB).