Reed-Solomon-Code

aus Wikipedia, der freien Enzyklopädie
Wechseln zu: Navigation, Suche

Reed-Solomon-Codes (kurz RS-Codes) sind eine Klasse von zyklischen Blockcodes und werden im Rahmen der Kanalkodierung zum Erkennen und Korrigieren von Übertragungs- oder Speicherfehlern als Teil einer Vorwärtsfehlerkorrektur eingesetzt. Sie bilden eine spezielle Unterklasse der allgemeinen Klasse der BCH-Codes. RS-Codes sind MDS-Codes, womit sie im Rahmen der Kodierungstheorie als optimale Codes gelten.

Reed-Solomon-Codes wurden um 1960 von Irving S. Reed und Gustave Solomon am MIT Lincoln Laboratory, einer Forschungseinrichtung des Verteidigungsministeriums der Vereinigten Staaten entwickelt.[1] Zu dieser Zeit war die praktische Verwendbarkeit dieser Codes allerdings eingeschränkt, da keine effiziente Methode zur Decodierung bekannt war. Ein effizienter Decodieralgorithmus wurde 1969 von Elwyn Berlekamp und James Massey in Form des auch für BCH-Codes verwendbaren Berlekamp-Massey-Algorithmus vorgestellt.

Erstmal angewandt wurden Reed-Solomon-Codes im Voyager-Programm der NASA im Jahr 1977. Erste kommerzielle Anwendung fanden RS-Codes 1982 im Rahmen der Fehlerkorrektur von Compact Disk. Heutige Anwendungen erstrecken sich über einen großen Bereich wie dem DVB-Standard zur Aussendung von digitalen Fernsehsignalen, in verschiedenen Mobilfunkstandards, im Digital Audio Broadcasting (DAB), und in Dateiformaten wie PAR2 zur Datenspeicherung. Weitere Anwendungsbeispiele sind zweidimensionale Barcodes; so setzen z. B. der QR-Code, DataMatrix, Aztec-Code und der PDF417 Reed-Solomon zur Fehlerkorrektur von Lesefehlern ein. In neueren Anwendungsbereichen werden RS-Codes zunehmend durch leistungsfähigere Codes wie die Low-Density-Parity-Check-Codes (LDPC) oder Turbo-Codes (TPC) abgelöst, wie dies beispielsweise im Fernsehstandard DVB-S2 der Fall ist, welcher LDPC zur Vorwärtsfehlerkorrektur einsetzt.

Motivation[Bearbeiten | Quelltext bearbeiten]

Es soll eine Nachricht aus Zahlen (zum Beispiel ein Textfragment in ASCII-Kodierung) fehlerfrei übertragen werden. Auf dem Übertragungsweg kann es aber zur Auslöschung oder Verfälschung einiger der Zahlen kommen (im ersten Fall weiß man, dass ein Fehler an einer bestimmten Position auftrat, im zweiten nicht). Um nun Redundanz zur Nachricht hinzuzufügen, werden die Zahlen der Nachricht als Werte eines Polynoms an fest vereinbarten Stützstellen interpretiert. Ein Polynom des Grades oder kleiner kann als Summe von Monomen dargestellt werden. Die Koeffizienten dieser Monome ergeben sich als Lösung eines linearen Gleichungssystems. Aufgrund der speziellen Form dieses Systems gibt es eine Lösungsformel, die Lagrange-Interpolation. Das so erhaltene Polynom wird nun auf weitere Stützstellen extrapoliert, sodass die kodierte Nachricht insgesamt aus Zahlen besteht.

Werden bei der Übertragung nun einige wenige Zahlen ausgelöscht, sodass immer noch mehr als der Zahlen erhalten bleiben, kann das Polynom wiederum durch Interpolation aus den korrekt übertragenen Zahlen rekonstruiert werden, und damit auch die ursprüngliche Nachricht durch Auswerten in den ersten Stützstellen. Im Falle einer fehlerbehafteten Übertragung mit Fehlern an nur wenigen Stellen kann mit einem etwas komplizierteren Ansatz immer noch die ursprüngliche Nachricht sicher rekonstruiert werden. Je mehr Redundanz gewählt wurde, umso mehr Fehler können korrigiert werden. Es können doppelt so viele Auslöschungen (nämlich ) korrigiert werden wie Verfälschungen , daher führen Lesesysteme, die Auslöschungen beim Empfang der Nachricht erkennen und mit den Nutzdaten ausgeben, in der Regel zu einer verbesserten Korrekturfähigkeit.

Die in der Interpolation auftretenden Ausdrücke enthalten Divisionen, müssen also über einem Körper durchgeführt werden. Werden die Zahlen – oder Symbole – der Nachricht aus den ganzen Zahlen gewählt, so finden die Rechnungen also in den rationalen Zahlen statt. Außerdem können die extrapolierten Werte sehr groß werden, was eventuell im vorliegenden Übertragungskanal nicht übermittelt werden kann. Um diese Nachteile zu beheben, führt man die Rechnungen in einem endlichen Körper durch. Dieser hat eine endliche Anzahl von Elementen, die durchnummeriert werden können, um sie mit den Symbolen der Nachricht zu verknüpfen. Die Division – außer durch Null – ist uneingeschränkt durchführbar, und somit auch die Interpolation.

Reed-Solomon-Codes sind zur Korrektur von Burstfehlern bei der Datenübertragung geeignet. Bei Burstfehlern erscheinen fehlerhafte („gekippte“) Bits häufig als eine zusammenhängende Kette von Fehlern im Datenstrom. Beispielsweise werden durch einen Kratzer auf einer CD mit jeder Umdrehung viele aufeinanderfolgende Bits nicht richtig gelesen. Bei der CD werden die Daten allerdings noch verschränkt, damit die Korrekturfähigkeit auch bei Burstfehlern möglichst hoch bleibt.

Definition[Bearbeiten | Quelltext bearbeiten]

Sei ein endlicher Körper mit Elementen ( ist dann notwendigerweise eine Primzahlpotenz, prim). Es werden nun paarweise verschiedene Elemente ausgewählt und fixiert.

Die Menge der Kodewörter eines Reed-Solomon-Codes der Länge für Nachrichten der Länge über ergibt sich nun durch die Wertetupel aller Polynome aus mit Grad kleiner an den gewählten Stützstellen:

Stützstellenmengen[Bearbeiten | Quelltext bearbeiten]

RS-Codes zu verschiedenen zulässigen Stützstellenmengen sind linear isomorph. Die bijektive lineare Abbildung, die die Isomorphie vermittelt, ergibt sich durch Lagrange-Interpolation bezüglich der ersten Stützstellenmenge und Auswertung in der zweiten Stützstellenmenge. Dabei werden im ersten Schritt Kodewörter in Polynome kleiner -ten Grades umgewandelt, so dass der zweite Schritt wieder ein Kodewort ergibt.

Ist ein Element der Ordnung oder größer, so kann zum Beispiel

gewählt werden. Jeder endliche Körper enthält ein erzeugendes oder primitives Element der multiplikativen Gruppe , das heißt ein Element der Ordnung . Daher ist diese spezielle Wahl für immer möglich.

Sind die Stützstellen genau die Potenzen eines Elementes der Ordnung , , so ist der RS-Kode ein zyklischer Code. Denn das Kodewort zum Polynom ergibt sich durch Rotation des Kodewortes zu um Stellen nach links. Wegen der einfacheren Implementierbarkeit zyklischer Codes wird diese Variante im Allgemeinen bevorzugt.

Kodieren von Nachrichten[Bearbeiten | Quelltext bearbeiten]

Man kann eine Nachricht direkt in ein Kodewort verwandeln, indem man die Komponenten als Koeffizienten eines Polynoms

einsetzt und dieses an den Stützstellen auswertet. Es ergibt sich damit ein Kodewort

der Länge .

Man erhält eine systematische Kodierung, in der die Nachricht in den ersten Komponenten im „Klartext“ enthalten ist, durch eine vorbereitende Transformation der Nachricht. Das zum Kodewort führende Polynom ergibt sich hier als Interpolationspolynom der Paare

,

nach der Formel der Lagrange-Interpolation also

.

Wegen für ergibt sich aus das Kodewort

.

Beide Varianten benutzen dieselbe Menge von Kodewörtern und haben damit dieselben Fehlerkorrektureigenschaften.

Eigenschaften[Bearbeiten | Quelltext bearbeiten]

Durch die Definition ergeben sich sofort folgende Eigenschaften:

  • Codewortlänge:
  • Dimension des Codes:
  • Coderate:

Die Mindestdistanz beträgt und erfüllt damit die Singleton-Schranke. Codes mit dieser Eigenschaft werden auch MDS-Codes genannt.

Erklärung
Da maximal Nullstellen besitzen kann (durch den Grad des Polynoms beschränkt), tauchen im korrespondierenden Codewort maximal Stellen auf, die zu 0 werden. Damit ist das Hamming-Gewicht und somit wegen der Linearität auch die Minimaldistanz.
Zusammen mit der Singleton-Schranke ergibt sich die Gleichheit.

Literatur[Bearbeiten | Quelltext bearbeiten]

  • Stephen B. Wicker, Vijay K. Bhargava: Reed Solomon Codes Applications. Wiley, 1999, ISBN 978-0-7803-5391-6.

Einzelnachweise[Bearbeiten | Quelltext bearbeiten]

  1. Irving S. Reed, Gustave Solomon: Polynomial codes over certain finite fields. In: Journal of the Society for Industrial and Applied Mathematics, SIAM J. Band 8, 1960, ISSN 0036-1399, S. 300–304.

Weblinks[Bearbeiten | Quelltext bearbeiten]