Beugung (Physik)

aus Wikipedia, der freien Enzyklopädie
Wechseln zu: Navigation, Suche
Wenn der Lochdurchmesser deutlich kleiner ist als die Wellenlänge, entstehen dahinter Kugelwellen.

Die Beugung oder Diffraktion ist die Ablenkung von Wellen an einem Hindernis. Durch Beugung kann sich eine Welle in den Raumbereichen ausbreiten, die auf rein geradem Weg durch das Hindernis versperrt wären. Jede Art von physikalischen Wellen kann Beugung zeigen. Besonders deutlich erkennbar ist sie bei Wasserwellen oder bei Schall. Bei Licht ist die Beugung ein Faktor, der das Auflösungsvermögen von Kamera-Objektiven und Teleskopen begrenzt. Manche technische Komponenten, wie Beugungsgitter, nutzen die Beugung gezielt aus.

Zur Beugung kommt es durch Entstehung neuer Wellen entlang einer Wellenfront gemäß dem huygens-fresnelschen Prinzip. Diese können durch Überlagerung zu Interferenzerscheinungen führen.

Beugung an Blenden[Bearbeiten]

Wenn die Schlitzbreite deutlich kleiner ist als die Wellenlänge, entstehen dahinter Zylinderwellen.

Wegen der Wellennatur des Lichtes weicht sein reales Verhalten teilweise stark von jenem ab, was die geometrische Optik erwarten ließe. So ist bei der Fotografie beugungsbedingt die Auflösung eines Fotos durch den Durchmesser (Apertur) der Linse begrenzt.

Das physikalische Modell für Beugung ist das huygens-fresnelsche Prinzip. Zur Berechnung von Beugungsbildern wird das kirchhoffsche Beugungsintegral verwendet, dessen zwei Grenzfälle die Fresnel-Beugung (divergierende Punktstrahlungsquelle) und die Fraunhofer-Beugung sind (parallele Lichtstrahlen als Strahlungsquelle). [1] Die Überlagerung der Elementarwellen kann zu gegenseitiger Verstärkung (konstruktive Interferenz) oder gegenseitiger Abschwächung (destruktive Interferenz) oder gar Auslöschung führen, siehe auch bei Gangunterschied.

Spalt und Intensitätsverteilung monochromatischen Lichtes hinter dem Spalt als Bild und Kurve für einen schmalen (oben) bzw. breiten Spalt. Gut erkennbar sind die Beugungserscheinungen bei schmalem Spalt, es treten Minima und Maxima auf, Wellenlänge und Spaltbreite sind in der gleichen Größenordnung.

Beugung kann unter anderem gut beobachtet werden, wenn geometrische Strukturen eine Rolle spielen, deren Größe mit der Wellenlänge der verwendeten Wellen vergleichbar ist. Optische Blenden werden je nach Anwendung so dimensioniert, dass sie Beugungseffekte bewirken – also bei Abmessungen im Bereich und unterhalb der Lichtwellenlänge, oder mit hinreichender Genauigkeit keine – dann mit Abmessungen deutlich über der Lichtwellenlänge.

Beispiele für Beugung an Blenden[Bearbeiten]

Beugung am Einfachspalt: Teilt man in Gedanken ein Lichtbündel, das an einem Einfachspalt in eine bestimmte Richtung abgelenkt wird, in zwei Hälften, können sich diese beiden Anteile des Lichtbündels konstruktiv oder destruktiv überlagern. An einem Spalt ergibt sich so wieder eine Reihe von Beugungsmaxima.

An Blenden anderer Form ergeben sich teilweise stark abweichende Beugungsmuster.

Beugung am Gitter[Bearbeiten]

Beugung eines Laserstrahls an einem optischen Gitter
Beugung am Gitter (g = Gitterkonstante, φ = Ablenkwinkel, d = Gangunterschied)

Gitter sind Blenden mit periodischen Spalten. Die Beugung am Gitter ist damit ein wichtiger Spezialfall der Beugung an Blenden.

Optisches Gitter
Sind in regelmäßigen Abständen viele Spalte angeordnet, ergibt sich eine Reihe von Beugungsreflexen, deren Anordnung derjenigen entspricht, die man bei einem Doppelspalt mit dem gleichen Abstand erwartet. Mit zunehmender Anzahl der Einzelspalte werden die Reflexe aber zu immer schärferen Linien. Da die Lage der Reflexe von der Wellenlänge des Lichtes abhängt, kann man optische Gitter zur Trennung verschiedener Wellenlängen nutzen. Das ist im Monochromator und bei der Spektroskopie der Fall. In der Praxis werden sehr häufig regelmäßige Anordnungen von spiegelnden und nicht spiegelnden Streifen als Reflexionsgitter verwendet. Die nicht bedruckte Seite einer CD wirkt ähnlich.
Beugung am Kristallgitter, Bragg-Gleichung
Röntgenbeugung
Diese wird in der Kristallographie zum Bestimmen und Vermessen von Kristallgittern verwendet. Die Wellenlänge der Röntgenstrahlung ist mit den Gitterabständen im Kristall vergleichbar, und das Kristallgitter wirkt als mehrdimensionales optisches Gitter.

Weitere Wellenarten[Bearbeiten]

Prinzipiell gelten Gesetzmäßigkeiten, die für die Beugung von Lichtwellen gelten, auch für andere Wellenerscheinungen.

  • In der Akustik: Die Beugung von Schall ist für die Berechnung der abschirmenden Wirkung von Schallschirmen und Lärmschutzwänden wichtig.
  • In der Teilchenphysik beschäftigt man sich unter anderem mit der Elektronenbeugung.
  • In der Seismik: Da sich seismische Wellen (Wellen realer oder künstlich erzeugter Erdbeben) an der Oberfläche und im Untergrund fortpflanzen, können ihre Reflexions-, Brechungs- und Beugungsphänomene zur Untersuchung vieler Strukturen zwischen Erdkruste und Erdkern dienen. Man kann z. B. profilweise ausgelegte Geophone als eine Art Beugungsgitter betrachten und aus der Überlagerung künstlicher Bebenwellen den Verlauf von Kohleflözen oder Erdöl-höffiger Schichtenfolgen bestimmen. Andererseits werden die Wellen großer Erdbeben z. B. an der Grenze zwischen Erdmantel und Kern gebeugt, womit seit langem der Schalenaufbau der Erde erforscht wird.
  • Beim Richtfunk spielt die Beugung an Hindernissen im Ausbreitungsweg für die Dämpfung oder Verstärkung des Signals eine Rolle, siehe Fresnelzone.
  • In der Radartechnik haben langwellige Radargeräte (so genannte Over-The-Horizon-Radars) durch die Beugung der elektromagnetischen Wellen an der Erdoberfläche die Möglichkeit, weit über den optischen Horizont hinaus Objekte zu orten.
  • Wasserwellen: Im Wasser gibt es interessante Überlagerungen von Wellen (Kaimauern, Motorboote usw.), und es können sich durch Überlagerungseffekte – vorzugsweise in der Umgebung bestimmter Strukturen – sogenannte Monsterwellen ausbilden. Ähnliche Effekte kann man zur Ortung von U-Booten, Fischschwärmen u. a. unter Wasser verwenden.
  • In der Quantenmechanik hat jedes Teilchen prinzipiell auch Welleneigenschaften, somit ist eine Beugung von Teilchenstrahlen möglich, wenn auch experimentell schwer zugänglich. Es konnte z. B. die Beugung von Strahlen aus C60-Molekülen im Experiment nachgewiesen werden.[3]
  • Beugung von Heliumatomen als Untersuchungsmethode in der Oberflächenphysik Heliumatomstrahlstreuung.

Weblinks[Bearbeiten]

 Commons: Beugung (Physik) – Album mit Bildern, Videos und Audiodateien

Einzelnachweise und Kommentare[Bearbeiten]

  1. Sowohl bei der Fresnel'schen Beugung als auch bei der Fraunhofer'schen Beugung handelt es sich bzgl. der Maxwell'schen Gleichungen um Fernfeldnäherungen, weil der Abstand der Beugungsobjekte von der Lichtquelle in beiden Fällen i. a. sehr viel größer ist als die Lichtwellenlänge.
  2. F. Dorn, F. Bader: Physik-Oberstufe. Schroedel, Hannover 1986, ISBN 3-507-86205-0.
  3.  Markus Arndt, Olaf Nairz, Julian Vos-Andreae, Claudia Keller, Gerbrand van der Zouw, Anton Zeilinger: Wave-particle duality of C60 molecules. In: Nature. 401, Nr. 6754, 14. September 1999, S. 680–682, doi:10.1038/44348.