Wellenoptik

aus Wikipedia, der freien Enzyklopädie
Dies ist eine alte Version dieser Seite, zuletzt bearbeitet am 29. Dezember 2011 um 04:16 Uhr durch Dogbert66 (Diskussion | Beiträge). Sie kann sich erheblich von der aktuellen Version unterscheiden.
Zur Navigation springen Zur Suche springen

Als Wellenoptik, oder physikalische Optik, bezeichnet man in der Physik den Teilbereich der Optik, der sich mit der Wellennatur des Lichts, oder allgemeiner von elektromagnetischen Wellen beschäftigt. Mithilfe der Wellenoptik lassen sich Eigenschaften wie Farbe, Interferenzfähigkeit, Beugung und Polarisation des Lichtes erklären, die mit geometrischer Optik nicht erklärbar sind.

Geschichte

Beugung am Spalt gemäß dem Huygensschen Prinzip. Die gelben Punkte zeigen dabei die gedachten Ausgangspunkte für neue Wellen.

Bereits im 17. Jahrhundert erkannte man, dass die klassische Deutung von Licht als Bündel geradliniger Strahlen unvollständig sein muss. Beugung und Interferenz lassen sich so nicht erklären. Christiaan Huygens bemerkte um 1650, dass eine Lichtausbreitung analog zu Wasserwellen die Phänomene erklären würde. Er formulierte sein Huygenssches Prinzip, welches besagt, dass von jedem Punkt einer beugenden Fläche kugelförmige Elementarwellen ausgehen, die sich überlagern und so die beobachtbaren Beugungseffekte hervorrufen. Zunächst wurde Huygens nicht ernst genommen, da man die Korpuskeltheorie von Isaac Newton favorisierte. Erst im 19. Jahrhundert wurde die Wellentheorie (auch als Undulationstheorie bezeichnet) durch das Doppelspaltexperiment von Thomas Young bestätigt. Die Arbeiten von Joseph von Fraunhofer und Augustin Jean Fresnel bauten die Theorie weiter aus. Friedrich Magnus Schwerd wandte die Wellentheorie zur Erklärung seiner umfassenden Beugungsexperimente an.

Grundlagen

Bei Betrachtung von Wechselwirkungen mit Licht mit Materie können experimentell verschiedene Effekte beobachtet werden, die sich nicht mehr mit geometrischer Optik erklären lassen. Dies ist der Fall wenn die Objekte, mit denen das Licht wechselwirkt, in derselben Größenordnung wie die Wellenlänge liegen. Im Grenzfall sehr kurzer Wellenlängen bzw. sehr großer Objekte ergeben sich umgekehrt die Gesetze der Strahlenoptik (=der geometrischen Optik). In der Wellenoptik wird Licht durch eine Transversalwelle mit Wellenlänge, Amplitude und Phase beschrieben. Jede Welle wird mathematisch als Lösung einer Wellengleichung dargestellt:

Dabei ist der Laplace-Operator, c die Lichtgeschwindigkeit und u die von Ort und Zeit t abhängende Wellenfunktion. Die Wellenfunktion kann dabei entweder skalar oder vektoriell sein. Die vektoriellen Beschreibung des Lichts ist notwendig, wenn die Polarisation eine Rolle spielt, ansonsten ist die skalare Beschreibung die einfachere.

Farbe und Intensität

Die Farbe des Lichtes entspricht seiner Wellenlänge. Monochromatisches Licht hat nur eine Wellenlänge, während Weißlicht eine Überlagerung vieler Wellen unterschiedlicher Wellenlängen darstellt. Eigentlich ist die Frequenz der Lichtwelle ausschlaggebend für die Farbe; die Wellenlänge ist abhängig von der Ausbreitungsgeschwindigkeit und somit vom Medium in dem sich das Licht ausbreitet. In den gebräuchlichen Aussagen über die Farbe von Licht im Zusammenhang mit seiner Wellenlänge wird die Ausbreitung im Vakuum vorausgesetzt. In Luft ist die Ausbreitungsgeschwindigkeit nur geringfügig kleiner als die Vakuumlichtgeschwindigkeit, sodass auch die Wellenlänge einer bestimmten Frequenz in Luft nur gering von der im Vakuum abweicht. Die Intensität des Lichtes ist proportional zum Quadrat der Amplitude dieser Welle, gemittelt über die Zeit.

Kohärenz und Interferenz

Neben der Amplitude kann man auch die Phase der Welle betrachten. Stehen mehrere Wellen in einer konstanten Phasenbeziehung, so spricht man von Kohärenz. Kohärente Wellen haben die Eigenschaft, dass sie miteinander interferieren können. Unterschiedliche Wellen überlagern sich dabei so, dass es zur Verstärkung (Wellenberg trifft auf Wellenberg – konstruktive Interferenz) oder Abschwächung (Wellenberg trifft auf Wellental – destruktive Interferenz) kommt.

Polarisation

Eine Transversalwelle schwingt zwar stets senkrecht zur Richtung der Lichtausbreitung, hat jedoch noch immer zwei Freiheitsgrade. Findet die Schwingung nur in einer Ebene statt oder ändert sie sich regelmäßig, so spricht man von polarisiertem Licht. Die Polarisation kann nur durch die vektorielle Darstellung als elektromagnetische Welle erklärt werden.

Wellenfronten

Statt Lichtstrahlen betrachtet man in der Wellenoptik das verallgemeinerte Konzept der Wellenfront. Eine Wellenfront ist eine Fläche, die Punkte gleicher Phase verschiedener Wellen in sich vereinigt. Lichtstrahlen stehen stets senkrecht auf der Wellenfront.

Grenzen der Wellenoptik

Es gibt Phänomene, die sich durch die Wellentheorie nicht erklären lassen. Dazu gehört der von Wilhelm Hallwachs 1887 entdeckte und von Albert Einstein 1905 erklärte äußere Photoeffekt (Nobelpreis 1921). Einstein erklärte die Wechselwirkung zwischen Licht und Materie mit der Lichtquantenhypothese. Man sprach dann von Welle-Teilchen-Dualismus. Der scheinbare Widerspruch dass sich Licht sowohl wie Wellen als auch wie Teilchen verhält, wird von der modernen Quantenphysik aufgelöst.

Literatur

  • Bahaa E. A. Saleh, Malvin Carl Teich: Fundamentals of Photonics. 2. Auflage. John Wiley & Sons, New Jersey 2007, ISBN 978-0-471-35832-9.