Galactose

aus Wikipedia, der freien Enzyklopädie
Zur Navigation springen Zur Suche springen
Strukturformel
Struktur von Galactose
Fischer-Projektion, offenkettige Darstellung
Allgemeines
Name
  • D-(+)-Galactose
  • L-(−)-Galactose
Andere Namen
  • (2R,3S,4S,5R)-Pentahydroxyhexanal
  • (2S,3R,4R,5S)-Pentahydroxyhexanal
Summenformel C6H12O6
Kurzbeschreibung

weißer Feststoff[1]

Externe Identifikatoren/Datenbanken
CAS-Nummer
  • 59-23-4 (D-Galactose)
  • 15572-79-9 (L-Galactose)
Wikidata Q181381
Eigenschaften
Molare Masse 180,16 g·mol−1
Aggregatzustand

fest

Dichte

1,5 g·cm−3 (D-Form)[1]

Schmelzpunkt
  • 163–165 °C (D/L, α-Form): [1][2]
  • 143–145 °C (D-Isomer, β-Form)[3]
Löslichkeit
Sicherheitshinweise
GHS-Gefahrstoffkennzeichnung [1]
keine GHS-Piktogramme
H- und P-Sätze H: keine H-Sätze
P: keine P-Sätze [1]
Soweit möglich und gebräuchlich, werden SI-Einheiten verwendet. Wenn nicht anders vermerkt, gelten die angegebenen Daten bei Standardbedingungen.

Die Galactose (fachsprachliche Schreibung), kurz Gal, auch Galaktose (traditionelle Schreibung, von altgriech. γάλα gála, Genitiv: τοῦ γάλακτος toû gálaktos, deutsch Milch) oder der Schleimzucker, ist eine natürlich vorkommende chemische Verbindung aus der Gruppe der Monosaccharide (Einfachzucker). Galactose kommt z. B. in den meisten Lebewesen als Baustein von Oligo- und Polykondensaten der Kohlenhydrate in verschiedenen Schleimhäuten vor, woher sich der deutsche Name ableitet. Bezogen auf Saccharose hat eine 10%ige D-Galactoselösung eine Süßkraft von 63 %.[4] Galactose hat wie die meisten natürlichen Zucker D-Konfiguration.

Wenn in diesem Text oder in der wissenschaftlichen Literatur „Galactose“ ohne weiteren Namenszusatz (Präfix) erwähnt wird, ist D-Galactose gemeint. Die (unnatürliche) – synthetisch zugängliche – L-Galactose besitzt nur untergeordnete Bedeutung.

Eigenschaften[Bearbeiten | Quelltext bearbeiten]

Galactose ist eine Hexose und hat wie alle Hexosen die Summenformel C6H12O6. Sie ist stereoisomer (genauer gesagt ein C4-Epimer) zur Glucose und gehört zur Untergruppe der Aldohexosen.

Verhalten in wässriger Lösung[Bearbeiten | Quelltext bearbeiten]

In wässriger Lösung kommt es teilweise zu einem intramolekularen Ringschluss, sodass sich ein Gleichgewicht zwischen der Aldoform und den beiden Ringformen (Furanose-Form und Pyranose-Form) einstellt:[5]

D-Galactose – Schreibweisen
Keilstrichformel Haworth-Schreibweise
D-Galactose Keilstrich.svg Alpha-D-Galactofuranose.svg
α-D-Galactofuranose
Beta-D-Galactofuranose.svg
β-D-Galactofuranose
Alpha-D-Galactopyranose.svg
α-D-Galactopyranose
Beta-D-Galactopyranose.svg
β-D-Galactopyranose

Bei 20 °C liegt in Wasser gelöste D-Galactose zu 32 % in der α-Pyranoseform, zu 64 % in der β-Pyranoseform, zu 1 % in der α-Furanoseform und zu 3 % in der β-Furanoseform vor.[6]

Spezifische Drehwerte[Bearbeiten | Quelltext bearbeiten]

  • α-D-Galactopyranose (= Sechsring): [α]20D = +150,7°
  • β-D-Galactopyranose: [α]20°/D = +52,8°

Galactose zeigt Mutarotation. Drehwert der wässrigen Lösung: [α]20°/D = +80,2°

Energiestoffwechsel[Bearbeiten | Quelltext bearbeiten]

Durch Epimerisierung wird Galactose in einem mehrstufigen Prozess für die Glycolyse bereitgestellt. Folgende Reaktionsschritte werden dabei durchlaufen:

Der Galactose-Energiestoffwechsel.

Vorkommen[Bearbeiten | Quelltext bearbeiten]

Galactose tritt neben der monosacchariden Form auch als Baustein in Di-, Oligo- und Polysacchariden (Lactose, Raffinose) auf. Sie ist unter anderem Bestandteil von Proteoglykanen und Glycolipiden. Über UDP-Galactose stellt der Organismus auch bei glactosefreier Kost hierfür ausreichend Ausgangsstoff zur Verfügung.

In der lactierenden Milchdrüse wird Lactose aus UDP-Galactose und Glucose mit Hilfe von Lactosesynthetase in der Muttermilch als wichtiger Energieträger für Säuglinge bereitgestellt. Die Lactose wird im Dünndarm durch das Enzym Lactase in Glucose und Galactose gespalten und dem Energiestoffwechsel zugeführt.

Verwendung[Bearbeiten | Quelltext bearbeiten]

Galactose wird als Nahrungsergänzungsmittel bzw. Zuckerersatz verwendet.

Galactose als „Hirnzucker“[Bearbeiten | Quelltext bearbeiten]

Galactose dient als insulinunabhängige Energiequelle für das Gehirn und unterstützt somit die Konzentrationsfähigkeit als auch die Gedächtnisleistung. Die ist vor allem bei Patienten mit neurodegenerativen Erkrankungen von Relevanz, da diese oft Insulinresistenzen zeigen.[7][8] So zeigen Studien an Ratten die positiven Effekte von Galactose für die Behandlung von kognitiven Defiziten und das Potenzial von Galactose bei der Behandlung von neurodegenerativen Erkrankungen.[9]

Galactose und Diabetes[Bearbeiten | Quelltext bearbeiten]

Wegen der insulinunabhängigen zellulären Aufnahme von Galactose hat sie nur geringe Wirkung auf den Blutzuckerspiegel. Der glykämische Index von Galactose liegt bei 20 (Glucose=100). Bereits in den 1930er Jahren behandelten Ärzte der Berliner Charité Diabetespatienten deshalb erfolgreich mit Galactose als Zuckerersatz[10].

Galactose im Sport[Bearbeiten | Quelltext bearbeiten]

Galactose wird im Körper auch für die Produktion von Glycoproteinen und die Entgiftung von Ammoniak verwendet[11]. Daher wird Galactose als Nahrungsergänzung im Sport während oder nach dem Training eingesetzt. Während des Trainings bildet sich kontinuierlich Ammoniak, was mit einem Leistungsabfall einhergeht. Durch die Einnahme von Galactose wird das Toxin schneller aus der Zelle transportiert und der Muskel bleibt so leistungsfähiger und kann sich ebenfalls besser erholen.

Erkrankung[Bearbeiten | Quelltext bearbeiten]

Eine Erbkrankheit, bei der die Betroffenen Galactose aufgrund eines Enzymdefekts überhaupt nicht verwerten können, wird Galactosämie genannt. Sie kommt sofort nach der Geburt zum Tragen.

Studien zeigen, dass eine chronische Überdosierung von D-Galactose die Gehirnalterung von Mäusen durch vermehrte Entzündung und oxidativen Stress verstärken kann.[12]

Weblinks[Bearbeiten | Quelltext bearbeiten]

 Commons: Galactose – Sammlung von Bildern, Videos und Audiodateien
 Wiktionary: Galactose – Bedeutungserklärungen, Wortherkunft, Synonyme, Übersetzungen

Einzelnachweise[Bearbeiten | Quelltext bearbeiten]

  1. a b c d e Datenblatt D-Galactose (PDF) bei Carl Roth, abgerufen am 22. März 2010.
  2. Datenblatt L-Galactose bei AlfaAesar, abgerufen am 22. März 2010 (PDF) (JavaScript erforderlich).
  3. a b c Eintrag zu Galactose. In: Römpp Online. Georg Thieme Verlag, abgerufen am 1. Juni 2014.
  4. Hans-Dieter Belitz, Werner Grosch, Peter Schieberle: Lehrbuch der Lebensmittelchemie. 6., vollständig überarbeitete Auflage. Springer, Berlin u. a. 2008, ISBN 978-3-540-73201-3, S. 263.
  5. Jürg Hunziker: Kohlenhydratchemie (Memento vom 10. Mai 2008 im Internet Archive), 1. April 2007.
  6. Hans-Dieter Belitz, Werner Grosch, Peter Schieberle: Lehrbuch der Lebensmittelchemie. 6., vollständig überarbeitete Auflage. Springer, Berlin u. a. 2008, ISBN 978-3-540-73201-3, S. 269.
  7. Kelly T. Dineley, Jordan B. Jahrling, Larry Denner: Insulin resistance in Alzheimer’s disease. In: Neurobiology of Disease. Band 72, S. 92–103, doi:10.1016/j.nbd.2014.09.001.
  8. Lina Ma, Jieyu Wang, Yun Li: Insulin resistance and cognitive dysfunction. In: Clinica Chimica Acta. Band 444, S. 18–23, doi:10.1016/j.cca.2015.01.027.
  9. Melita Salkovic-Petrisic, Jelena Osmanovic-Barilar, Ana Knezovic, Siegfried Hoyer, Kurt Mosetter: Long-term oral galactose treatment prevents cognitive deficits in male Wistar rats treated intracerebroventricularly with streptozotocin. In: Neuropharmacology. Band 77, S. 68–80, doi:10.1016/j.neuropharm.2013.09.002.
  10. H. Kosterlitz, H. W. Wedler: Untersuchungen über die Verwertung der Galactose in physiologischen und pathologischen Zuständen. In: Zeitschrift für die gesamte experimentelle Medizin. Band 87, Nr. 1, 1. Dezember 1933, S. 397–404, doi:10.1007/BF02610497.
  11. Martin Roser, Djuro Josic, Maria Kontou, Kurt Mosetter, Peter Maurer: Metabolism of galactose in the brain and liver of rats and its conversion into glutamate and other amino acids. In: Journal of Neural Transmission. Band 116, Nr. 2, 1. Februar 2009, S. 131, doi:10.1007/s00702-008-0166-9.
  12. Thazin Shwe, Wasana Pratchayasakul, Nipon Chattipakorn, Siriporn C. Chattipakorn: Role of D-galactose-induced brain aging and its potential used for therapeutic interventions. In: Experimental Gerontology. Band 101, 10. November 2017, S. 13–36, doi:10.1016/j.exger.2017.10.029.