Lineares zeitinvariantes System

aus Wikipedia, der freien Enzyklopädie
Wechseln zu: Navigation, Suche

Als ein lineares zeitinvariantes System, auch als LZI-System und LTI-System (englisch linear time-invariant system) wird ein System bezeichnet, wenn sein Verhalten sowohl die Eigenschaft der Linearität aufweist als auch unabhängig von zeitlichen Verschiebungen ist. Diese Unabhängigkeit von zeitlichen Verschiebungen wird als Zeitinvarianz bezeichnet.

Die Bedeutung dieser Systeme liegt darin, dass sie besonders einfache Transformationsgleichungen aufweisen und der Systemanalyse damit leicht zugänglich sind. Viele technische Systeme wie in der Nachrichten- oder Regelungstechnik weisen, zumindest in guter Näherung, diese Eigenschaften auf. Ein System kann in diesem Zusammenhang beispielsweise ein Übertragungssystem sein. Einige LZI-Systeme lassen sich durch lineare gewöhnliche Differentialgleichungen mit konstanten Koeffizienten beschreiben.

Eigenschaften[Bearbeiten | Quelltext bearbeiten]

Linearität[Bearbeiten | Quelltext bearbeiten]

Überlagerungsprinzip

Ein System heißt dann linear, wenn jede Summe von beliebig vielen Eingangssignalen zu einer dazu proportionalen Summe von Ausgangssignalen führt. Es muss damit das Superpositionsprinzip, auch als Überlagerungsprinzip bezeichnet, gelten. Mathematisch wird dies durch eine Transformation , welche die Übertragungsfunktion des Systems darstellt, zwischen den Eingangs- und Ausgangssignalen beschrieben:

Die konstanten Koeffizienten stellen die einzelnen Proportionalitätsfaktoren dar.

Anschaulich wird dabei am Eingang des Systems ein Signal angelegt und die Reaktion beobachtet. Danach wird davon unabhängig die Reaktion auf ein zweites Signal untersucht. Beim Anlegen eines Eingangssignals, das die Summe aus den beiden zuvor begutachteten Signalen bildet, lässt sich feststellen, dass die Reaktion am Ausgang der Addition der beiden einzelnen Antworten entspricht, wenn das System linear ist.

Zeitinvarianz[Bearbeiten | Quelltext bearbeiten]

Verschiebungsprinzip
Hauptartikel: Zeitinvarianz

Ein System heißt dann zeitinvariant, wenn für jede beliebige Zeitverschiebung um t0 gilt:

Für die Zeitinvarianz muss das Ausgangssignal den Zeitbezug zum Eingangssignal beibehalten und identisch reagieren. Dieses Prinzip wird auch als Verschiebungsprinzip bezeichnet.

Zusammenhang mit Faltungsintegral[Bearbeiten | Quelltext bearbeiten]

Das beliebig verlaufende Eingangssignal kann durch Anwendung des Superpositionssatzes und der Zeitinvarianz durch eine zeitliche Abfolge von einzelnen Rechteckimpulsen angenähert werden. Im Grenzübergang für einen Rechteckimpuls, dessen Dauer gegen 0 geht, nähert sich das Ausgangssignal einer Form an, welche nur noch von der Übertragungsfunktion des Systems abhängt, aber nicht mehr von dem Verlauf des Eingangssignals.

Mathematisch werden diese gegen die zeitliche Dauer von null strebenden Rechteckimpulse durch Dirac-Impulse beschrieben und die Summen in der Transformationsgleichung gehen in Integrale über. Das Eingangssignal lässt sich gleichwertig als Faltungsintegral bzw. mit dem Symbol für die Faltungsoperation ausdrücken als:

Das Ausgangssignal ist über das Faltungsintegral

mit dem Eingangssignal verknüpft, wobei die Übertragungsfunktion des Systems darstellt. Ist das Eingangssignal ein Dirac-Impuls, so wird auch als Impulsantwort bezeichnet.

LZI-Systeme in verschiedenen Formen der Darstellung[Bearbeiten | Quelltext bearbeiten]

Der folgende Teil beschränkt sich auf Systeme mit endlich vielen inneren Freiheitsgraden.

Zeitbereich[Bearbeiten | Quelltext bearbeiten]

Die gebräuchlichste Systemdarstellung im Zeitbereich, die Zustandsraumdarstellung, hat die allgemeine Form

Hierin sind die Vektoren Eingangsvektor, Zustandsvektor und Ausgangsvektor. Sind die Matrizen Systemmatrix, Eingangsmatrix, Ausgangsmatrix und Durchgriffsmatrix konstant, so ist das System linear und zeitinvariant. Zur Addition und Multiplikation von Vektoren und Matrizen siehe Matrix (Mathematik).

Bildbereich[Bearbeiten | Quelltext bearbeiten]

Für einfachere Systeme, insbesondere SISO-Systeme (Single Input, Single Output Systeme) mit nur je einer Ein- und Ausgangsgröße, wird auch oft noch die Beschreibung durch eine Übertragungsfunktion ("Bildbereich" oder "Frequenzbereich") gewählt

Hierin ist das Zählerpolynom in , und das Nennerpolynom in . Sind alle Koeffizienten beider Polynome konstant, ist das System zeitinvariant.

Die Übertragungsfunktion bietet sich zur graphischen Darstellung als Ortskurve oder Bodediagramm an.

Beispiele[Bearbeiten | Quelltext bearbeiten]

  • Elektrotechnik: Filter-Schaltungen oder Verstärker
  • Mechanik: Getriebe
  • Thermodynamik: Zentralheizung, Motorkühlung
  • Wandler zwischen den zuvor genannten Systemarten: Elektromotor (Strom-Kraft), Temperatursensor (Temperatur-Strom)
  • Mathematisch (Digitale Simulation): Regler aller Art z. B. PID-Regler

Beispiel aus der Mechanik[Bearbeiten | Quelltext bearbeiten]

Der freie Fall ohne Reibung wird beschrieben durch die Differentialgleichung

mit dem Weg , der Beschleunigung an der Erdoberfläche und der Masse des fallenden Gegenstandes . Übertragen in die Zustandsraumdarstellung und unter herauskürzen von erhält man die Zustandsdifferentialgleichung

wobei als (in der Regel konstanter) äußerer Einfluss betrachtet wird, und damit ein (das einzige) Glied des Eingangsvektors bildet. Interessiert man sich naheliegender Weise für die momentane Position und Geschwindigkeit , lautet die Ausgangsgleichung

mit einer 1-Matrix als Ausgangsmatrix und einer Nullmatrix als Durchgriffsmatrix, da die Ausgänge identisch mit den Zuständen sind. In dieser Betrachtung handelt es sich um ein LZI System, da alle Matrizen des linearen Differentialgleichungssystems konstant, also zeitinvariant, sind.

Berücksichtigt man aber, dass die Erdbeschleunigung g abhängig ist vom Abstand der Massenschwerpunkte

mit der Erdmasse und dem Erdradius , so ist das System nichtlinear abhängig vom Zustand z, also kein LZI System.

Wird die Erdbeschleunigung aufgrund einer meist sehr viel kleineren Höhe gegenüber dem Erdradius weiterhin als konstant betrachtet

aber die Reibung zwischen betrachteter Masse und Luft als sehr viel einflussreicher in linearer Abhängigkeit von linear berücksichtigt (siehe auch Fall mit Luftwiderstand#Fall mit Stokes-Reibung), erhält man die Zustandsdifferentialgleichung

mit dem Reibkoeffizienten . Wird als Formkonstante des fallenden Gegenstandes betrachtet, handelt es sich nach wie vor um ein LZI System.

Literatur[Bearbeiten | Quelltext bearbeiten]

  • Heinz Unbehauen: Regelungstechnik 1, Vieweg, Braunschweig/Wiesbaden, ISBN 3-528-93332-1
  • Alan V. Oppenheim, Roland W. Schafer, John R. Buck: Zeitdiskrete Signalverarbeitung, Pearson/München, ISBN 3-8273-7077-9