Dies ist ein als lesenswert ausgezeichneter Artikel.

Betastrahlung

aus Wikipedia, der freien Enzyklopädie
(Weitergeleitet von Positronenemission)
Zur Navigation springen Zur Suche springen
β-Strahlung (Protonen rot, Neutronen blau)
β+-Strahlung

Betastrahlung oder β-Strahlung ist eine ionisierende Strahlung, die bei einem radioaktiven Zerfall, dem Betazerfall oder Betaübergang, auftritt. Der Atomkern eines Betastrahlers wandelt sich dabei in einen Atomkern eines anderen chemischen Elements um. Bei einem β-Zerfall (gesprochen: Beta-Minus) ist dies das Element mit der nächsthöheren Ordnungszahl, bei einem β+-Zerfall (gesprochen: Beta-Plus) das mit der nächstniedrigeren. Der strahlende Atomkern heißt Mutternuklid, der entstehende Tochternuklid.

Betastrahlung ist eine Teilchenstrahlung und besteht aus sogenannten Betateilchen. Bei der β-Strahlung sind dies negativ geladene Elektronen, bei der β+-Strahlung positiv geladene Positronen. Neben dem Betateilchen wird bei einem β-Zerfall ein Elektron-Antineutrino und bei einem β+-Zerfall ein Elektron-Neutrino freigesetzt. Diese Teilchen können im Regelfall nicht detektiert werden und werden auch nicht zur Betastrahlung gezählt. Zusätzlich wird bei jedem Betazerfall niederenergetische elektromagnetische Strahlung freigesetzt.[1] Die kinetische Energie der emittierten Betateilchen kann, im Gegensatz zur Alphastrahlung, von nahezu Null bis zu einer maximalen Energie jeden beliebigen Wert annehmen. Die typische maximale Energie von Betastrahlung liegt in der Größenordnung von hunderten Kiloelektronenvolt bis wenigen Megaelektronenvolt und hängt vom konkreten Zerfall ab.

Der Name stammt von der ersten Einteilung der ionisierenden Strahlen aus radioaktivem Zerfall in Alphastrahlen, Betastrahlen und Gammastrahlen, die in dieser Reihenfolge steigende Durchdringungsfähigkeit von Materie zeigen.

Entstehung[Bearbeiten | Quelltext bearbeiten]

Feynmandiagramm für den Zerfall eines Neutrons n in Proton p, Elektron e und Elektron-Antineutrino  vermittelt über ein W-Boson W.

Beta-Zerfall von Atomkernen[Bearbeiten | Quelltext bearbeiten]

Der Betazerfall ist ein radioaktiver Zerfallstyp von Atomkernen. Bei einem β-Zerfall wandelt sich im Atomkern ein neutrales Neutron in ein positiv geladenes Proton um. Aufgrund der Ladungserhaltung entsteht bei diesem Prozess ein negativ geladenes Elektron, aufgrund der Leptonenzahlerhaltung zusätzlich ein Elektron-Antineutrino. Beim β+-Zerfall wandelt sich ein Proton in ein Neutron um, die positive Ladung wird durch ein Positron weggetragen und die Leptonenzahlerhaltung durch ein Elektron-Neutrino gewährleistet. Als Folge beider Zerfallsvorgänge wandelt sich der Kern in einen Atomkern mit derselben Massenzahl, aber um Eins verschiedenen Ordnungszahl um. Das bedeutet, der entstehende Atomkern ist (nahezu) gleich schwer – Protonen und Neutronen haben eine leicht unterschiedliche Masse und zusätzlich tritt noch ein Massendefekt durch die Energiefreisetzung auf – aber von einem anderen chemischen Element. Solche Typen von Atomkernen nennt man Isobare.

Ein solcher Zerfall tritt auf, wenn die Masse des Mutternuklids größer ist als die Summe aus der Masse des Tochternuklids und des Betateilchens, da dann die Differenz der Massen nach Einsteins Äquivalenz von Masse und Energie als kinetische Energie der Teilchen freigesetzt werden kann. Wenn die Isobare in beide Richtungen des Periodensystems leichter sind, dann kann ein Teilchen sowohl β als auch β+ zerfallen. Dies tritt zum Beispiel bei Kalium-40 auf, das sowohl zu Calcium-40 als auch zu Argon-40 zerfallen kann. Wegen der Erhaltung von Energie und Impuls (siehe Kinematik (Teilchenprozesse)) erhalten das leichte Betateilchen und das fast masselose (Anti-)Neutrino den weitaus größten Teil der Energie. Beim schweren Tochterkern verbleibt nur ein sehr kleiner Anteil von einigen eV.

In der Anfangszeit der Kernphysik führte die Beobachtung von Beta-Elektronen vorübergehend zu dem Fehlschluss, Elektronen seien Bestandteile des Atomkerns.[2] Nach heutigem Wissen werden jedoch die beiden emittierten Teilchen erst zum Zeitpunkt der Kernumwandlung erzeugt.

Die moderne Theorie beschreibt den Beta-Zerfall als Prozess der schwachen Wechselwirkung. Dabei werden beim β-Zerfall auf der Ebene der Elementarteilchen eines der beiden d-Quarks des Neutrons () durch Wechselwirkung mit einem W-Boson in ein u-Quark umgewandelt. Das Neutron wird dadurch zum Proton (), während das W-Boson seinerseits in ein Elektron und ein Antineutrino zerfällt. Beim β+-Zerfall wird umgekehrt eines der u-Quarks eines Protons mittels eines W+-Bosons in ein d-Quark umgewandelt.

Dass Beta-Minus-Strahlen tatsächlich dieselbe Teilchenart sind wie die Elektronen der Atomhülle, zeigt sich in ihrer Wechselwirkung mit Materie. Das Pauli-Prinzip, das nur für identische Teilchen gilt, verhindert, dass das Elektron nach dem Abbremsen in bereits besetzte Zustände eines neutralen Atoms eingefangen wird. Mit Beta-Minus-Strahlen ist dieser Einfang tatsächlich nie beobachtet worden, während für andere negativ geladene Teilchen, beispielsweise Myonen, dieser Einfang nicht verboten ist und auch beobachtet wird.[3]

Beta-Minus-Zerfall (β)[Bearbeiten | Quelltext bearbeiten]

Nuklide mit einem Überschuss an Neutronen zerfallen über den β-Prozess. Ein Neutron des Kerns wandelt sich in ein Proton um und sendet dabei ein Elektron () sowie ein Elektron-Antineutrino () aus. Elektron und Antineutrino verlassen den Atomkern, da sie Leptonen sind und nicht der starken Wechselwirkung unterliegen. Da sich nach dem Zerfallsprozess ein Neutron weniger, aber ein Proton mehr im Kern befindet, bleibt die Massenzahl unverändert, während sich die Kernladungszahl um 1 erhöht. Das Element geht also in seinen Nachfolger im Periodensystem über.

Schreibt man wie üblich Massenzahlen oben und Kernladungszahlen unten an die Symbole, kann demnach der Zerfall des Neutrons durch folgende Formel beschrieben werden:

Bezeichnet X das Mutter- und Y das Tochternuklid, so gilt für den β-Zerfall allgemein:

Ein typischer β-Strahler ist 198Au. Hier lautet die Umwandlung in Formelschreibweise:

Die meist hohe Energie des erzeugten Elektrons verhindert einen sofortigen Einfang in einen der hoch liegenden freien Zustände desselben Atoms. Besonders bei hochgeladenen schweren Ionen kann jedoch direkt ein Übergang in einen solchen gebundenen Zustand stattfinden, dieser Prozess wird gebundener Betazerfall genannt[4].

Beta-Plus-Zerfall (β+)[Bearbeiten | Quelltext bearbeiten]

Der β+-Zerfall tritt bei protonenreichen Nukliden auf. Hierbei wird ein Proton des Kerns in ein Neutron umgewandelt. Dabei wird zusammen mit einem Positron (Positronenstrahlung) ein Elektron-Neutrino ausgesendet. Wie beim β-Zerfall bleibt die Massenzahl unverändert, jedoch verringert sich die Kernladungszahl um 1, das Element geht also in seinen Vorgänger im Periodensystem über.

Die Umwandlung des Protons in ein Neutron lautet als Formel:

Mit den gleichen Bezeichnungen wie oben lässt sich der allgemeine β+-Zerfall beschreiben als:

Das am häufigsten vorkommende primordiale Nuklid, bei dem (unter anderem) β+-Zerfall auftritt, ist Kalium-40 (40K), allerdings ist der Zerfall sehr selten. Hier lautet die Formel:

Elektroneneinfang (ε)[Bearbeiten | Quelltext bearbeiten]

Ein Konkurrenzprozess zum β+-Zerfall ist der Elektroneneinfang, der auch zu den Betazerfällen gezählt wird, obwohl keine Betastrahlung entsteht. Auch hierbei wandelt sich ein Proton des Kerns in ein Neutron um, während ein Elektron aus einer kernnahen Schale der Atomhülle vernichtet wird und ein Neutrino erzeugt und emittiert wird:

Dieser Prozess tritt bei jedem β+-Strahler als weiterer Zerfallskanal auf. Alleiniger Zerfallskanal ist er dann, wenn die Umwandlungsenergie des Übergangs kleiner als die Ruheenergie eines Positrons (511 keV) ist. Auch der Elektroneneinfang beweist, dass Hüllenelektronen und Beta-Elektronen dieselbe Teilchenart sind.

Zerfall des freien Neutrons[Bearbeiten | Quelltext bearbeiten]

Auch ein freies Neutron unterliegt dem Beta-Minus-Zerfall. Dabei wandelt es sich in ein Proton, ein Elektron-Antineutrino und ein Elektron um, das als Betastrahlung nachgewiesen werden kann:

Die Lebensdauer für diesen Zerfall beträgt 880,3 ± 1,1 Sekunden,[5] das sind knapp 15 Minuten. Dies entspricht einer Halbwertszeit von rund 10 Minuten. In normaler Umgebung auf der Erde (z. B. in Luft) wird jedes frei werdende Neutron in viel kürzerer Zeit durch einen Atomkern eingefangen; deshalb spielt dieser Zerfall hier keine praktische Rolle.

Energiespektrum[Bearbeiten | Quelltext bearbeiten]

Die Energieverteilung von Beta-Strahlung (Beta-Spektrum) ist im Gegensatz zu Alpha-Strahlung kontinuierlich, da sich die beim Zerfall frei werdende Energie nicht auf zwei, sondern auf drei Teilchen – Atomkern, Elektron/Positron sowie Antineutrino/Neutrino – verteilt. Unter Erhaltung des Gesamtimpulses sind dadurch die Energien der einzelnen Teilchen nicht festgelegt (siehe Kinematik (Teilchenprozesse)).

Beta-Elektronenspektrum von 210Bi: Aufgetragen ist (in willkürlichen Einheiten) die Anzahl Elektronen pro Energieintervall als Funktion der kinetischen Energie, mit der das Elektron das Atom verlassen hat. Diese ist infolge der elektrischen Anziehung etwas kleiner als die Energie, die das Elektron hätte, wenn der Kern ungeladen wäre (Coulombverschiebung).

Die Abbildung zeigt ein einfaches gemessenes Elektronenspektrum. Komplexere Spektren treten auf, wenn Betaübergänge zu verschiedenen Energieniveaus des Tochterkerns sich überlagern.

Beispiele für Beta-Höchstenergien
Isotop Energie
(keV)
Zerfall Bemerkungen
freies
Neutron
0782,33 β
003H
(Tritium)
0018,59 β Zweitniedrigste bekannte β-Energie, wird im Experiment KATRIN verwendet.
011C 0960,4
1982,4
β+
ε+
014C 0156,475 β
020F 5390,86 β
037K 5125,48
6147,48
β+
ε+
163Ho 0002,555 ε+
187Re 0002,467 β Niedrigste bekannte β-Energie, soll im Experiment MARE verwendet werden
210Bi 1162,2 β

Anmerkung:
In Tabellenwerken wird oft die gesamte Übergangsenergie in den Grundzustand des Tochternuklids angegeben. Diese enthält gegebenenfalls nachfolgende Gammastrahlung u/o die Ruheenergie eines Elektron-Positron-Paars.

Konversionselektronen[Bearbeiten | Quelltext bearbeiten]

Messungen der Energieverteilung der Elektronen von Betastrahlung ergeben oft Spektren, die neben dem breiten Kontinuum auch scharfe Linien (Peaks) enthalten. Dabei handelt es sich um Elektronen, die durch Innere Konversion eines angeregten Kernzustands aus der Hülle emittiert wurden. Dieser Anteil des Spektrums wurde früher[6], obwohl er mit dem eigentlichen Betazerfall nichts zu tun hat, als diskretes Betaspektrum bezeichnet.

Neutrinomasse[Bearbeiten | Quelltext bearbeiten]

Die Form des Spektrums in der Nähe der maximalen Elektronen- oder Positronenenergie gibt Auskunft über die noch unbekannte Masse des Elektron-Neutrinos bzw. -Antineutrinos. Dazu muss das hochenergetische Ende (die letzten 1 bis 2 eV) eines Betaspektrums mit sehr hoher Genauigkeit vermessen werden. Ein abruptes Ende im Gegensatz zu einem kontinuierlichen Abfall bei der Höchstenergie würde eine von Null verschiedene Neutrinomasse zeigen – wie sie auf Grund der Neutrinooszillationen erwartet wird – und ihr Wert könnte bestimmt werden. Vorzugsweise erfolgt die Messung beim Beta-Zerfall von Nukliden mit geringer Zerfallsenergie wie Tritium (Experiment KATRIN) oder Rhenium-187 (Experiment MARE).

Innere Bremsstrahlung[Bearbeiten | Quelltext bearbeiten]

Bei einem Betazerfall werden elektrisch geladene Teilchen beschleunigt, daher tritt elektromagnetische Strahlung in Form von Bremsstrahlung auf. Zur Unterscheidung von der Bremsstrahlung, die beim Abbremsen der Betateilchen in Materie entsteht, heißt diese Form innere Bremsstrahlung. Sie wurde erstmals von Aston im Jahr 1927 beschrieben.[7] Eine theoretische Behandlung erfolgte 1949 durch Wang Chang und Falkoff.[8] Die Intensität der inneren Bremsstrahlung ist frequenzunabhängig bis zu einer maximalen Frequenz, die aus dem Energieerhaltungssatz folgt. Ihre Polarisation liegt in der Ebene von Flugrichtung des Betateilchens und der Beobachtungsrichtung, ihre Energie ist in klassischer Näherung

mit der Feinstrukturkonstanten , der Lichtgeschwindigkeit , der Elektronenmasse und der Geschwindigkeit des Betateilchens . Die Größe wird auch Rapidität genannt. Für langsame Betateilchen, , ist dieser Energieverlust vernachlässigbar. Für hochenergetische Betateilchen kann die Formel durch

mit der Energie des Betateilchens genähert werden. Selbst für hochenergetische Teilchen mit einer Energie von 5 MeV liegt der Verlust durch Strahlung nur in der Größenordnung von einem Prozent.

Die Winkelverteilung dieser inneren Bremsstrahlung ist durch

gegeben und ist identisch zur Winkelverteilung von äußerer Bremsstrahlung.

Auch beim Elektroneneinfang wird durch das Verschwinden der elektrischen Ladung und des magnetischen Moments des Elektrons Strahlung freigesetzt. Dies kann nicht in einer klassischen Theorie beschrieben werden. Eine Erklärung lieferten Martin und Glauber 1957.[9] Die semiklassische Behandlung des Problems ergibt für die differentielle Intensitätsverteilung

mit dem reduzierten Planckschen Wirkungsquantum , der Kernladungszahl , der charakteristischen Frequenz des -Übergangs mit der Rydberg-Energie und der gesamten freiwerdenden Energie des Elektroneneinfangs . Der erste Term stammt dabei von der elektrischen Ladung, der zweite vom magnetischen Moment.

In dieser Näherung tritt eine (nicht integrierbare) Polstelle bei auf. Dies ist durch die halbklassische Betrachtungsweise, das Elektron befände sich auf einer Kreisbahn um den Atomkern, zu erklären: Klassisch würde das Elektron auf dieser Kreisbahn ständig Synchrotronstrahlung emittieren.

Polarisation[Bearbeiten | Quelltext bearbeiten]

Betastrahlung ist in ihrer Emissionsrichtung longitudinal spinpolarisiert, das heißt, schnelle β-Teilchen haben eine Polarisation entgegen der Flugrichtung (anschaulich: bewegen sich wie eine Linksschraube), schnelle β+-Teilchen eine Polarisation in Flugrichtung. Dies ist eine grundlagenphysikalisch interessante Eigenschaft der schwachen Wechselwirkung, da sie die Nichterhaltung der Parität beweist. Für Wirkungen und Anwendungen der Strahlung spielt sie jedoch praktisch keine Rolle.

Wechselwirkung mit Materie[Bearbeiten | Quelltext bearbeiten]

Max. Reichweite von β-Teilchen verschiedener Energien in verschiedenen Materialien
Nuklid Energie Luft Plexiglas Glas
187Re 2,5 keV 1 cm
3H 19,0 keV 8 cm
14C 156,0 keV 65 cm
35S 167,0 keV 70 cm
131I 600,0 keV 250 cm 2,6 mm
32P 1710,0 keV 710 cm 7,2 mm 4 mm

Wenn Betateilchen in ein Material eindringen, finden Energieübertrag auf das Material und Ionisierung in einer oberflächennahen Schicht statt, die der Eindringtiefe der Teilchen entspricht.

Ist das eindringende Teilchen ein Positron (β+-Teilchen), trifft es sehr bald auf ein Elektron, also sein Antiteilchen. Dabei kommt es zur Annihilation, aus der (meist) zwei Photonen im Gammabereich hervorgehen.[10]

Biologische Wirkung[Bearbeiten | Quelltext bearbeiten]

Ist der menschliche Körper von außen kommenden Betastrahlen ausgesetzt, werden nur Hautschichten geschädigt. Dort kann es aber zu intensiven Verbrennungen und daraus resultierenden Spätfolgen wie Hautkrebs kommen. Sind die Augen der Strahlung ausgesetzt, kann es zur Linsentrübung kommen.

Werden Betastrahler in den Körper aufgenommen (inkorporiert), können hohe Strahlenbelastungen in der Umgebung des Strahlers die Folge sein. Gut dokumentiert ist Schilddrüsenkrebs als Folge von radioaktivem Iod-131 (131I), das sich in der Schilddrüse sammelt. In der Literatur findet man auch Befürchtungen, dass Strontium-90 (90Sr) zu Knochenkrebs und Leukämie führen kann, da sich Strontium wie Calcium in den Knochen anreichert.

Strahlenschutz[Bearbeiten | Quelltext bearbeiten]

Betastrahlen lassen sich mit einem einige Millimeter dicken Absorber (beispielsweise Aluminiumblech) gut abschirmen. Allerdings wird dabei ein Teil der Energie der Betateilchen in Röntgen-Bremsstrahlung umgewandelt. Um diesen Anteil zu verringern, sollte das Abschirmmaterial möglichst leichte Atome aufweisen, also von geringer Ordnungszahl sein. Dahinter kann dann ein zweiter Absorber aus Schwermetall die Bremsstrahlung abschirmen.

Bei β+-Strahlung ist zu beachten, dass sich die β+-Teilchen mit Elektronen annihilieren (siehe oben), wobei Photonen frei werden. Diese haben Energien von etwa 511 keV (entsprechend der Masse des Elektrons) und liegen damit im Bereich der Gamma-Strahlung.[10]

Für β-Strahler lässt sich eine materialabhängige maximale Reichweite feststellen, denn β-Teilchen geben ihre Energie (so wie Alphateilchen) in vielen Einzelstößen an Atomelektronen ab; die Strahlung wird also nicht exponentiell abgeschwächt wie Gammastrahlung. Aus dieser Erkenntnis resultiert die Auswahl abschirmender Materialien. Für einige der in der Forschung verbreiteten β-Strahler sind in der nebenstehenden Tabelle die Reichweiten in Luft, Plexiglas und Glas berechnet. Eine 1 cm dicke Plexiglasabschirmung kann bei den angegebenen Energien eine sichere Abschirmung ergeben.

Anwendungen[Bearbeiten | Quelltext bearbeiten]

In der Nuklearmedizin werden Betastrahler (z. B. 131I, 90Y) in der Radionuklidtherapie verwendet. In der nuklearmedizinischen Diagnostik werden die β+-Strahler 18F, 11C, 13N und 15O bei der Positronen-Emissions-Tomographie als radioaktive Markierung der Tracer eingesetzt. Ausgewertet wird dabei die durch Paarvernichtung entstehende Strahlung.

In der Strahlentherapie werden Betastrahler (z. B. 90Sr, 106Ru) in der Brachytherapie genutzt.

Betastrahlen werden auch – neben Röntgen- und Gammastrahlung – bei der Strahlensterilisation eingesetzt.

Die Radiometrische Staubmessung, ein Verfahren zur Messung von gasgetragenen Stäuben, nutzt die Absorption von Betastrahlen.[11] Als Strahlungsquellen werden beispielsweise 14C und 85Kr verwendet.[12]

Forschungsgeschichte[Bearbeiten | Quelltext bearbeiten]

Ernest Rutherford und Frederick Soddy entwickelten 1903 eine Hypothese, nach der die bereits 1896 von Antoine Henri Becquerel entdeckte Radioaktivität mit der Umwandlung von Elementen verknüpft ist. Der Betazerfall wurde demnach als Quelle der Betastrahlung ausgemacht. Davon ausgehend formulierten 1913 Kasimir Fajans und Soddy die sogenannten radioaktiven Verschiebungssätze, mit denen die natürlichen Zerfallsreihen durch aufeinanderfolgende Alpha- und Betazerfälle erklärt werden. Die Vorstellung, dass die Betaelektronen selbst wie die Alphateilchen aus dem Kern stammten, verfestigte sich 1913 im Kreis von Ernest Rutherford.

In der Anfangszeit galt lange als allgemeiner Konsens, dass Beta-Teilchen wie Alphateilchen ein für jedes radioaktive Element charakteristisches diskretes Spektrum haben. Experimente von Lise Meitner, Otto Hahn und Otto von Baeyer mit Photoplatten als Detektoren, die 1911[13] und den Folgejahren veröffentlicht wurden, sowie verbesserte Experimente von Jean Danysz in Paris 1913 zeigten aber ein komplexeres Spektrum mit einigen Anomalien (besonders bei Radium E, also bei 210Bi), die auf ein kontinuierliches Spektrum der Beta-Teilchen hinwiesen. Meitner hielt dies wie die meisten ihrer Kollegen zunächst für einen sekundären Effekt, also kein Kennzeichen der ursprünglich emittierten Elektronen. Erst die Experimente von James Chadwick im Labor von Hans Geiger in Berlin 1914 mit einem magnetischen Spektrometer und Zählrohren als Detektoren zeigten, dass das kontinuierliche Spektrum ein Kennzeichen der Betaelektronen selbst war.[14] Um diese scheinbare Nichterhaltung der Energie (und eine ebenfalls auftretende Verletzung von Impuls- und Drehimpulserhaltung) zu erklären, schlug Wolfgang Pauli 1930 in einem Brief die Beteiligung eines neutralen, extrem leichten Elementarteilchens am Zerfallsprozess vor, welches er „Neutron“ taufte. Enrico Fermi änderte diese Bezeichnung 1931 in Neutrino (italienisch für „kleines Neutrales“), zur Unterscheidung von dem nahezu zeitgleich entdeckten wesentlich schwereren Neutron. Die Identität der Beta-Teilchen mit atomaren Elektronen wurde 1948 von Maurice Goldhaber und Gertrude Scharff-Goldhaber nachgewiesen.[3] Der erste experimentelle Nachweis des Neutrinos gelang erst 1956 an einem der ersten großen Kernreaktoren (siehe Cowan-Reines-Neutrinoexperiment).

Der β+-Zerfall wurde 1934 von Irène und Frédéric Joliot-Curie entdeckt. Der Elektroneneinfang wurde 1935 von Hideki Yukawa theoretisch vorhergesagt und ist 1937 erstmals von Luis Walter Alvarez experimentell nachgewiesen worden.

Im Jahre 1956 gelang es mit einem von Chien-Shiung Wu durchgeführten Experiment, die kurz zuvor von Tsung-Dao Lee und Chen Ning Yang postulierte Paritätsverletzung beim Betazerfall nachzuweisen.

Künstliche Elektronenstrahlen[Bearbeiten | Quelltext bearbeiten]

Gelegentlich werden freie Elektronen, die künstlich (z. B. von einer Glühkathode) erzeugt und in einem Teilchenbeschleuniger auf hohe Energie gebracht wurden, ungenau ebenfalls als Betastrahlung bezeichnet. Auch der Name des Elektronenbeschleuniger-Typs Betatron weist darauf hin.

Siehe auch[Bearbeiten | Quelltext bearbeiten]

Literatur[Bearbeiten | Quelltext bearbeiten]

  • Werner Stolz: Radioaktivität. Grundlagen – Messung – Anwendungen. 5. Aufl. Teubner, 2005, ISBN 3-519-53022-8.

Kernphysik

Forschungsgeschichte

  • Carsten Jensen: Controversy and Consensus: Nuclear Beta Decay 1911–1934. Birkhäuser 2000.
  • Milorad Mlađenović: The History of Early Nuclear Physics (1896–1931). World Scientific, 1992, ISBN 981-02-0807-3.

Strahlenschutz

  • Hanno Krieger: Grundlagen der Strahlungsphysik und des Strahlenschutzes. Vieweg+Teubner, 2007, ISBN 978-3-8351-0199-9.
  • Claus Grupen: Grundkurs Strahlenschutz. Praxiswissen für den Umgang mit radioaktiven Stoffen. Springer, 2003, ISBN 3-540-00827-6.
  • James E. Martin: Physics for Radiation Protection. Wiley, 2006, ISBN 0-471-35373-6.

Medizin

  • Günter Goretzki: Medizinische Strahlenkunde. Physikalisch-technische Grundlagen. Urban&Fischer, 2004, ISBN 3-437-47200-3.
  • Thomas Herrmann, Michael Baumann und Wolfgang Dörr: Klinische Strahlenbiologie – kurz und bündig. Urban&Fischer, 2006, ISBN 3-437-23960-0.

Weblinks[Bearbeiten | Quelltext bearbeiten]

WiktionaryWiktionary: Betastrahlung – Bedeutungserklärungen, Wortherkunft, Synonyme, Übersetzungen

Einzelnachweise[Bearbeiten | Quelltext bearbeiten]

  1. John David Jackson: Klassische Elektrodynamik. 3. Auflage. de Gruyter, Berlin • New York 2002, S. 843–850.
  2. siehe z. B. Max Planck: Das Weltbild der neuen Physik. Leipzig: Barth, 1929, S. 17/18.
  3. a b Maurice Goldhaber, Gertrude Scharff-Goldhaber: Identification of beta-rays with atomic electrons. In: Physical Review. Volume 73, Nr. 12, 1948, S. 1472–1473, doi:10.1103/PhysRev.73.1472.
  4. F Bosch, D R Atanasov, C Brandau, I Dillmann, C Dimopoulou: Beta decay of highly charged ions. In: Physica Scripta. T156, doi:10.1088/0031-8949/2013/t156/014025 (iop.org).
  5. K.A. Olive et al. (Particle Data Group), Chin. Phys. C38, 090001 (2014): N Baryons Summary Table
  6. z. B. Ch. Gerthsen: Physik. 6. Auflage, Springer 1960, S. 329.
  7. G. H. Aston: The Amount of Energy Emitted in the γ-Ray Form by Radium E. In: Mathematical Proceedings of the Cambridge Philosophical Society. Band 23, Nr. 8, 1927, S. 935–941.
  8. C. S. Wang Chang und D. L. Falkoff: On the Continuous Gamma-Radiation Accompanying the Beta-Decay of Nuclei. In: Physical Review. Band 76, Nr. 3, 1949, S. 365–371.
  9. P. C. Martin und R. J. Glauber: Relativistic Theory of Radiative Orbital Electron Capture. In: Physical Reviews. Band 109, Nr. 4, 1958, S. 1307–1325.
  10. a b Hanno Krieger: Grundlagen der Strahlungsphysik und des Strahlenschutzes. 2. Auflage. S. 109.
  11. Heinrich Dresia, Franz Spohr: Anwendungs- und Fehlermöglichkeiten der radiometrischen Staubmessung zur Überwachung der Emission, Immission und von Arbeitsplätzen. In: Staub – Reinhalt. Luft. 38, Nr. 11, 1978, ISSN 0949-8036, S. 431–435.
  12. Franz Joseph Dreyhaupt (Hrsg.): VDI-Lexikon Umwelttechnik. VDI-Verlag Düsseldorf 1994, ISBN 3-18-400891-6, S. 1119.
  13. O. v. Baeyer, L. Meitner, O. Hahn: Magnetische Spektren der Beta-Strahlen des Radiums. In: Physikalische Zeitschrift. Band 12, 1911, S. 1099–1101 ([1] PDF).
  14. Chadwick: Intensitätsverteilung im magnetischen Spektrum der Betastrahlen von Radium B+C. In: Verhandlungen der Deutschen Physikalischen Gesellschaft. Band 16, 1914, S. 383–391.
Dieser Artikel wurde am 15. Juni 2007 in dieser Version in die Liste der lesenswerten Artikel aufgenommen.