Transposon

aus Wikipedia, der freien Enzyklopädie
Zur Navigation springen Zur Suche springen

Ein Transposon (umgangssprachlich springendes Gen) ist ein DNA-Abschnitt bestimmter Länge im Genom, der seine Position im Genom verändern kann (Transposition). Man unterscheidet Transposons, deren mobile Zwischenstufe von RNA gebildet wird (Retroelemente oder Klasse-I-Transposon), von denjenigen, deren mobile Phase DNA ist (DNA-Transposon oder Klasse-II-Transposon). Im Gegensatz zum Retroelement können Transposons ihren Locus ohne eine RNA-Zwischenstufe verändern. Transposons werden als eine Form eigennütziger DNA bezeichnet, obwohl sie ihrem Wirt Vorteile verschaffen können.

Eigenschaften[Bearbeiten | Quelltext bearbeiten]

Wenn Transposons autonom sind, also ihre „Werkzeuge zum Springen“ selbst mitbringen, sind sie oftmals von kurzen Wiederholungssequenzen (repeats) umgeben, die für die Transposition notwendig sind. Die Orientierung dieser Wiederholungssequenzen kann gleichgerichtet sein (direct repeat) oder gegenläufig (inverted repeat). Die typische Beschaffenheit der Wiederholungssequenzen wird häufig zur Klassifikation von Transposons herangezogen. Vollständige, autonome Transposons enthalten ein oder mehrere Gene; eines der Gene codiert immer für eine Transposase.

Transposons sind begrenzt von einer kleinen (8–40 bp), gegenläufig-identischen, nicht informativen Nucleotidsequenz (inverted repeat oder IR). Diese sind für die Funktion der Transposase (das für das Springen verantwortliche Enzym), zwingend notwendig. Des Weiteren sind DNA-Transposons auch von 3–13 bp langen gleichgerichteten Wiederholungen (direct repeats) umgeben. Diese gehören aber zur Wirts-DNA und entstehen dadurch, dass beim Integrieren, ähnlich wie bei einem Restriktionsenzym, an beiden Strängen versetzt geschnitten wird, dann das Transposon integriert wird und die Einzelstränge durch zelleigene Reparaturenzyme wieder aufgefüllt werden. Diese direct repeats werden deswegen auch als target site duplications bezeichnet. Beim Herausschneiden bleiben diese Duplikationen oft erhalten, sodass "Fußabdrücke" (foot prints) beim Herausschneiden des DNA-Transposons übrigbleiben, die also eine Insertion darstellen. Teilweise werden auch beide Duplikationen herausgeschnitten, sodass es effektiv zu einer Deletion kommt (die Duplikationen sind ja von der Wirts-DNA).

Entdeckung und Bedeutung[Bearbeiten | Quelltext bearbeiten]

Entdeckt wurden die Transposons 1948 von der US-amerikanischen Botanikerin Barbara McClintock im Mais, die für diese Entdeckung 1983 mit dem Nobelpreis geehrt wurde. Seitdem wurden Transposons auch in vielen anderen Organismen nachgewiesen, so zum Beispiel auch beim Menschen. In der Genetik und Entwicklungsbiologie spielen besonders die Transposons von Drosophila melanogaster eine große Rolle, da diese gezielt in die Fliegen injiziert und stabil ins Genom integriert werden können. Durch gentechnisch veränderte Transposons können auf diese Weise relativ einfach transgene Fliegen hergestellt werden, die für die Erforschung der Genfunktionen eine wichtige Rolle spielen. Transposons können aber auch auf Plasmide oder Phagengenome übertragen werden, was zu infektiösen Mutationen führen kann. So kann die neu eingefügte genetische Information bei Bakterien Resistenz gegen Antibiotika hervorrufen.

Der Ursprung und die biologische Funktion von Transposons ist noch nicht vollständig geklärt. Es handelt sich vermutlich um von Retroviren abgeleitete DNA, die sich in das Wirtsgenom integrierte und nunmehr vererbt wird.

Transposons machen etwa 3 % des menschlichen Genoms aus, häufige Familien sind MER-1 (ca. 1,4 %) und MER-2 (ca. 1,0 %). Eine gut unterstützte Theorie geht davon aus, dass die Rekombinasen RAG1 und RAG2, die für die V(D)J-Rekombination bei der Immunglobulin-Produktion zuständig sind, von Transposasen abstammen, womit das Immunsystem der Wirbeltiere von DNA-Transposons abstammt.

DNA-Transposons können auch auf Plasmide springen und durch die Kointegrate somit Resistenzgene beinhalten. Es ist somit nicht auszuschließen, dass sie somit für die Verbreitung von Resistenzen gegen Antibiotika eine Rolle spielen.Rund 45 % des menschlichen Genoms bestehen aus transponiblen Elementen, die jedoch nur zu einem sehr geringen Anteil zum Springen fähig sind. Es gibt auch die Theorie, dass die Immunglobuline von Transposons abstammen. Insofern ist es strittig, ob man Transposons zu Junk-DNA zählen soll. Forschungsergebnisse von Eric Lander et al. (2007) zeigen jedoch, dass Transposons eine durchaus wichtige Funktion haben, da sie als kreativer Faktor im Genom wichtige genetische Innovationen rasch im Erbgut verbreiten können.[1]

Andere Lebewesen haben einen anderen Genomanteil an Transposons, so sind in D. melanogaster nur etwa 15–22 % und in Caenorhabditis elegans etwa 12 % des Genoms transponible Elemente. Bei einigen Pflanzen wie z. B. Mais können jedoch über 80 % des Genoms Transposons sein.[2] Die folgende Tabelle gibt eine Übersicht der Anteile transponibler Elemente an der genomischen DNA.

Genomgröße und Anteil transponibler Elemente[3]
Spezies Genom­masse
in Piko­gramm
Genom­größe
in Giga­basen­paaren[4]
Prozentualer Anteil
trans­ponibler Elemente
Rana esculenta Frosch 5,6–8,0 5,5–7,8 77
Zea mays Mais 5,0 4,9 85
Homo sapiens Mensch 3,5 3,4 45
Mus musculus Maus 3,4 3,3 40
Drosophila melanogaster Taufliege 0,18 0,17 15–22
Caenorhabditis elegans Wurm 0,1 0,098 12
Saccharomyces cerevisiae Hefe 0,012 0,0117 3–5
Escherichia coli Bakterium 0,0046 0,0045 0,3

Vermehrungsmechanismen[Bearbeiten | Quelltext bearbeiten]

Bei DNA-Transposons wird zwischen der konservativen Transposition und der replikativen Transposition unterschieden. Während bei der konservativen Transposition das Transposon aus der DNA herausgeschnitten und an anderer Stelle wieder eingebaut wird („Cut & Paste“), wird bei der replikativen Transposition das Transposon nicht herausgeschnitten, sondern eine Kopie erstellt, die an anderer Stelle eingebaut wird („Copy & Paste“). Bei der replikativen Transposition wird die Anzahl der Transposons vermehrt. Das Herausschneiden bzw. das Kopieren des Transposons erfolgt mit Hilfe des Enzyms Transposase.

DNA-Transposons, die zu klein sind, um ein Protein zu codieren, bezeichnet man als „Miniature Inverted-repeat Transposable Elements“ (MITEs). Sie können sich nicht autonom verbreiten. Wie sie sich vermehren oder verschieben ist noch unklar. Möglicherweise war das Transposase-Gen einmal vorhanden und ist nun defekt oder verloren gegangen. Möglicherweise kopieren und verschieben sich MITEs durch Transposaseenzyme, die von anderen, größeren Transposons codiert werden, und die gleiche Erkennungssequenz besitzen (inverted repeats).[5]

RNA-Transposons, oder besser: Retroelemente springen, indem sie in mRNA transkribiert werden, die anschließend in cDNA umgeschrieben (durch eine Reverse Transkriptase) und wieder integriert wird. Dabei vermehren sich die Retroelemente. Die Unterklasse der sogenannten SINEs, aber auch andere nicht mehr autonome Retroelemente haben keine Reverse Transkriptase mehr und sind auf eine fremde (etwa von anderen Retroelementen) angewiesen.

Funktionelle Einteilung transponibler Elemente[Bearbeiten | Quelltext bearbeiten]

Je nachdem, ob das intermediäre Element DNA oder RNA ist, unterscheidet man zwischen DNA-Transposons (auch Klasse-II-Transposon genannt) und sogenannten Retroelementen (Klasse-I-Transposon). Die Retroelemente besitzen entweder long terminal repeats (LTR; bei LTR-Retrotransposons bzw. Retrotransposons im engeren Sinne und bei klassischen Retroviren) oder nicht (Retroposons).

Evolution der Transposons[Bearbeiten | Quelltext bearbeiten]

Die Evolution der Transposons und ihre Auswirkungen auf die Evolution des Genoms ist zurzeit Gegenstand kontroverser Forschung.

Transposons findet man in allen Zweigen des Lebens. Es ist jedoch unbekannt, ob sie vom „Urvorfahr“ vererbt wurden, oder ob sie mehrfach unabhängig voneinander entstanden sind, oder möglicherweise einmal entstanden und dann unter den Lebewesen durch horizontalen Gentransfer verbreitet wurden. Für letzteres ergibt eine 2008 erschienene Untersuchung starke Hinweise. So finden sich nahezu identische space-invader-(SPIN-)Gene in so weit entfernten Arten wie Mäusen und Fröschen.[6] Obwohl Transposons ihrem Wirt Vorteile verschaffen können, werden sie generell als eigennützige DNA-Parasiten eingestuft, welche in Genomen zellularer Organismen „leben“. Auf diese Art sind sie Viren ähnlich. Viren und Transposons haben Ähnlichkeiten in ihrer Genomstruktur und ihren biochemischen Eigenschaften. Dies führt zu der Spekulation, dass Viren und Transposons einen gemeinsamen Vorfahren haben könnten.[7]

Interessanterweise codieren Transposons oft das Enzym Transposase, welche eine wichtige Rolle im Vermehrungsmechanismus des Transposons selbst spielt. Dies könnte man als virenähnliche Eigenschaft deuten, da auch das Genmaterial von Viren eben genau die Genprodukte codiert, die zur Weiterverbreitung ebendieses Virengenoms dienen.

Da eine exzessive Transposonaktivität das Genom zerstören kann, scheinen viele Organismen Mechanismen entwickelt zu haben, welche die Transposition auf ein handhabbares Maß reduzieren. Bakterien können eine hohe Gendeletionsrate aufweisen als Teil eines Mechanismus, welcher Transposons und Viren aus ihrem Genom entfernen soll. Hingegen könnten eukaryotische Organismen den RNA-Interferenz (RNAi)-Mechanismus entwickelt haben, um die Transposonaktivität einzuschränken. In dem Fadenwurm Caenorhabditis elegans verringern einige Gene, die für RNAi benötigt werden, die Transposonaktivität.

Phasenvariation[Bearbeiten | Quelltext bearbeiten]

In bestimmten Stämmen von Salmonella typhimurium ist ein Transposon dafür verantwortlich, dass der Organismus etwa alle 1000 Generationen zwischen zwei Variationen des Flagellins, dem Hauptbestandteil des Flagellums, hin und her schaltet. Da beide Varianten durch unterschiedliche Antikörper erkannt werden, ist das für den Organismus von Vorteil.[8]

Gruppen prokaryotischer Transposons[Bearbeiten | Quelltext bearbeiten]

Das einzige Gen, welches in einer Insertionssequenz enthalten ist, codiert das Enzym Transposase. Dieses katalysiert die Bewegung des Transposons von einer Stelle der DNA zu einer anderen. Dabei handelt es sich meist um eine konservative Transposition. Nur selten wird replikativ transponiert (alte Sequenz bleibt erhalten). Das Transposase-Gen wird beidseitig von Inverted Repeats flankiert.

Die sogenannte Tn3-Familie besitzt neben der Transposase auch eine Resolvase (tnpR) und enthält eine sogenannte res-Site". Transposasen der Tn3-Familie schneiden im Gegensatz zu denen der IS-Elemente nicht zwingend an den eigenen IR, sondern auch an entfernteren IR der gleichen Familie. Dadurch wird ein großes Stück Wirts-DNA eingeschlossen (Kointegrat), das durch die Resolvase in der res-Site herausgeschnitten wird. Die Tn3-Familie transponiert zudem bevorzugt replikativ.

Auch gehören einige Phagen, wie der Phage Mu zu den DNA-transponierbaren Elementen. Die Phagen vermehren sich im Stadium als Provirus, also im Genom integriert durch Transposition.

Eukaryotische Transposons[Bearbeiten | Quelltext bearbeiten]

Eukaryotische Transposons sind nur teilweise ähnlich den prokaryotischen Vertretern. Vor allem die Transpositionsmechanismen sind recht unterschiedlich und einige DNA-Transposons weisen auch eine Intron-Exon-Struktur auf.

Recht bekannt ist das Ac-Element, an dem Barbara McClintock 1951 beim Mais "springende" Elemente postulierte und dafür 1983 einen Nobelpreis erhielt.

In Drosophila melanogaster sind die p-Elemente bekannte Vertreter von DNA-Transposons.

Trivia[Bearbeiten | Quelltext bearbeiten]

Ein synthetisches Transposon (Sleeping Beauty) ist von der International Society for Molecular and Cell Biology and Biotechnology Protocols and Researches (ISMCBBPR ) als „Molekül des Jahres 2009“ ausgezeichnet worden.[9][10]

Siehe auch[Bearbeiten | Quelltext bearbeiten]

Literatur[Bearbeiten | Quelltext bearbeiten]

Weblinks[Bearbeiten | Quelltext bearbeiten]

Einzelnachweise[Bearbeiten | Quelltext bearbeiten]

  1. Eric Lander u. a.: Genome of the marsupial Monodelphis domestica reveals innovation in non-coding sequences. In: Nature. Band 447, 10. Mai 2007, S. 167–177.
  2. Patrick S. Schnable, Doreen Ware, Robert S. Fulton, Joshua C. Stein, Fusheng Wei: The B73 Maize Genome: Complexity, Diversity, and Dynamics. In: Science. Band 326, Nr. 5956, 20. November 2009, ISSN 0036-8075, S. 1112–1115, doi:10.1126/science.1178534, PMID 19965430 (sciencemag.org [abgerufen am 12. April 2018]).
  3. Christian Biémont, Cristina Vieira: Junk DNA as an evolutionary force. In: Nature. Bd. 443, S. 521–524, PMID 17024082.
  4. Umgerechnet aus Biemont et al. mit Konversionsfaktor 0,978·Gigabasenpaaren pro Pikogramm.
  5. Miniature Inverted-repeat Transposable Elements (MITEs); Kimball’s Biology Pages, 5. Dezember 2011.
  6. John K. Pace II, Clément Gilbert, Marlena S. Clark, Cédric Feschotte1: Repeated horizontal transfer of a DNA transposon in mammals and other tetrapods. Auf: pnas.org; erschienen in: Proceedings of the National Academy of Sciences. (PNAS), Band 105, Nr. 44 vom 4. November 2008, S. 17023–17028 (englisch).
  7. Guenther Witzany: Natural Genome Editing Competences of Viruses. In: Acta Biotheor. Band 54, 2006, S. 35–253.
  8. Donald Voet, Judith Voet: Biochemistry. 2. Auflage, Wiley & Sons, 1995, ISBN 0-471-58651-X, S. 1059.
  9. Barbara Bachtler (Informationsdienst Wissenschaft ): „Dornröschen“ ist Molekül des Jahres. Pressemitteilung vom 19. Januar 2010.
  10. Wayne W. Grody: ISMCBBPR's President Isidro A. T. Savillo announces the Molecule of the Year 2009 as Sleeping Beauty Transposase SB 100X. (englisch).