Galliumnitrid

aus Wikipedia, der freien Enzyklopädie
Wechseln zu: Navigation, Suche
Kristallstruktur
Struktur von Galliumnitrid
__ Ga     __ N
Allgemeines
Name Galliumnitrid
Verhältnisformel GaN
CAS-Nummer 25617-97-4
PubChem 117559
Kurzbeschreibung

gelber, geruchloser Feststoff[1]

Eigenschaften
Molare Masse 83,72 g·mol−1
Aggregatzustand

fest

Dichte

6,1 g·cm−3[1]

Sublimationspunkt

800 °C[1]

Löslichkeit

unlöslich in Wasser[1]

Sicherheitshinweise
GHS-Gefahrstoffkennzeichnung [2]
07 – Achtung

Achtung

H- und P-Sätze H: 317
P: 280 [2]
EU-Gefahrstoffkennzeichnung [3][1]
Reizend
Reizend
(Xi)
R- und S-Sätze R: 43
S: 24​‐​37
Soweit möglich und gebräuchlich, werden SI-Einheiten verwendet. Wenn nicht anders vermerkt, gelten die angegebenen Daten bei Standardbedingungen.
Vorlage:Infobox Chemikalie/Summenformelsuche nicht möglich

Galliumnitrid (GaN) ist ein III-V-Halbleiter mit großer elektronischer Bandlücke (wide bandgap), der in der Optoelektronik insbesondere für blaue und grüne Leuchtdioden (LED) und für Hochleistungs-, Hochtemperatur- und Hochfrequenzfeldeffekttransistoren Verwendung findet. Darüber hinaus ist es für Sensorikanwendungen geeignet.

Geschichte[Bearbeiten]

Das Material wurde um 1930 zum ersten Mal synthetisiert und 1969 von Maruska und Tietjen erstmals mittels Hydridgasphasenepitaxie epitaktisch als Schicht aufgewachsen.[4] 1971 gelang Manasevit, Erdmann und Simpson zum ersten Mal über MOCVD das Wachstum von GaN, was als wichtiger Schritt in der weiteren Entwicklung gelten kann.[5][6]

Eigenschaften[Bearbeiten]

GaN kristallisiert vorzugsweise in der (hexagonalen) Wurtzit-Struktur, die kubische Zinkblende-Modifikation ist nicht stabil.

Eigenschaft Wert
Kristallsystem hexagonal (kubisch)
Farbe farblos, weiß, grau, gelb
Glanz Glasglanz
Opazität durchsichtig bis undurchsichtig
Spaltbarkeit gut
häufige Kristallorientierung von Substraten (0001), {1-101}
Brechungsindex ca. 2,5 bei 400 nm
Kristallstruktur Wurtzit (stabil), Zinkblende, Steinsalz (Hochdruckphase)
Gitterkonstante Wurtzit: c = 0,5185 nm, a = 0,3189 nm; Zinkblende: a = 0,452 nm
Bandabstand Wurtzit: 3,39 eV; Zinkblende: 3,2 eV

Die Verbindung wird von heißer konzentrierter Schwefelsäure und heißer konzentrierter Natronlauge langsam gelöst, nicht dagegen von konzentrierter Salzsäure, Salpetersäure und Königswasser. Er ist Luftbeständig und sublimiert unzersetzt bei 800 °C.[7]

Herstellung[Bearbeiten]

Galliumnitrid-Einkristall, ca. 3 mm lang

Das Hauptproblem in der Herstellung von GaN-basierten Bauelementen lag und liegt an der Schwierigkeit, aus GaN große Einkristalle herzustellen, um daraus hochwertige GaN-Wafer zu fertigen. Deshalb muss noch immer auf Fremdsubstrate ausgewichen werden, wobei hauptsächlich Saphir und SiC Verwendung finden. Die Qualität der (heteroepitaktischen) Schichten auf Fremdsubstraten wurde durch die Arbeiten der Gruppe von Akasaki und von Nakamura Ende der 1980er Jahre sehr vorangetrieben. Eine weitere Herausforderung stellt die p-Dotierung des Halbleitermaterials dar, die für fast alle optoelektronischen Bauelemente notwendig ist. Sie gelang erstmals der Gruppe um Akasaki im Jahre 1988, dann 1992 auch Shuji Nakamura mit einem modifizierten Ansatz.[6]

GaN-Einkristalle werden heute vorwiegend mittels Hydridgasphasenepitaxie (engl. hydride vapor phase epitaxy) hergestellt, das weltweit von einer Handvoll Firmen technologisch vorangetrieben wird. Dabei reagiert zunächst gasförmiger Chlorwasserstoff mit flüssigem ca. 880 °C heißem Gallium zu Galliumchlorid. In einer Reaktionszone wird das Galliumchlorid bei Temperaturen zwischen 1000 und 1100 °C in die Nähe eines GaN-Kristallkeims gebracht. Hier reagiert das Galliumchlorid mit dem einströmenden Ammoniak unter Freisetzung von Chlorwasserstoff zu kristallinem Galliumnitrid. Unter optimalen Bedingungen können mit dem HVPE-Verfahren mittlerweile Kristalle bis zu 50 mm Durchmesser und mit Dicken von einigen Millimetern hergestellt werden.

Im Labor wird Galliumnitrid durch Reaktion von Gallium mit Ammoniak bei 1100 °C[7]

\mathrm{2 \ Ga + 2 \ NH_3 \longrightarrow 2 \ GaN + H_2}

oder durch Ammonolyse von Ammoniumhexafluorogallat bei 900 °C.[7]

\mathrm{(NH_4 )_3 GaF_6 + 4 \ NH_3 \longrightarrow GaN + 6 \ NH_4 F}

Einsatzgebiete[Bearbeiten]

Dies führte zur ersten kommerziellen blauen LED die seit 1993 von Nichia vertrieben wird, sowie später zum ersten blauen Halbleiter-Laser (1997, Nichia). Bis dahin basierten blaue LEDs auf dem Material Siliciumcarbid, das als indirekter Halbleiter für eine effiziente Lichtemission schlecht geeignet ist. Mit einem höheren Indium-Anteil in der aktiven Zone der GaInN-Quanten-Filme ist auch grüne und gelbe Lichtemission möglich. Die Effizienz derartiger LEDs sinkt aber zunehmend mit höherem In-Gehalt auf Grund mehrerer physikalischer und chemischer Tatsachen.

Neben dem Fremdsubstrat Saphir lässt sich heutzutage GaN auch auf Siliciumcarbid (SiC) und auf Silicium (Si) herstellen. Rein technisch gesehen ist GaN auf SiC, durch die hohe Wärmeleitfähigkeit des SiC, vorteilhaft für Anwendung im Bereich der Leistungselektronik. Im Vergleich zu Silicium sind die Substratkosten für Siliciumcarbid jedoch deutlich höher (etwa 1000 USD pro 4-Zoll-Wafer).

Erste Prototypen von Feldeffekttransistoren auf Basis von Galliumnitrid mit Betriebsspannung bis 600 V konnten im Jahr 2012 in Schaltnetzteilen und Stromversorgungen eingesetzt werden. Sie erlauben höhere Schaltfrequenzen und erzielen im Netzteil einen höheren Wirkungsgrad als die üblicherweise in diesem Bereich eingesetzten und kostengünstigeren Feldeffekttransistoren auf Siliziumbasis.[8]

Einzelnachweise[Bearbeiten]

  1. a b c d e Datenblatt Galliumnitrid bei AlfaAesar, abgerufen am 29. Januar 2010 (JavaScript erforderlich).
  2. a b Datenblatt Gallium nitride bei Sigma-Aldrich, abgerufen am 2. April 2011 (PDF).
  3. Seit dem 1. Dezember 2012 ist für Stoffe ausschließlich die GHS-Gefahrstoffkennzeichnung zulässig. Bis zum 1. Juni 2015 dürfen noch die R-Sätze dieses Stoffes für die Einstufung von Gemischen herangezogen werden, anschließend ist die EU-Gefahrstoffkennzeichnung von rein historischem Interesse.
  4.  H. P. Maruska, J. J. Tietjen: Paramagnetic defects in GaN. In: Appl. Phys. Lett.. 15, 1969, S. 327.
  5.  H. M. Manasevit, F. M. Erdmann, W. I. Simpson: The use of metalorganics in the preparation of semiconductor materials. IV. The nitrides of aluminum and gallium. In: J. Electrochem. Soc. 118, Nr. 11, 1971, S. 1864–1868.
  6. a b  Norbert H. Nickel, Robert K. Willardson, Eicke R. Weber: Hydrogen in Semiconductors II. In: Semiconductors & Semimetals. 61, Academic Pr. Inc., 1999, ISBN 0127521704 (Google Books).
  7. a b c  Georg Brauer: Handbuch der Präparativen Anorganischen Chemie. 3., umgearb. Auflage. Band I, Enke, Stuttgart 1975, ISBN 3-432-02328-6, S. 861.
  8. IDW 7. November 2012: Kleiner, leichter und effizienter mit Galliumnitrid-Bauelementen

Literatur[Bearbeiten]

  • Michinobu Tsuda, Motoaki Iwaya, Satoru Kamiyama, Hiroshi Amano, Isamu Akasaki: Metalorganic vapor phase epitaxy (MOVPE) of nitride semiconductor at high growth rate, epitaxial substrates therefrom, and semiconductor devices using them. Jpn. Kokai Tokkyo Koho, 2006.
  • Tosja K. Zywietz: Thermodynamische und kinetische Eigenschaften von Galliumnitrid-Oberflächen. Berlin 2000, ISBN 978-3-934479-10-4

Weblinks[Bearbeiten]