Dies ist ein als lesenswert ausgezeichneter Artikel.

Mandelbrot-Menge

aus Wikipedia, der freien Enzyklopädie
Dies ist eine alte Version dieser Seite, zuletzt bearbeitet am 15. September 2016 um 17:41 Uhr durch Claude J (Diskussion | Beiträge) (→‎Geometrische und mathematische Eigenschaften: grundlegende eigenschaften). Sie kann sich erheblich von der aktuellen Version unterscheiden.
Zur Navigation springen Zur Suche springen
Mandelbrot-Menge (schwarz) mit farbig dargestellter Umgebung. Jedem Pixel ist eine komplexe Zahl c zugeordnet. Farbig kodiert ist die Anzahl der Iterationen xn+1 = xn2 + c, die notwendig ist, einen Betrag von 103 zu überschreiten. Sie wächst von Farbstreifen zu Farbstreifen um 1.

Die Mandelbrot-Menge ist eine fraktal erscheinende Menge, die eine bedeutende Rolle in der Chaosforschung spielt. Der Rand der Menge weist eine Selbstähnlichkeit auf, die jedoch nicht exakt ist, da es zu Verformungen kommt. Die Visualisierung der Menge wird im allgemeinen Sprachgebrauch oft Apfelmännchen genannt. Die ersten computergrafischen Darstellungen wurden 1978 von Robert Brooks und Peter Matelski vorgestellt.[1] 1980 veröffentlichte Benoît Mandelbrot, nach dem die Menge benannt wurde, eine Arbeit über das Thema.[2] Darauf folgend wurde sie von Adrien Douady und John Hamal Hubbard in einer Reihe grundlegender mathematischer Arbeiten systematisch untersucht.[3] Die mathematischen Grundlagen dafür wurden bereits 1905 von dem französischen Mathematiker Pierre Fatou erarbeitet.

Mandelbrot-Menge, andere Darstellung

Definition

Die Mandelbrot-Menge (schwarz) in der komplexen Ebene

Definition über Rekursion

Die Mandelbrot-Menge ist die Menge aller komplexen Zahlen , für welche die rekursiv definierte Folge komplexer Zahlen mit dem Bildungsgesetz

und dem Anfangsglied

beschränkt bleibt, das heißt, der Betrag der Folgenglieder wächst nicht über alle Grenzen. Die grafische Darstellung dieser Menge erfolgt in der komplexen Ebene. Die Punkte der Menge werden dabei in der Regel schwarz dargestellt und der Rest farbig, wobei die Farbe eines Punktes den Grad der Divergenz der zugehörigen Folge widerspiegelt (siehe unten).

Definition über Julia-Mengen

Die Mandelbrot-Menge wurde von Benoît Mandelbrot ursprünglich zur Klassifizierung von Julia-Mengen eingeführt, die bereits Anfang des 20. Jahrhunderts von den französischen Mathematikern Gaston Maurice Julia und Pierre Fatou untersucht wurden. Die Julia-Menge zu einer bestimmten komplexen Zahl ist definiert als der Rand der Menge aller Anfangswerte , für die die obige Zahlenfolge beschränkt bleibt. Man kann beweisen, dass die Mandelbrot-Menge genau die Menge der Werte ist, für die die zugehörige Julia-Menge zusammenhängend ist.

Verallgemeinerte Mandelbrot-Mengen

Im allgemeinen Sprachgebrauch wird die oben definierte Menge als die Mandelbrot-Menge bezeichnet. Verwendet man anstelle des obigen Bildungsgesetzes die Rekursionsregel

mit einer von einem komplexen Parameter abhängigen Abbildung innerhalb der komplexen Zahlen, so lassen sich in analoger Weise eine zu dieser Abbildung gehörige Mandelbrot-Menge und entsprechende Julia-Mengen definieren. Der Startwert muss ein kritischer Punkt sein, das heißt, es muss gelten.

Dieses Verfahren kann für Funktionen mit mehr als einem komplexen Parameter erweitert werden. Allerdings ist eine grafische Darstellung in zwei Dimensionen ohne Projektion nicht mehr möglich.

Die folgenden Ausführungen beziehen sich nur auf die üblicherweise betrachtete Mandelbrot-Menge.

Geometrische und mathematische Eigenschaften

Animation: Zoom in eine Mandelbrot-Menge

Die Mandelbrotmenge ist abgeschlossen (da ihr Komplement offen ist) und in der abgeschlossenen Scheibe mit dem Radius 2 um den Ursprung enthalten und somit kompakt.

Bezeichnet und die n-te Iteration dann gehört ein Punkt c genau dann zur Mandelbrotmenge, falls

für alle

Wird der Betrag von größer als 2 entkommt der Punkt bei Iteration ins Unendliche und gehört damit nicht zur Mandelbrotmenge.

Der ungeheure Formenreichtum der Mandelbrot-Menge erschließt sich aus ihrem Bezug zu Julia-Mengen. Julia-Mengen zur Iteration z → z2 + c sind Fraktale, außer für einige c-Werte wie c = −2 (Strecke) oder c = 0 (Kreis). Die Formen dieser fraktalen Strukturen sind innerhalb einer Julia-Menge stets die gleichen, umspannen aber für Julia-Mengen zu verschiedenem Parameter c einen enormen Formenreichtum. Es zeigt sich, dass die Strukturen der Mandelbrot-Menge in der Umgebung eines bestimmten Wertes c genau jene Strukturen der zugehörigen Julia-Menge wiedergeben. Damit enthält die Mandelbrot-Menge den kompletten Formenreichtum der unendlich vielen Julia-Mengen (s. u.).

In den fraktalen Strukturen am Rand findet man verkleinerte ungefähre Kopien der gesamten Mandelbrot-Menge, so genannte Satelliten. Jeder Bildausschnitt der Mandelbrot-Menge, der sowohl Punkte aus als auch solche außerhalb umfasst, enthält unendlich viele dieser Satelliten. Unmittelbar am Rand eines Satelliten treten fast die gleichen Strukturen auf, wie an den entsprechenden Stellen des Originals. Diese Strukturen sind jedoch nach weiter außen hin mit den Strukturen kombiniert, die für die größere Umgebung des Satelliten typisch sind. Diese Situation wird gelegentlich mit der eines biologischen Organismus und seiner Gene verglichen. Danach entspricht jedem Satelliten die Erbsubstanz einer Zelle, die den Bauplan für den kompletten Organismus enthält, während nach außen hin nur die Strukturen des lokalen Organs exprimiert sind. Es handelt sich dabei jedoch um ein rein formales Gleichnis ohne kausalen Hintergrund.

Da jeder Satellit wiederum mit Satelliten höherer Ordnung bestückt ist, lässt sich immer eine Stelle finden, an der eine beliebige Anzahl beliebiger verschiedener Strukturen in beliebiger Reihenfolge kombiniert auftritt. Diese Strukturen sind allerdings nur bei extremer Vergrößerung erkennbar.

Die Mandelbrot-Menge ist spiegelsymmetrisch zur reellen Achse. Sie ist zusammenhängend (das heißt, sie bildet keine Inseln), wie Adrien Douady und John Hamal Hubbard 1984 bewiesen, und es wird vermutet (Douady/Hubbard), dass sie lokal zusammenhängend ist (MLC Vermutung). Dies ist eine der großen offenen Fragen in der komplexen Dynamik und bis heute unbewiesen (obwohl es Teilresultate zum Beispiel von Jean-Christophe Yoccoz gibt, der lokalen Zusammenhang für bestimmte Werte von c bewies, den endlich-renormalisierbaren Punkten). Die MLC erlaubt weitreichende Folgerungen über die Topologie der Mandelbrotmenge. Beispielsweise würde daraus die Hyperbolizitätsvermutung folgen, dass jede offene Menge in der Mandelbrotmenge (also das Innere der Mandelbrotmenge) aus Punkten mit attraktiven Zyklen besteht. Die Mandelbrot-Menge ist zwar selbstähnlich, aber nicht exakt, denn keine zwei Teilstrukturen ihres Randes sind exakt gleich; aber in der Nähe vieler Randpunkte bilden sich bei fortgesetzter Ausschnittvergrößerung im Grenzwert periodische Strukturen. An speziellen Punkten hat die Mandelbrotmenge Selbstähnlichkeit (vermutet von John Milnor und bewiesen von Mikhail Lyubich 1999).

Da die Mandelbrot-Menge Kardioid- und Kreisflächen enthält, hat sie die fraktale Dimension 2. Der Rand der Mandelbrot-Menge hat eine unendliche Länge, und seine Hausdorff-Dimension beträgt nach Arbeiten von Mitsuhiro Shishikura ebenfalls 2; das impliziert, dass die Box-Dimension den Wert 2 hat. Es ist denkbar, dass der Rand der Mandelbrot-Menge einen positiven (notwendig endlichen) Flächeninhalt hat; andernfalls wäre dieser Flächeninhalt null. Der Flächeninhalt der Mandelbrot-Menge ist nicht bekannt und beträgt nach numerischen Schätzungen etwa 1,506 591 77.

Die Mandelbrotmenge enthält deformierte Kopien aller Julia-Mengen, wie Tan Lei 1990 für die Misiurewicz-Punkte der Mandelbrotmenge bewiesen hat, die dicht im Rand der Mandelbrotmenge liegen. Das ist ein weiterer Beleg für die enge Verwandtschaft der Struktur von Julia- und Mandelbrotmengen. So wurden in den Beweisen von Yoccoz für lokalen Zusammenhang der Mandelbrotmenge bei endlich renormalisierbaren Punkten und von Shishikura über die fraktale Dimension des Randes der Mandelbrotmenge zuerst die entsprechenden Eigenschaften bei den zum Parameterwert gehörigen Julia-Mengen untersucht und dann auf die Mandelbrotmenge übertragen.

Die Frage, ob die Mandelbrot-Menge entscheidbar ist, ergibt zunächst keinen Sinn, da überabzählbar ist. Einen Ansatz, den Begriff der Entscheidbarkeit auf überabzählbare Mengen zu verallgemeinern, stellt das Blum-Shub-Smale-Modell dar. Innerhalb dessen ist die Mandelbrot-Menge nicht entscheidbar.

Bildergalerie einer Zoomfahrt

Die folgende exemplarische Bildersequenz einer Zoomfahrt an eine bestimmte Stelle c gibt einen Eindruck vom geometrischen Formenreichtum und erläutert gewisse typische Strukturelemente. Die Vergrößerung im letzten Bild beträgt etwa 1 zu 60 Milliarden. Bezogen auf einen üblichen Computerbildschirm verhält sich dieser Ausschnitt wie zu der Gesamtgröße des Apfelmännchens von 2,5 Millionen Kilometern, dessen Rand in dieser Auflösung eine unvorstellbare Fülle verschiedenster fraktaler Strukturen aufweist.

Bild Beschreibung
Startbild
Startbild
Startbild:
Die Mandelbrot-Menge mit stufenlos eingefärbtem Außenraum.
Ausschnitt 1
Ausschnitt 1
Ausschnitt 1:
Spalte zwischen „Kopf“ und „Körper“, „Tal der Seepferdchen“ genannt.
Ausschnitt 2
Ausschnitt 2
Ausschnitt 2:
Links Doppelspiralen, rechts „Seepferdchen“.
Ausschnitt 3
Ausschnitt 3
Ausschnitt 3:
„Seepferdchen“. Der „Körper“ wird von 25 „Speichen“ gebildet, von denen sich zwei Zwölfergruppen nach Art einer Metamorphose auf jeweils einen der beiden „Finger“ an der „oberen Hand“ des Apfelmännchens zurückführen lassen. Die Zahl der „Speichen“ nimmt daher von einem „Seepferdchen“ zum nächsten um zwei zu. Die „Nabe“ wird von einem Misiurewicz-Punkt gebildet (s. u.). Zwischen „Oberkörper“ und „Schwanz“ ist ein deformierter Satellit erkennbar.
Ausschnitt 4
Ausschnitt 4
Ausschnitt 4:
Der „Seepferdchenschwanz“ endet ebenfalls in einen Misiurewicz-Punkt.
Ausschnitt 5
Ausschnitt 5
Ausschnitt 5:
Teil des „Schwanzes“. Der einzige Pfad, der sich durch den gesamten „Schwanz“ windet, und damit gewährleistet, dass einfach zusammenhängend ist, führt im Zickzack von einer „Schwanzseite“ zur anderen und passiert dabei die „Naben“ der großen 25-spiraligen Gebilde.
Ausschnitt 6
Ausschnitt 6
Ausschnitt 6:
Satellit. Die beiden „Seepferdchenschwänze“ bilden den Auftakt für eine Folge von konzentrischen Kränzen mit dem Satelliten im Zentrum.
Ausschnitt 7
Ausschnitt 7
Ausschnitt 7:
Jeder dieser Kränze besteht aus gleichartigen Strukturelementen, deren Anzahl pro Kranz mit Potenzen von 2 wächst, ein typisches Phänomen in der Umgebung von Satelliten. Der oben erwähnte Pfad durch den „Seepferdchenschwanz“ passiert den Satelliten über die Kerbe der Kardioide und die Spitze der „Antenne“ auf dem „Kopf“.
Ausschnitt 8
Ausschnitt 8
Ausschnitt 8:
„Antenne“ des Satelliten. Auf ihr sind mehrere Satelliten 2. Ordnung erkennbar.
Ausschnitt 9
Ausschnitt 9
Ausschnitt 9:
„Tal der Seepferdchen“ des Satelliten. Es zeigen sich die gleichen Strukturelemente wie in Ausschnitt 1.
Ausschnitt 10
Ausschnitt 10
Ausschnitt 10:
Doppelspiralen und „Seepferdchen“, die jedoch im Unterschied zu Ausschnitt 2 nach außen hin mit seepferdchenschwanzartigen Fortsätzen bestückt sind. Dieses Phänomen demonstriert die für Satelliten n-ter Ordnung typischen Verkettungen von n+1 Strukturelementen für den Fall n=1.
Ausschnitt 11
Ausschnitt 11
Ausschnitt 11:
Doppelspiralen mit Satelliten 2. Ordnung. Sie lassen sich als Metamorphose der „Antenne“ interpretieren.
Ausschnitt 12
Ausschnitt 12
Ausschnitt 12:
Im Bereich der äußeren Fortsätze sind stets inselartige Strukturen eingestreut, die Julia-Mengen Jc ähneln. Die im Bild größte ist im Zentrum des „Doppelhakens“ rechts gerade eben erkennbar.
Ausschnitt 13
Ausschnitt 13
Ausschnitt 13:
Teil des „Doppelhakens“.
Ausschnitt 14
Ausschnitt 14
Ausschnitt 14:
Diese Inseln scheinen auf den ersten Blick nach Art von Cantor-Mengen wiederum aus unendlich vielen unzusammenhängenden Teilstücken zu bestehen, wie es für die zugehörigen Jc tatsächlich der Fall ist, sie sind jedoch hier über filigrane Strukturen miteinander verbunden. Diese Strukturen gehen von einem Satelliten im Zentrum aus, der bei dieser Vergrößerung noch nicht sichtbar ist, und zwar derart, dass das Ganze ein einfach zusammenhängendes Gebilde ergibt. Der zum entsprechenden Jc gehörige c-Wert ist nicht der des Bildzentrums, sondern hat relativ zum Hauptapfelmännchen die gleiche Position wie das Bildzentrum zum Satelliten, der in Ausschnitt 7 dargestellt ist.

Eine Animation zu dieser Zoomfahrt findet sich bei den Weblinks.

Verhalten der Zahlenfolge

Die verschiedenen Strukturelemente von stehen in engem Zusammenhang mit bestimmten Verhaltensweisen der Zahlenfolge, die zugrunde liegt. Je nach Wert von c ergibt sich eine der folgenden vier Möglichkeiten:

  • Sie strebt gegen einen festen Wert (Konvergenz).
  • Sie konvergiert gegen einen Grenzzyklus, der aus 2 oder mehr Zahlen besteht.
  • Sie wiederholt sich nie, bleibt aber beschränkt (für manche dieser Parameter ergibt sich chaotisches Verhalten).
  • Sie strebt gegen Unendlich (bestimmte Divergenz).

Alle c-Werte, die zu den ersten drei Verhaltensweisen führen, gehören zu .

Geometrische Zuordnung

Konvergenz liegt genau für die Werte von c vor, die das Innere der Kardioide bilden, den „Körper“ des Apfelmännchens, sowie für abzählbar viele ihrer Randpunkte. Periodische Grenzzyklen findet man in den (angenähert) kreisförmigen „Knospen“ wie im „Kopf“, in den Kardioiden der Satelliten sowie ebenfalls auf abzählbar vielen Randpunkten dieser Komponenten. Eine fundamentale Vermutung besagt, dass es für alle inneren Punkte der Mandelbrot-Menge einen Grenzzyklus gibt. Die Folge ist echt vorperiodisch für abzählbar viele Parameter, die oft Misiurewicz-Thurston-Punkte genannt werden (nach Michał Misiurewicz, William Thurston). Dazu gehören die „Antennenspitzen“, wie Punkt z = −2 ganz links, und Verzweigungspunkte der Mandelbrot-Menge.

In den überabzählbar vielen übrigen Punkten der Mandelbrot-Menge kann sich die Folge auf viele verschiedene Weisen verhalten, die jeweils sehr unterschiedliche dynamische Systeme erzeugen und die teilweise Gegenstand intensiver Forschung sind. Je nach Definition des Wortes kann man „chaotisches“ Verhalten finden.

Periodisches Verhalten

Die kreisförmigen Strukturen

Mandelbrot-Menge mit farbkodierter Periodenlänge der Grenzzyklen

Jede kreisförmige „Knospe“ und jede Satelliten-Kardioide zeichnet sich durch eine bestimmte Periodizität des Grenzzyklus aus, gegen den die Folge für die zugehörigen c-Werte strebt. Die Anordnung der „Knospen“ an der zugehörigen Kardioide folgt dabei den folgenden Regeln, aus denen sich unmittelbar die Periodizitäten ablesen lassen. Jede „Knospe“ berührt genau einen Basiskörper, nämlich eine größere „Knospe“ oder eine Kardioide.

Die Periodizität einer „Knospe“ ist die Summe der Periodizitäten der beiden nächsten größeren „Nachbarknospen“ in beide Richtungen am selben Basiskörper, sofern es solche gibt. Gibt es am Rand des Basiskörpers bis zur Kontaktstelle mit dessen Basiskörper bzw. bis zur Kerbe der Kardioide nur kleinere „Knospen“, so trägt anstelle der Periodizität einer „Nachbarknospe“ die des Basiskörpers selbst zur Summe bei. Daraus leiten sich unmittelbar die folgenden Eigenschaften ab:

  • Tendenziell sind die „Knospen“ bzw. Kardioiden umso kleiner, je größer ihre Periodizität ist.
  • Die Periodizität der größten „Knospe“ an einem Basiskörper beträgt stets das Doppelte, wie beispielsweise der „Dutt“ mit der Periode 4 am „Kopf“.
  • Die Periodizität einer „Knospe“ eines Satelliten ist das Produkt der Periodizität der Kardioide und der der korrespondierenden „Knospe“ der Hauptkardioide.

Ferner erklärt diese Regel das Auftreten bestimmter Folgen von „Knospen“ wie beispielsweise vom „Kopf“ zur Kardioidkerbe hin mit einer Periodizitätszunahme zur nächsten „Knospe“ hin um den Wert 1 oder vom „Arm“ zum „Kopf“ hin um den Wert 2.

Attraktive Zyklen

Gibt es für ein c ein Folgenglied mit der Eigenschaft zn = z0 = 0, so wiederholt sich die Folge von Anfang an streng periodisch und zwar mit der Periode n. Da sich zn durch n-malige Anwendung der Iterationsvorschrift ergibt, wobei bei jedem Schritt quadriert wird, lässt es sich als Polynom von c vom Grad 2n−1 formulieren. Die c-Werte für periodische Folgen der Periode n erhält man daher über die 2n−1 Nullstellen dieses Polynoms. Es zeigt sich, dass jede Zahlenfolge gegen diesen Zahlenzyklus konvergiert, sofern eins ihrer Folgenglieder hinreichend nahe an diesen Zyklus gerät. Man spricht von sogenannten Attraktoren.

Das führt dazu, dass alle Zahlenfolgen zu einer gewissen Umgebung des c-Wertes, der den Attraktor repräsentiert, gegen einen stabilen Zyklus der Periode n konvergieren. Jede kreisförmige „Knospe“ und jede Kardioide eines Satelliten repräsentiert genau eine solche Umgebung. Exemplarisch seien die Gebiete mit den Perioden 1 bis 3 aufgeführt:

  • Periode 1: Die Kardioide des Hauptapfelmännchens. Der Rand dieser Kardioide ist gegeben durch Punkte der Form mit .
  • Periode 2: Der „Kopf“. Die 2. Nullstelle c = 0 entspricht der Hauptkardioide, die wegen der Periode 1 natürlich bei der Ermittlung aller höherer Perioden als Nullstelle auftritt. Diese Überlegung zeigt, dass die Zahl der Attraktoren mit der Periode n (>1) maximal 2n−1−1 betragen kann, und das nur dann, wenn n eine Primzahl ist. Der Kopf selbst ist eine Kreisscheibe mit Mittelpunkt und Radius , d. h. der Rand dieser Kreisscheibe ist gegeben durch Punkte der Form mit .
  • Periode 3: Die „Knospen“, die den „Armen“ entsprechen und die Kardioide des größten Satelliten auf der „Kopfantenne“. Die 4. Nullstelle c = 0 entfällt wieder.

Die Anzahl der anziehenden Zyklen mit der genauen Periode n, d. h. zn = z0 und n ist minimal mit dieser Eigenschaft, ist die Folge A000740 in OEIS.

Galerie der Iteration

Die folgende Galerie gibt einen Überblick über die Werte von zn für einige Werte von n. Dabei hängt zn vom Parameter c ab, dessen Realteil sich in den Bildern von links nach rechts von −2,2 bis +1 erstreckt, und dessen Imaginärteil von −1,4 bis +1,4 reicht.

Die Iteration z → z²+c nach n Schritten
Iterationen Beschreibung
n = 1
Nach dem ersten Schritt gilt z1(c) = c. Das Bild ist also eine farbige Darstellung der komplexen Zahlen c, welche sich in dem gezeigten Gebiet befinden. Die Null wird dabei in Weiß dargestellt und Unendlich in Schwarz. Daher erscheint ein Punkt umso dunkler, je weiter er vom Ursprung entfernt ist. Die Farbe eines Punktes gibt Auskunft über sein Argument, also über den Winkel, den er mit der positiv-reellen Achse (rot) hat. Die negativ-reelle Achse ist türkis gefärbt.
n = 2
Nach zwei Schritten gilt
z2(c) = c2 + c = c · (c + 1)

Dieser Ausdruck wird Null für c = 0 sowie für c = −1. Die neu hinzugekommene linke Nullstelle liegt im Zentrum des Kopfes des Apfelmännchens, während die alte auf der rechten Seite das Herz der Leib-Zykloiden ist.

n = 3
Die Anzahl der Nullstellen hat sich verdoppelt — wie nach jedem Iterationsschritt. Die reelle Nullstelle links liegt im Herz des kleinen Antennen-Satelliten. Es treten die ersten komplexwertigen Nullstellen ober- und unterhalb der reellen Achse auf. Diese Nullstellen liegen im Zentrum des jeweiligen Ärmchens.
n = 4
Der Dutt ist entstanden: er gehört zur Nullstelle links neben der Kopf-Nullstelle bei −1. Die dargestellte Funktion
z4(c) = ((c2 + c)2 + c)2 + c

wird immer unübersichtlicher. Es lässt sich jedoch einfach nachrechnen, dass wenn co eine Nullstelle von zn ist, co eine Nullstelle von zk·n ist. Daher „erbt“ z4 die Nullstellen von z2. Dieser Zusammenhang ist Ursache für das unten erläuterte periodische Verhalten der Knospen.

n = 5
Da 5 eine Primzahl ist, gibt es keine altbekannten Nullstellen — außer der null, welche von z1 bekannt ist. Da der Grad des Polynoms zn(c) gleich 2n−1 ist, wächst zn mit wachsendem n immer schneller gegen Unendlich. Dadurch bildet sich der Rand zwischen der Mandelbrot-Menge und ihrem Äußeren immer klarer heraus.
n = 9
Inzwischen gibt es bereits 256 Nullstellen, die munter innerhalb des Apfelmännchens verteilt sind. Da 3 ein Teiler von 9 ist, sind die Armknospen und der kleine Antennensatellit wieder mit einer Nullstelle an der Reihe, und leuchten daher hell auf.
n = 17
Wieder eine Primzahl.
n = 18
Mit n = 18 und 217 = 131 072 Nullstellen endet diese Bilderserie, n könnte man noch beliebig vergrößern, womit sich die Anzahl der neuen Knospen erhöht.

Repulsive Zyklen

Neben attraktiven Zyklen gibt es repulsive, die sich dadurch auszeichnen, dass Zahlenfolgen in ihrer Umgebung sich zunehmend von ihnen entfernen. Sie lassen sich jedoch erreichen, da jedes zn abgesehen von der Situation zn-1 = 0 wegen des Quadrats in der Iterationsvorschrift zwei potenzielle Vorgänger in der Folge hat, die sich nur durch ihr Vorzeichen unterscheiden. c-Werte, für die die zugehörige Folge irgendwann über einen solchen zweiten Vorläufer eines Periodenmitgliedes in einen derartigen instabilen Zyklus mündet, sind beispielsweise die „Naben“ der rad- bzw. spiralförmigen Strukturen sowie die Endpunkte der weitverbreiteten antennenartigen Strukturen, die sich formal als „Naben“ von „Rädern“ oder Spiralen mit einer einzigen Speiche interpretieren lassen. Derartige c-Werte werden als Misiurewicz-Punkte bezeichnet.

Ein Misiurewicz-Punkt c hat ferner die Eigenschaft, dass in seiner näheren Umgebung nahezu deckungsgleich mit demselben Ausschnitt der zugehörige Julia-Menge Jc ist. Je weiter man sich dem Misiurewicz-Punkt nähert, umso besser wird die Übereinstimmung. Da Julia-Mengen für c-Werte innerhalb von zusammenhängend sind und außerhalb von Cantor-Mengen aus unendlich vielen Inseln mit der Gesamtfläche Null, sind sie in der Übergangszone am Rand von besonders filigran. Jeder Misiurewicz-Punkt ist aber gerade ein Randpunkt von , und jeder Ausschnitt der Randzone von , der sowohl Punkte in als auch außerhalb davon enthält, enthält unendlich viele davon. Damit ist der gesamte Formenreichtum sämtlicher Julia-Mengen dieses filigranen Typs in der Umgebung der Misiurewicz-Punkte in repräsentiert.

Satelliten

Analyse des Verhaltens des Newton-Verfahrens zu einer Familie kubischer Polynome.

Ein weiteres Strukturelement, das den Formenreichtum der Mandelbrot-Menge begründet, sind die verkleinerten Kopien ihrer selbst, die sich in den filigranen Strukturen ihres Randes befinden. Dabei korrespondiert das Verhalten der Zahlenfolgen innerhalb eines Satelliten in folgender Weise mit dem der Folgen im Hauptkörper. Innerhalb eines Satelliten konvergieren alle Zahlenfolgen gegen Grenzzyklen, deren Perioden sich von denen an den entsprechenden Stellen im Hauptkörper von um einen Faktor p unterscheiden. Betrachtet man für einen bestimmten c-Wert aus dem Satelliten nur jedes p-te Folgenglied, so ergibt sich eine Folge, die bis auf einen räumlichen Maßstabsfaktor nahezu identisch ist mit derjenigen, die sich für den entsprechenden c-Wert im Hauptkörper von ergibt. Die mathematische Begründung hierfür ist tiefliegend; sie entstammt den Arbeiten von Douady und Hubbard über „polynomartige Abbildungen“.

Die zusätzlichen Strukturelemente in der unmittelbaren Umgebung eines Satelliten sind eine Folge davon, dass zwischen zwei der betrachteten Folgenglieder mit dem Indexabstand p sich eins mit dem Wert zn = 0 befinden kann, das damit einen periodischen Verlauf mit der Periode n begründet. Die entsprechende Folge außerhalb des Hauptkörpers divergiert jedoch, da sie keine solchen Zwischenglieder besitzt.

Es handelt sich bei der Mandelbrot-Menge selbst um eine universelle Struktur, die bei völlig anderen nichtlinearen Systemen und Klassifizierungsregeln in Erscheinung treten kann. Grundvoraussetzung ist jedoch, dass die beteiligten Funktionen winkeltreu sind. Betrachtet man solche Systeme, die von einem komplexen Parameter c abhängen und klassifiziert ihr Verhalten bezüglich einer bestimmten Eigenschaft der Dynamik in Abhängigkeit von c, dann findet man unter bestimmten Umständen in der Parameter-Ebene kleine Kopien der Mandelbrot-Menge. Ein Beispiel ist die Frage, für welche Polynome dritten Grades das iterative Newton-Verfahren zur Bestimmung von Nullstellen mit einem bestimmten Startwert versagt und für welche nicht.

Wie im nebenstehenden Bild kann die Mandelbrot-Menge dabei verzerrt auftreten, zum Beispiel sitzen dort die Armknospen an etwas anderer Stelle. Ansonsten ist die Mandelbrot-Menge jedoch vollkommen intakt, inklusive aller Knospen, Satelliten, Filamente und Antennen. Der Grund für das Auftauchen der Mandelbrot-Menge ist, dass die betrachtete Funktionenfamilien in bestimmten Gebieten – abgesehen von Drehungen und Verschiebungen – recht gut mit der Funktionenfamilie

,

welche die Mandelbrot-Menge definiert, übereinstimmen. Dabei sind in einem gewissen Rahmen Abweichungen zulässig, und trotzdem kristallisiert sich die Mandelbrot-Menge heraus. Dieses Phänomen wird als strukturelle Stabilität bezeichnet und ist im Endeffekt verantwortlich für das Auftreten der Satelliten in der Umgebung von , weil Teilfolgen der iterierten Funktionen lokal das gleiche Verhalten zeigen wie die Gesamtfamilie.

Intermediär wechselhaftes Verhalten

Darstellung des Betrages der Folgenglieder als Funktion des Iterationsschrittes n für einen c-Wert mit besonders abwechslungsreichem Verhalten der Folge. Die auffälligen Brüche im Verhalten ergeben sich durch Beinahe-Einfänge in repulsive Zyklen, was temporär zu quasiperiodischem Verhalten führt.
Darstellung der Folgenglieder zum c-Wert des vorherigen Diagramms als Punkte in der komplexen Ebene mit hinterlegter Mandelbrot-Menge zur Orientierung. Die Helligkeit eines Pixels ist ein Maß dafür, von wie vielen Punkten der Folge es getroffen wurde.

Durch die Möglichkeit der Zahlenfolge, wiederholt in die unmittelbare Umgebung eines repulsiven Zyklus zu geraten, und bei dem anschließend tendenziell divergenten oder chaotischen Verhalten wiederum beinahe in einen anderen Zyklus zu geraten, können sich intermediär sehr komplizierte Verhaltensweisen der Folge ausbilden, bis sich der endgültige Charakter der Folge zeigt, wie die beiden Abbildungen demonstrieren. Die Umgebung der zugehörigen c-Werte in ist entsprechend strukturreich.

Die Darstellung der Folgepunkte selbst in der komplexen Ebene zeigt in diesen Fällen eine größere Komplexität. Das quasiperiodische Verhalten in der Nachbarschaft eines repulsiven Zyklus führt in diesen Fällen oft zu spiralförmigen Strukturen mit mehreren Armen, wobei die Folgepunkte das Zentrum umkreisen, während der Abstand zu ihm zunimmt. Die Anzahl der Arme entspricht daher der Periode. Die Punktanhäufungen an den Enden der Spiralarme in der obigen Abbildung sind die Folge der beiden zugehörigen Beinahe-Einfänge durch repulsive (instabile) Zyklen.

Dichteverteilung der Folgenglieder

Akkumulierte Dichteverteilung der Folgenglieder für alle c-Werte in einer farbkodierten Darstellung

Das nebenstehende Bild zeigt in der komplexen Ebene die Dichteverteilung der Folgenglieder, die sich durch Auswertung von 60 Millionen Folgen ergibt, wobei die Helligkeit ein Maß dafür ist, wie viele Orbitale durch den Punkt verlaufen. Blaue Bereiche kennzeichnen Folgenglieder mit kleinem Index, während eine gelbliche Färbung Folgenglieder mit hohen Indizes anzeigt. Folgen aus der großen Kardioide der Mandelbrot-Menge tendieren zu einer Konvergenz zu einem c-Wert auf einem Kreis um den Ursprung, der als runder Bereich mit sehr hoher Dichte zu erkennen ist. Die kleineren Gebilde nahe der imaginären Achse markieren die konjugierten Bereiche, zwischen denen Folgenglieder vieler Folgen hin und her springen (Annäherung an einen Grenzzyklus mit der Periode 2 für große Folgenindizes).

Bezug zur Chaostheorie

Im oberen Bildbereich sind Grenzzyklen der logistischen Gleichung[4] dargestellt, die reellen c-Werten der Mandelbrot-Menge entsprechen. Konvergenz geht über Bifurkation in Chaos über.

Das Bildungsgesetz, das der Folge zugrunde liegt, ist die einfachste nichtlineare Gleichung, anhand der sich der Übergang von Ordnung zu Chaos durch Variation eines Parameters provozieren lässt. Dazu genügt es, reelle Zahlenfolgen zu betrachten.

Man erhält sie, wenn man sich auf die c-Werte der x-Achse von beschränkt. Für Werte –0,75 ≤ c ≤ 0,25, das heißt innerhalb der Kardioide, konvergiert die Folge. Auf der „Antenne“, die bis c = −2 reicht, verhält sich die Folge chaotisch. Der Übergang zu chaotischem Verhalten erfolgt nun über ein Zwischenstadium mit periodischen Grenzzyklen. Dabei nimmt die Periode zum chaotischen Bereich hin stufenweise um den Faktor zwei zu, ein Phänomen, das als Periodenverdopplung und Bifurkation bezeichnet wird. Jeder c-Bereich zu einer bestimmten Periode entspricht dabei einer der kreisförmigen „Knospen“ auf der x-Achse.

Die Periodenverdopplung beginnt mit dem „Kopf“ und setzt sich in der Folge der „Knospen“ zur „Antenne“ hin fort. Das Verhältnis der Längen aufeinander folgender Parameterintervalle und damit das der Knospendurchmesser zu unterschiedlicher Periode strebt dabei gegen die Feigenbaum-Konstante δ ≈ 4,669, eine fundamentale Konstante der Chaostheorie. Dieses Verhalten ist typisch für den Übergang realer Systeme zu chaotischer Dynamik. Die auffälligen Lücken im chaotischen Bereich entsprechen Inseln mit periodischem Verhalten, denen in der komplexen Ebene die Satelliten auf der „Antenne“ zugeordnet sind.

Für gewisse komplexe c-Werte stellen sich Grenzzyklen ein, die auf einer geschlossenen Kurve liegen, deren Punkte jedoch nicht periodisch, sondern chaotisch abgedeckt werden. Eine solche Kurve ist in der Chaostheorie als sogenannter seltsamer Attraktor bekannt.

Die Mandelbrot-Menge ist daher ein elementares Objekt für die Chaostheorie, an der sich fundamentale Phänomene studieren lassen. Sie wird aus diesem Grund hinsichtlich ihrer Bedeutung für die Chaostheorie gelegentlich mit der von Geraden für die euklidische Geometrie verglichen.

Grafische Darstellung

Die grafische Darstellung der Mandelbrot-Menge und ihrer Strukturen im Randbereich ist nur mittels Computer durch sogenannte Fraktalgeneratoren möglich. Dabei entspricht jedem Bildpunkt ein Wert c der komplexen Ebene. Der Computer ermittelt für jeden Bildpunkt, ob die zugehörige Folge divergiert oder nicht. Sobald der Betrag |zn| eines Folgengliedes den Wert R=2 überschreitet, divergiert die Folge. Die Zahl der Iterationsschritte N gemäß obiger Rekursionsformel, nach denen das erfolgt, kann als Maß für den Divergenzgrad herangezogen werden. Über eine zuvor festgelegte Farbtabelle, die jedem Wert N eine Farbe zuordnet, wird in diesem Fall dem Bildpunkt eine Farbe zugewiesen.

Um in ästhetischer Hinsicht harmonische Grenzen zwischen aufeinanderfolgenden Farben zu erreichen, wird in der Praxis für die Grenze R nicht der kleinste mögliche Wert R=2 gewählt, sondern ein Wert deutlich größer als 2, da andernfalls die Farbstreifenbreite oszilliert. Je größer dieser Wert gewählt wird, desto besser entsprechen die Farbgrenzen Äquipotentiallinien, die man erhält, wenn man die Mandelbrot-Menge als elektrisch geladenen Leiter interpretiert. Für kontinuierliche Farbverläufe, wie beispielsweise in der obigen Zoom-Bilderserie, ist eine Auswertung des Faktors erforderlich, um den R bei der ersten Überschreitung übertroffen wurde.

Da die Zahl der Iterationsschritte N, bevor die Grenze R überschritten wird, beliebig groß sein kann, muss für die praktische Durchführung der Rechnung ein Abbruchkriterium in Form einer maximalen Zahl von Iterationsschritten festgelegt werden. Werte von c, deren Folgen danach die Grenze R noch nicht überschritten haben, werden zu gerechnet. Je geringer der Abstand von c zu ist, desto größer ist die Zahl N, nach der R überschritten wird. Je stärker die Vergrößerung ist, mit der man den Rand von darstellen möchte, desto größer muss in diesem Fall die maximale Zahl von Iterationsschritten gewählt werden, und desto länger fällt die Rechenzeit aus. Konvergiert die Folge für einen Startwert c, so kann die Berechnung der Folge schon früher abgebrochen werden.

Grafisch besonders reizvoll ist die Darstellung des Randes von mit seinem Formenreichtum. Je stärker die gewählte Vergrößerung ist, umso komplexere Strukturen lassen sich dort finden. Mit entsprechenden Computerprogrammen lässt sich dieser Rand wie mit einem Mikroskop mit beliebiger Vergrößerung darstellen. Die beiden einzigen künstlerischen Freiheiten, die dabei bestehen, sind die Wahl des Bildausschnittes sowie die Zuordnung von Farben zum Divergenzgrad.

Zur Untersuchung interessanter Strukturen sind oft Vergrößerungen erforderlich, die mit der üblichen Rechengenauigkeit gängiger Programmiersprachen aufgrund von Rundungsfehlern nicht darstellbar sind. Manche Programme enthalten daher spezielle Arithmetik-Routinen für 100 Nachkommastellen oder deutlich mehr. Die damit erzielbaren Vergrößerungsfaktoren von etwa 10100 bzw. mehr übersteigen selbst das Verhältnis vom Durchmesser des bekannten Kosmos zu dem eines Protons von etwa 1040 um einen astronomischen Faktor. Aber nicht nur zur Ausschnittsvergrößerung werden so viele Kommastellen gebraucht, sondern auch um bei einer längeren Iterationsfolge die auftretenden Rundungsfehler möglichst klein zu halten.

Innere Struktur der Mandelbrotmenge

Innere Struktur der Mandelbrotmenge.

Werden die Iterationsschalen sukzessive aufgezeichnet, erhält man eine alternative Darstellung der inneren Strukturen der Mandelbrot-Menge. Durch diese Darstellung werden alle Attraktormaxima beliebiger Stufe sichtbar (vergleiche Polardarstellung sukzessiver Schalen zuvor).

Buddhabrot

Buddhabrot

Buddhabrot ist eine besondere Darstellung der Mandelbrot-Menge, die im Gesamtbild in entsprechender Orientierung einer klassischen Buddha-Darstellung ähnelt. So wie bei der oben angeführten Dichteverteilung die Spuren der konvergierenden Anfangswerte aufgezeichnet werden, werden hier die Spuren der divergierenden Anfangswerte aufgezeichnet. Es wird also wiederholt ein zufälliger Startwert ausgewählt und überprüft, ob dieser nach einer vorgegebenen Anzahl Iterationen divergiert. Tut er das, so wird seine Spur in der komplexen Zahlenebene festgehalten. Im entstehenden Bild werden die Pixel umso heller gefärbt, je öfter sie getroffen wurden. Das genaue Aussehen des Bildes hängt davon ab, wie hoch die vorgegebene Anzahl von Iterationen ist. Werden die Punkte länger iteriert, so wird das Bild umfangreicher und detaillierter, benötigt aber mehr Rechenzeit zum Generieren. Es kann eine Art Falschfarbenbild zusammengesetzt werden, indem Bilder mit unterschiedlichen Iterationsanzahlen in verschiedenen Farben übereinandergelegt werden.

Dreidimensionale Darstellung

Raytrace eines Mandelbulbs.

Es gibt verschiedene Ansätze, eine dreidimensionale Darstellung der Mandelbrot-Form zu erreichen. Zuvor gab es z. B. Ansätze, einfach die klassische zweidimensionale Form zu extrudieren.[5]

Erst 2007 kam von Daniel White und Paul Nylander ein Ansatz, der eine raumgreifende Form entwickelt (im englischen Sprachraum bekannt als „Mandelbulb“), die ihren Formenreichtum von Anfang an in alle drei Dimensionen entwickelt und den typischen unbeschränkten Detailreichtum in allen drei Dimensionen aufweist. Dieser Ansatz basiert nicht auf einem iterierten Funktionensystem (IFS).[5]

Programmbeispiel

Iteration über alle Bildpunkte

Das folgende Programmbeispiel geht davon aus, dass die Pixel des Ausgabegerätes durch Koordinaten x und y mit einem Wertebereich von 0 bis jeweils xpixels-1 und ypixels-1 adressierbar sind. Die Berechnung des dem Pixel zugeordneten komplexen Zahlenwerts c mit dem Realteil cre und dem Imaginärteil cim erfolgt durch lineare Interpolation zwischen (re_min, im_min) und (re_max, im_max).

Die maximale Anzahl von Iterationsschritten ist max_iter. Wird dieser Wert überschritten, so wird das entsprechende Pixel der Menge zugeordnet. Der Wert von max_iter sollte mindestens 100 betragen. Bei stärkerer Vergrößerung sind zur korrekten Darstellung der Strukturen teilweise erheblich größere Werte erforderlich und damit deutlich längere Rechenzeiten.

PROCEDURE Apfel (re_min, im_min, re_max, im_max, max_betrag_2: double,
                 xpixels, ypixels, max_iter: integer)
  FOR y = 0 TO ypixels-1
    c_im = im_min + (im_max-im_min)*y/ypixels

    FOR x = 0 TO xpixels-1
      c_re = re_min + (re_max-re_min)*x/xpixels

      iterationen = Julia (c_re, c_im, c_re, c_im, max_betrags_2, max_iter)
      farb_wert   = waehle_farbe (iterationen, max_iter)
      plot (x, y, farb_wert)
    NEXT

  NEXT
END PROCEDURE

Iteration eines Bildpunktes

Die Iteration von n nach n+1 für einen Punkt c der komplexen Zahlenebene erfolgt durch die Iteration

,

die sich mittels der Zerlegung der komplexen Zahl z in ihren Realteil x und Imaginärteil y in zwei reelle Berechnungen

und

zerlegen lässt. Hier haben wir die folgende Identität benutzt:

Falls das Quadrat des Betrags der (n+1)-sten Zahl, gegeben durch

den Wert max_betrag_2 (mindestens 2 * 2 = 4) überschreitet, wird die Iteration abgebrochen, und die Anzahl der bislang erfolgten Iterationsschritte für die Zuordnung eines Farbwertes verwendet. Falls das Quadrat des Betrags nach einer gegebenen maximalen Anzahl von Iterationsschritten den max_betrag_2 nicht überschritten hat, wird angenommen, dass die Iteration beschränkt bleibt, und die Iterationsschleife abgebrochen.

Die folgende Funktion führt die beschriebene Iteration durch. x und y sind die iterativ benutzten Variablen für die Iterationswerte; xx, yy, xy und remain_iter sind Hilfsvariablen.

 FUNCTION Julia (x, y, xadd, yadd, max_betrag_2: double, max_iter: integer): integer
   remain_iter = max_iter
   xx = x*x
   yy = y*y
   xy = x*y
   betrag_2 = xx + yy

   WHILE (betrag_2 <= max_betrag_2) AND (remain_iter > 0)
     remain_iter = remain_iter - 1
     x  = xx - yy + xadd
     y  = xy + xy + yadd
     xx = x*x
     yy = y*y
     xy = x*y
     betrag_2 = xx + yy
   END

   Julia = max_iter - remain_iter
 END FUNCTION

Wird ein kontinuierlicherer Farbverlauf gewünscht, so bietet sich alternativ die Formel

    Julia = max_iter - remain_iter  log(log(betrag_2) / log(4)) / log(2)

an, die keine ganzen, sondern reelle Werte liefert. Für die Folge mit c = 0 und dem Startwert z0 = 2 liefert diese Formel den Wert Null. Es ergibt sich ferner eine von max_betrag_2 unabhängige Farbgebung, sofern dieser Wert groß gegen 1 ist.

Ein erheblicher Teil der Rechenzeit wird dort benötigt, wo die Zahlenfolge nicht divergiert. Moderne Programme bemühen sich, mit verschiedenen Verfahren die Rechenzeit für diese Stellen zu reduzieren. Eine Möglichkeit besteht darin, die Rechnung bereits abzubrechen, wenn die Zahlenfolge konvergiert ist oder sich in einem periodischen Zyklus gefangen hat. Andere Programme nutzen aus, dass jeder Punkt im Inneren einer geschlossenen Kurve, die nur Punkte aus enthält, ebenfalls dazugehört.

Rezeption in der Öffentlichkeit

Computergenerierte Landschaftsgrafik einer Insel in Form der Mandelbrot-Menge, gerendert mit dem Programm Terragen.

Außerhalb der Fachwelt wurde die Mandelbrot-Menge vor allem durch den ästhetischen Wert der Computergrafiken bekannt, der durch künstlerische Farbgestaltung des Außenbereichs, der nicht zur Menge gehört, unterstützt wird. Sie erlangte durch Publikationen von Bildern in den Medien Ende der 1980er Jahre einen für ein mathematisches Thema dieser Art ungewöhnlich großen Bekanntheitsgrad und dürfte das populärste Fraktal, möglicherweise das populärste Objekt der zeitgenössischen Mathematik sein.[6]

Die Mandelbrot-Menge wird als das formenreichste geometrische Gebilde bezeichnet. Sie hat Computerkünstler inspiriert und zu einem Aufschwung fraktaler Konzepte beigetragen. Dabei finden zahlreiche Modifikationen des Algorithmus Anwendung, welcher der Mandelbrot-Menge zugrunde liegt.

Ein weiterer Aspekt ist der extreme Kontrast zwischen diesem und der Einfachheit des zugrunde liegenden Algorithmus, der an biologische Systeme erinnert, bei denen nach naturwissenschaftlicher Sicht ebenfalls aus einer vergleichsweise geringen Zahl von Regeln äußerst komplexe Systeme entstehen können, sowie die Nähe zur Chaosforschung, die ebenfalls in der Öffentlichkeit großes Interesse geweckt hatte.

Die Bezeichnung ,Apfelmännchen‘ leitet sich von der geometrischen Grobform einer um 90 Grad im Uhrzeigersinn gedrehten Mandelbrot-Menge her.

Der US-amerikanische Musiker Jonathan Coulton hat ein Lied über die Mandelbrot-Menge veröffentlicht, in welchem Benoît Mandelbrot dafür gedankt wird, dass er Ordnung in das Chaos gebracht habe.[7]

Berechnungsgeschwindigkeit

Berechnungen nahmen beim Stand der Technik Ende der 1980er Jahre viel Zeit in Anspruch. Mit der Technik der 2010er Jahre kann die Ermittlung, solange man mit Standard-Gleitkommazahlen arbeiten kann, in Echtzeit berechnet werden. Vergleichsweise zeigt dies eine Aufstellung durch die Anzahl der Iterationen, die verschiedene CPUs pro Sekunde durchführen konnten.

CPU Genauigkeit Geschwindigkeit
in Iterationen/sec
Z80 @1,75 MHz 32 bit Gleitkomma (BASIC) 9
Z80 @2,45 MHz 32 bit Integer (hochoptimierter Assembler) 280
80386 SX/20 32 bit Integer 130.000
80 bit Gleitkomma (mit IIT3C87sx/20) 75.000
80 bit Gleitkomma (Emulation Borland) 2000
Pentium 90 32 bit Integer 1.450.000
80 bit Gleitkomma 2.900.000
2x Xeon E5-2623 v3 32 bit Gleitkomma (multithreaded, FMA) 50.000.000.000
64 bit Gleitkomma (multithreaded, FMA) 25.000.000.000

Literatur

Weblinks

Commons: Mandelbrot-Menge – Sammlung von Bildern, Videos und Audiodateien

Einzelnachweise

  1. Robert Brooks, J. Peter Matelski: The dynamics of 2-generator subgroups of PSL(2,C), in Riemann surfaces and related topics: Proceedings of the 1978 Stony Brook Conference. Annals of Mathematics Studies, Band 97, Princeton University Press, Princeton, N.J., 1981, S. 65–71. pdf
  2. Benoît Mandelbrot: Fractal aspects of the iteration of for complex . Annals of the New York Academy of Sciences 357, 249–259
  3. Adrien Douady, John H. Hubbard: Etude dynamique des polynômes complexes. Prépublications mathémathiques d’Orsay, 2/4, 1984/1985 (PDF; 4,88 MB)
  4. Nach einer entsprechenden Koordinatentransformation. Für Details siehe die Bildbeschreibung
  5. a b Skytopia – The Mystery of the REAL, 3D Mandelbrot Fractal
  6. Peitgen, Jürgens, Saupe: Chaos, Bausteine der Ordnung. Rowohlt, ISBN 3-499-60551-1, Seite 431.
  7. jonathancoulton.com