Arithmetik

aus Wikipedia, der freien Enzyklopädie
Wechseln zu: Navigation, Suche

Die Arithmetik (griechisch αριθμητική [τέχνη], arithmitiké [téchne], wörtlich „die Zahlenmäßige [Kunst]“) ist ein Teilgebiet der Mathematik. Sie umfasst das Rechnen mit den Zahlen, vor allem den natürlichen Zahlen. Sie beschäftigt sich mit den Grundrechenarten, also mit der Addition (Zusammenzählen), Subtraktion (Abziehen), Multiplikation (Vervielfachen), Division (Teilen) sowie den zugehörigen Rechengesetzen. Zur Arithmetik gehört auch die Teilbarkeitslehre mit den Gesetzen der Teilbarkeit ganzer Zahlen sowie der Division mit Rest. Die Arithmetik kann als Teil der Algebra verstanden werden, etwa als „Lehre von den algebraischen Eigenschaften der Zahlen.“[1] Die Arithmetik leitet zur Zahlentheorie über, die sich im weitesten Sinn mit den Eigenschaften der Zahlen beschäftigt. Die Arithmetik ist ein Kalkül.[2]

Geschichte[Bearbeiten]

Als Wissenschaft wurde die Arithmetik von den Griechen begründet. Aus der vorgriechischen Zeit sind uns z.B. von den Ägyptern und den Babyloniern lediglich empirische Regeln zur Lösung von Aufgaben aus dem praktischen Leben überliefert. [3] Für die Pythagoreer machen die natürlichen Zahlen das Wesen der Dinge aus. [4] In den Büchern VII-X von Euklids Elementen werden die damals bekannten arithmetischen/algebraischen/zahlentheoretischen Ergebnisse erstmals zusammenfassend dargestellt. [5] Vor allem nach dem Fall von Toledo (1085) gelangt die von den Arabern gesammelte griechische Mathematik, bereichert um die von den Indern eingeführte Zahl 0 und das mit dieser Ergänzung voll entwickelte Dezimalsystem, zurück ins Abendland. In der Renaissance findet eine Wiederbelebung der griechischen Mathematik statt. [6]

Auf dieser Basis wird die Arithmetik im 16. und 17. Jahrhundert vor allem durch die Einführung einer zweckmäßigen Zeichensprache für Zahlen und Operationen weiter entwickelt. Damit wird es möglich, Zusammenhänge, die bei verbaler Wiedergabe sehr undurchsichtig wirken, mit einem Blick zu überschauen. François Viète (Vieta, 1540 - 1603) unterteilt die damals "Logistik" genannte Rechenkunst in eine "logistica numerosa", in unserem Sinne die Arithmetik, und eine "logistica speciosa", aus der sich die Algebra entwickelt. Er benutzt für Zahlengrößen Buchstaben und als Operationszeichen + für die Addition, - für die Subtraktion und den Bruchstrich für die Division. William Oughtred (1574 - 1660) benutzt "x" als Zeichen der Multiplikation, das er aber auch mal weg lässt. Der heute übliche Multiplikationspunkt geht auf Leibniz zurück. Johnson benutzt seit 1663 den heute üblichen Doppelpunkt (:) für die Division. Thomas Harriot (1560 - 1621) verwendet die heute üblichen Zeichen für "größer als" (>) und "kleiner als" (<) sowie kleine Buchstaben als Variablen für Zahlen. Robert Recorde (1510 - 1558) führt das Gleichheitszeichen (=) ein. Von René Descartes (1596 - 1650) stammt die Schreibweise für Quadrate. Gottfried Wilhelm Leibniz (1646 - 1716) nimmt mit dem Versuch einer axiomatischen Begründung des Rechnens mit natürlichen Zahlen Gedanken der modernen mathematischen Grundlagenforschung vorweg.

Carl Friedrich Gauß (1777 - 1855) wird gerne zitiert mit der Aussage: „Die Mathematik ist die Königin der Wissenschaften, und die Arithmetik ist die Königin der Mathematik.“ – Diese Wortschöpfung lässt die Liebe zur Zahlentheorie bei C. F. Gauß erkennen und zeigt, wie sehr Mathematiker sich dieser Teildisziplin verschreiben können. Wie Gauß selber in der Vorrede seiner berühmten „Untersuchungen über höhere Arithmetik“ (siehe Literatur) bemerkt, gehören die Theorie der Kreisteilung oder der regulären Polygone, welche im siebenten Abschnitt behandelt wird, zwar an und für sich nicht in die Arithmetik; doch müssen ihre Prinzipien einzig und allein aus der höheren Arithmetik geschöpft werden. Da sich die heutige Zahlentheorie weit darüber hinaus entwickelt hat, wird lediglich die elementare Zahlentheorie auch als arithmetische Zahlentheorie (= höhere Arithmetik nach Gauß) bezeichnet. Die Bezeichnung „Arithmetik“ (elementare Arithmetik nach Gauß) im eigentlichen Sinne ist zur Hauptsache dem Rechnen vorbehalten.

Leopold Kronecker (1839 - 1914) wird der Ausspruch zugeschrieben : „Die ganzen Zahlen hat der liebe Gott gemacht, alles andere ist Menschenwerk.“[7]

Inhalte[Bearbeiten]

1. Natürliche Zahlen und ihre Schreibweise.

Stichworte: Kardinalzahl, Ordinalzahl, 0 oder 1 als kleinste natürliche Zahl, natürliche Zahl, Peano-Axiome, Dezimalsystem, Stellenwertsystem, Zahlschriften, Zahlzeichen. Die Frage nach der Grundlegung der natürlichen Zahlen führt in die Grundlagen der Mathematik, insbesondere die Mengenlehre.

2. Die vier Grundrechenarten und die natürlichen Zahlen.

Stichworte: Abgeschlossenheit bezüglich der jeweiligen Grundrechenart, Kommutativgesetz, Assoziativgesetz, neutrales Element, inverses Element, Umkehroperation, Distributivgesetz, Mächtigkeit der Menge der natürlichen Zahlen. Verallgemeinerung und Abstraktion führen in die Algebra.

3. Zahlbereichserweiterungen.

Stichworte: Die Zahl Null (0) (falls nicht schon als kleinste natürliche Zahl eingeführt), ganze Zahlen, Gegenzahl, Betrag einer Zahl, Vorzeichen einer Zahl, Bruchzahl, Kehrwert, rationale Zahl, Mächtigkeit der Zahlenmengen. Verallgemeinerung und Abstraktion führen in die Algebra. Zahlenmengen wie zum Beispiel die reellen Zahlen, die komplexen Zahlen oder die Quaternionen gehören nicht mehr zur Arithmetik.

4. Teiler und Teilbarkeit.

Stichworte: Teiler, Teilbarkeit, Teilbarkeitssätze, größter gemeinsamer Teiler (ggT), kleinstes gemeinsames Vielfaches (kgV), Euklidischer Algorithmus, Primzahl, Sieb des Eratosthenes, Primzahlsieb von Sundaram,[8] Primfaktorzerlegung, Fundamentalsatz der Arithmetik, Mächtigkeit der Menge der Primzahlen. Verallgemeinerung und Abstraktion führen in die Zahlentheorie.

Siehe auch[Bearbeiten]

Literatur[Bearbeiten]

  • Klaus Denecke & Kalčo Todorov: Algebraische Grundlagen der Arithmetik. Heldermann, Berlin 1994, ISBN 3-88538-104-4.
  • Carl Friedrich Gauß: Untersuchungen über höhere Arithmetik. Hrsg. von Hermann Maser. Springer, Berlin 1889; Kessel, Remagen-Oberwinter 2009, ISBN 978-3-941300-09-5.
  • Donald E. Knuth: Arithmetik. Springer, Berlin [u.a.] 2001, ISBN 3-540-66745-8.
  • Gerhard Kropp: Geschichte der Mathematik. Probleme und Gestalten. Quelle und Meyer, Heidelberg 1969; Aula-Verlag, Wiesbaden 1994, ISBN 3-89 104-546-8
  • Reinhold Remmert & Peter Ullrich: Elementare Zahlentheorie. 2. Auflage. Birkhäuser, Basel/Boston/Berlin 1995, ISBN 3-7643-5197-7.

Weblinks[Bearbeiten]

 Wiktionary: Arithmetik – Bedeutungserklärungen, Wortherkunft, Synonyme, Übersetzungen
 Wikiquote: Arithmetik – Zitate

Einzelnachweise[Bearbeiten]

  1. Schüler Duden : Die Mathematik 1, S. 30
  2. Oliver Deiser: Reelle Zahlen: Das klassische Kontinuum und die natürlichen Folgen. S. 79 [1]
  3. Kropp, S. 19
  4. Kropp, S. 23
  5. Kropp, S. 35/6
  6. Kropp, S. 75
  7. H. Weber: Leopold Kronecker. In: Jahresbericht der Deutschen Mathematiker-Vereinigung 2 (1893), p. 19
  8. https://en.wikipedia.org/wiki/Sieve_of_Sundaram