Multivariate Verfahren

aus Wikipedia, der freien Enzyklopädie
Wechseln zu: Navigation, Suche

Mit Hilfe von Multivariaten Verfahren (auch: Multivariate Analysemethoden) werden in der multivariaten Statistik mehrere Statistische Variablen oder Zufallsvariablen zugleich untersucht. Beispielsweise können für Fahrzeuge die Variablen Anzahl der Sitze, Gewicht, Länge usw. erhoben werden. In der univariaten Analyse hingegen wird jede Variable einzeln analysiert.

Zusammenhangs- bzw. Abhängigkeitsstrukturen zwischen den Variablen, z. B. größere Anzahl von Sitzen bedingt ein größeres Gewicht, können nur mit einer multivariaten, nicht aber mit einer univariaten Analyse erkannt werden.

Gliederung[Bearbeiten]

Multivariate Verfahren wollen im Wesentlichen die in einem Datensatz enthaltene Zahl der Variablen und/oder Beobachtungen reduzieren, ohne die darin enthaltene Information wesentlich zu reduzieren. Dazu wird die (Zusammenhangs-)Struktur der Daten analysiert. Entweder gibt man eine Struktur vor und prüft, ob die Daten mit der vorgegebenen Struktur zusammenpassen (Strukturprüfende Verfahren: Teil der Induktiven Statistik), oder man versucht, die Struktur aus den Daten zu extrahieren (Strukturentdeckende Verfahren: Teil der Explorativen Statistik).

Die klassischen Verfahren sind durchweg lineare Modelle, die besondere Anforderungen an die verwendeten Daten stellen. So sollten die Daten ausreißerfrei und nicht asymmetrisch verteilt sein. Weichen die Daten von der geforderten Struktur ab, behilft man sich beispielsweise, indem man vorhandene Ausreißer entfernt oder die Daten einer nichtlinearen Transformation, etwa dem Logarithmieren, unterzieht.

Es existieren alternative Methoden, die iterativ gewonnene Lösungen ermöglichen. Häufig verwendete Kriterien für optimale Lösungen sind

Die manuelle Berechnung multivariater Verfahren ist meist sehr aufwändig. Daher erfuhren diese Methoden erst mit der Entwicklung der EDV ihren Aufschwung.

Die Ergebnisse erlauben häufig keine Rückschlüsse auf zugrunde liegende Daten. Beispielsweise können bei Ergebnissen nur wenige Angaben über zugrunde liegende Wahrscheinlichkeitsverteilungen gemacht werden.

Strukturentdeckende Verfahren[Bearbeiten]

Strukturentdeckende Verfahren sind z. B.

Strukturprüfende Verfahren[Bearbeiten]

Beispiele für Strukturprüfende Verfahren
Skalenniveau der unabhängige Variablen
abhängige Variable Metrisch Kategoriell
Metrisch Multiple lineare Regression Varianzanalyse, Regression mit Dummies
Kategoriell Diskriminanzanalyse, Logistische Regression Log-lineares Modell

Im Rahmen der Regressionsanalyse für eine abhängige Variable und mehrere unabhängige Variablen werden generalisierte lineare Modelle eingesetzt, um den Skalenniveaus der abhängigen und unabhängigen Variablen Rechnung zu tragen. Dazu gehören z. B. die multiple lineare Regression, die Logistische Regression (Logit-Modell) und die Log-linearen Modelle usw.

Weitere Strukturprüfende Verfahren sind

Grafische Darstellung[Bearbeiten]

Karte von Charles Minards aus dem Jahre 1869. Diese zeigt den Verlust an Soldaten, die Truppenbewegungen und die Temperaturen im Laufe von Napoleons Russlandfeldzug. Lithographie, 62 x 30 cm.

Für die Darstellung mehrerer Variablen wurden eine ganze Reihe von speziellen Grafikdarstellungen entwickelt. Eine der berühmtesten frühen multivariaten Grafiken ist die Karte von Charles Joseph Minard aus dem Jahre 1869 über den Russlandfeldzug Napoleons.

Menschen können nicht mehr als drei Dimensionen sehen; an einem Bildschirm in der Regel sogar nur zwei Dimensionen. Hochdimensionale Daten können daher häufig nicht ohne Informationsverluste dargestellt werden.

Spezielle Darstellungsmethoden sind:

Beispiele[Bearbeiten]

Beispiele für Verwendung von Multivariaten Verfahren:

  • Um psychologische Profile zu erstellen und aufgrund von Vergleichen herauszufinden, wer der wahrscheinlichste Täter/Sprecher/Autor ist (Kriminologie, Sprachwissenschaft).
  • Um den Text eines anonymen Autors zu vergleichen mit Texten von bekannten Autoren und den wahrscheinlichsten Autor zu finden (eine Spielart des zuerst genannten Punktes).
  • Data-Mining: Große Datenmengen in Datenbanken werden auf unbekannte Strukturen hin analysiert. Man erhofft sich hier Erkenntnisse über das Zusammenwirken verschiedener Aspekte, beispielsweise die Konsumausgaben von Kunden in Abhängigkeit vom sozialen Status durch Herausfinden von Ähnlichkeitsstrukturen.
  • Entwicklung von sozialen Abstimmungsprozessen (Politische Soziologie) und der Einfluss einzelner Akteure darauf.
  • Kreditwürdigkeitsprüfungen von Schuldnern (Diskriminanzanalyse).
  • Bei der Wertpapieranalyse: Welche Unternehmenszahlen beeinflussen hauptsächlich die Ertragskraft eines Unternehmens? (Faktorenanalyse)
  • Bei der Suche nach Ursachen für die Eiszeiten (Faktorenanalyse)
  • In der Radioastronomie für die Signalanalyse bei SETI.[2]
  • Für die die Analyse von Peak-förmigen Daten eignet sich das Indirect Hard Modeling-Verfahren.

Literatur[Bearbeiten]

  • Ahrens, H; Läuter, J: Mehrdimensionale Varianzanalyse. Akademie-Verlag, Berlin, 1974, 1981.
  • Atteslander, P; Cromm, J; Grabow, B: Methoden der empirischen Sozialforschung. 11. Aufl., Gruyter-Verlag, 2006, ISBN 3-503-09740-6 (Grundlagenwissen)
  • Backhaus, K; Erichson, B; Plinke, R: Multivariate Analysemethoden. Eine anwendungsorientierte Einführung. 11. Aufl., Springer, Berlin 2006, ISBN 3-540-27870-2
  • Coxon, APM; Davies, PM: The User's Guide to Multidimensional Scaling. Heinemann Educational Books, London 1982, ISBN 0-435-82251-9 und ISBN 0-435-82252-7
  • Daly, F et al.: Elements of Statistics. FT Prentice Hall, Harlow 1994, ISBN 0-201-42278-6
  • Fahrmeir, L; Tutz, G: Multivariate Statistical Modelling Based on Generalized Linear Models. 2nd ed., Springer, New York 2001, ISBN 0-387-95187-3
  • Krzanowski, WJ: Principles of Multivariate Analysis, Oxford University Press, rev. ed. 2000.
  • Mardia, KV; Kent, JT; Bibby, JM: Multivariate Analysis. (Probability and Mathematical Statistics). Elsevier Limited, 2006, ISBN 0-12-471252-5
  • Tabachnick, B; Fidell, L: Using Multivariate Statistics, 5. Auflage, Allyn & Bacon, Boston 2006, ISBN 0-205-45938-2

Weblinks[Bearbeiten]

Einzelnachweise[Bearbeiten]

  1. Studentische Arbeit der HU Berlin
  2. KLT-optimized telecomunications. S.149 - 248, in: Claudio Maccone: Deep space flight and communications. Springer, Berlin 2009, ISBN 978-3-540-72942-6; Innovative SETI by the KLT@CERN Docu.Server (pdf, abgerufen am 7. Juli 2010)