Cantor-Menge

aus Wikipedia, der freien Enzyklopädie
Zur Navigation springen Zur Suche springen

Unter der Cantor-Menge, Cantormenge, auch cantorsches Diskontinuum, Cantor-Staub oder Wischmenge genannt, versteht man in der Mathematik eine bestimmte Teilmenge der Menge der reellen Zahlen mit besonderen topologischen, maßtheoretischen, geometrischen und mengentheoretischen Eigenschaften: Sie ist

Die Cantormenge ist nach dem Mathematiker Georg Cantor benannt.

Allgemeiner nennt man auch gewisse Mengen oder topologische Räume Cantormengen, wenn sie einen Teil dieser Eigenschaften besitzen. Welche dieser Eigenschaften gefordert werden, hängt dabei vom mathematischen Gebiet und oft auch vom Kontext ab. Ein topologischer Raum, der homöomorph zur Cantormenge ist, heißt Cantor-Raum.

Neben vielen mehrdimensionalen Varianten der Cantormenge ist das Hauptbeispiel dieses Artikels, die Mitteldrittel-Cantormenge, eindimensional.

Konstruktion[Bearbeiten | Quelltext bearbeiten]

Die ersten fünf Iterationsschritte zur Konstruktion der Cantormenge

Schnitte von Intervallen[Bearbeiten | Quelltext bearbeiten]

Die Cantormenge lässt sich mittels folgender Iteration konstruieren:

Man beginnt mit dem abgeschlossenen Intervall der reellen Zahlen von 0 bis 1. Aus diesem Intervall wird das offene mittlere Drittel entfernt (weggewischt), also alle Zahlen, die strikt zwischen 1/3 und 2/3 liegen. Übrig bleiben die beiden Intervalle und . Aus diesen beiden Intervallen wird wiederum jeweils das offene mittlere Drittel entfernt und man erhält nun vier Intervalle: , , und . Von diesen Intervallen werden wiederum die offenen mittleren Drittel entfernt. Dieser Schritt wird unendlich oft wiederholt.

Mithilfe der Funktion

die Teilmengen von (also auch Vereinigungen von Intervallen) in Teilmengen von abbildet, lässt sich das Wegwischen des mittleren Drittels formalisieren. Dabei werden Translation und Skalierung einer Menge elementweise vorgenommen.

Man geht aus von der Menge und setzt

  für   .

Der Schnitt all dieser Mengen ist dann die Cantormenge

.

Die Cantormenge besteht somit aus allen Punkten, die jedes Wegwischen überlebt haben. Im Grenzfall (Schnitt über alle -ten Wischmengen, ) ist der Anteil am ursprünglichen Intervall Null, obwohl noch immer überabzählbar viele Elemente vorliegen. Dieses Konstruktionsverfahren ist verwandt mit dem für die Koch-Kurve.

Explizite Formeln für die Cantormenge sind[1]

,

wo jedes mittlere Drittel als das offene Intervall     per Mengensubtraktion aus dem abgeschlossenen Intervall gelöscht wird, oder

wo das mittlere Drittel     aus dem abgeschlossenen Vorgänger-Intervall per Durchschnittsbildung mit der Vereinigungsmenge entfernt wird.

Als ternäre Entwicklung[Bearbeiten | Quelltext bearbeiten]

Man kann die Cantormenge auch als die Menge aller Zahlen im Intervall beschreiben, die eine Darstellung als Kommazahl zur Basis 3 besitzen, in der nur die Ziffern 0 und 2 vorkommen. Die Darstellung zur Basis 3 wird auch „ternäre Entwicklung“ genannt. Jede Zahl aus dem Intervall lässt sich darstellen als

,

wobei ist. So ist zum Beispiel . Somit ist und wenn . Es lässt sich zeigen, dass die oben konstruierte Menge gleich ist der Menge der Zahlen, bei deren ternärer Entwicklung jede Stelle bis zur -ten gleich 0 oder gleich 2 ist:

Der Schnitt all dieser Mengen ist wieder die Cantormenge und enthält damit alle Zahlen, deren triadsche Entwicklung keine 1 enthält. Insbesondere enthält die Cantormenge mehr als nur die Randpunkte der entfernten Intervalle; diese Randpunkte sind genau die Zahlen in , die sich mit einer 0-Periode oder mit einer 2-Periode schreiben lassen, zum Beispiel

ist der linke Randpunkt des im ersten Schritt entfernten Intervalls. Die Verwendung der Ziffer 1 wird durch die 2-Periode umgangen, die dieselbe Zahl darstellt. (Dies ist nur für eine 1 direkt vor der 0-Periode möglich. An anderer Stelle kann aber keine 1 auftreten, da die Zahl sonst mitten in einem der gestrichenen Intervalle läge.) Darüber hinaus ist aber z. B. auch 1/4 in der Cantormenge:

Eigenschaften[Bearbeiten | Quelltext bearbeiten]

  • Die Cantormenge ist abgeschlossen in : In jedem Iterationsschritt werden offene Mengen entfernt, die Vereinigung dieser Mengen ist dann offen und das Komplement der Cantormenge. Somit ist die Cantormenge abgeschlossen.
  • Mit der Beschränktheit der Cantormenge und dem Satz von Heine-Borel folgt daraus, dass die Cantormenge kompakt ist.
  • Die Überabzählbarkeit der Cantormenge lässt sich mit einem Diagonalisierbarkeitsargument und der ternären Entwicklung der Zahlen in der Cantormenge zeigen. Die Zahlen in der Cantormenge sind dargestellt in ihrer ternären Entwicklung alle Elemente von , also Folgen, die nur die Null und die Zwei enthalten. Nimmt man die Abzählbarkeit dieser Menge an, kann man dies zum Widerspruch führen, indem man eine Zahl mit einer ternären Entwicklung konstruiert, die nicht in der Abzählung enthalten ist.
  • Das Innere der Cantormenge ist leer. Die Cantormenge besteht nur aus Randpunkten, die allesamt Häufungspunkte sind.
  • Kein Punkt der Cantormenge ist isoliert. Die Cantormenge ist somit insichdicht und, da sie abgeschlossen ist, auch perfekt.
  • Da die Menge der Randpunkte der entfernten Intervalle abzählbar ist, bleibt die Differenzmenge nach deren Entfernung überabzählbar. Diese ist nicht mehr abgeschlossen als Teilmenge in , aber auch nicht offen.
  • Die Cantormenge ist in ihrer Teilraumtopologie (relativen Topologie) zugleich offen und abgeschlossen. Mit dieser Topologie ausgestattet ist sie homöomorph zu (s. u.) sowie zu den ganzen -adischen Zahlen.
  • Die Hausdorff-Dimension und die Minkowski-Dimension der Cantormenge betragen . Dies folgt aus der Tatsache, dass in jedem Konstruktionsschritt zwei Kopien der Menge erzeugt werden, die um den Faktor skaliert werden.
  • Das eindimensionale Lebesgue-Borel-Maß der Cantormenge ist Null, sie ist also eine -Nullmenge. Zunächst ist abgeschlossen, also in der Borelschen σ-Algebra enthalten und demnach Borel-messbar. Der Cantormenge lässt sich also sinnvoll ein Maß zuordnen. Bei der Iteration der Funktion verdoppelt sich nun durch die Translation in jedem Schritt die Anzahl der Intervalle, wobei sich die Länge jedes Intervalles in jedem Schritt drittelt. Da alle Intervalle disjunkt sind, gilt dann Aufgrund der σ-Additivität des Lebesgue-Borel-Maßes
.
Somit ist auch das Lebesgue-Maß der Cantormenge gleich Null, da die Borelsche σ-Algebra in der Lebesgueschen σ-Algebra enthalten ist und die Maße dort übereinstimmen.

0-1-Folgen[Bearbeiten | Quelltext bearbeiten]

Das kartesische Produkt abzählbar unendlich vieler Kopien der zweielementigen Menge ist die Menge aller unendlichen Folgen, die nur die Werte 0 und 1 annehmen, d. h. die Menge aller Funktionen . Diese Menge wird mit bezeichnet. Durch die oben genannte ternäre Entwicklung lässt sich eine natürliche Bijektion zwischen der Cantormenge und der Menge angeben: Die Zahl mit der ternären Entwicklung wird in die Folge übersetzt; die Zahl 1/4 entspricht also der Folge .

Die Menge trägt auch eine natürliche Topologie (nämlich die Produkttopologie, die durch die diskrete Topologie auf der Menge induziert wird). Die gerade genannte Abbildung ist ein Homöomorphismus zwischen der Cantormenge und dem topologischen Raum . Dieser wird daher als Cantor-Raum bezeichnet.

Cantor-Verteilung und Cantorfunktion[Bearbeiten | Quelltext bearbeiten]

Eng verwandt mit der Cantormenge ist die Cantor-Verteilung. Sie wird ähnlich wie die Cantormenge konstruiert. Ihre Verteilungsfunktion wird auch Cantorfunktion bezeichnet.

Die Cantorverteilung dient häufig als Beispiel für die Existenz von stetigsingulären Verteilungen, die singulär bezüglich des Lebesgue-Maßes sind, aber dennoch eine stetige Verteilungsfunktion besitzen (Funktionen mit sog. singulär-kontinuierlichem Verhalten).

Andere Cantormengen[Bearbeiten | Quelltext bearbeiten]

Die Cantormenge (auch Mitteldrittel-Cantormenge, middle thirds Cantor set) wurde oben beschrieben. Unter einer Cantormenge versteht man eine Menge von reellen Zahlen, die man mit einer Variante des obigen Wischprozesses bekommt, wobei man nun die Längen und Anzahlen der weggewischten Intervalle variieren kann:

Man beginnt mit einem beliebigen abgeschlossenen Intervall von reellen Zahlen. Im ersten Schritt entfernt man endlich viele offene und (einschließlich ihres Randes) disjunkte Unterintervalle (mindestens aber eines) und erhält so endlich viele abgeschlossene Intervalle (mindestens zwei) von nicht verschwindender Länge.

Im zweiten Schritt entfernt man aus jedem der enthaltenen Intervalle wiederum endlich viele Unterintervalle (jeweils mindestens eines).

Wiederum definiert dieser Prozess – unendlich oft wiederholter Schritte – eine Menge von reellen Zahlen, nämlich jene Punkte, die niemals in eines der weggewischten Intervalle gefallen sind.

Werden bei diesem Prozess alle Intervalllängen beliebig klein, dann sind alle so konstruierten Cantormengen zueinander homöomorph und gleichmächtig zur Menge aller reellen Zahlen. Indem man die Proportion „Längen der weggewischten Intervalle: Längen der übrigbleibenden Intervalle“ geeignet variiert, kann man eine Cantormenge erzeugen, deren Hausdorff-Dimension eine beliebige vorgegebene Zahl im Intervall [0,1] ist.

Ein zweidimensionales Analogon der Cantormenge ist der Sierpinski-Teppich, ein dreidimensionales der Menger-Schwamm.

Literatur[Bearbeiten | Quelltext bearbeiten]

Weblinks[Bearbeiten | Quelltext bearbeiten]

 Commons: Cantormengen – Sammlung von Bildern, Videos und Audiodateien

Einzelnachweise[Bearbeiten | Quelltext bearbeiten]

  1. Mohsen Soltanifar: A Different Description of A Family of Middle-a Cantor Sets. In: American Journal of Undergraduate Research. 5, Nr. 2, 2006, S. 9–12.