Dies ist ein als lesenswert ausgezeichneter Artikel.

Stellenwertsystem

aus Wikipedia, der freien Enzyklopädie
Wechseln zu: Navigation, Suche
Eine binäre Uhr kann Leuchtdioden benutzen, um binäre Werte darzustellen. Im obigen Bild ist jede Spalte von Leuchtdioden eine BCD-Codierung der traditionell sexagesimalen Zeitdarstellung.

Ein Stellenwertsystem, Positionssystem oder polyadisches Zahlensystem ist ein Zahlensystem, bei dem die (additive) Wertigkeit eines Symbols von seiner Position, der Stelle, abhängt. Unter der Annahme eines endlichen Vorrats an Symbolen (meist Ziffern oder Zahlzeichen genannt) hängt die Anzahl der erforderlichen Stellen logarithmisch von der Größe der dargestellten Zahl ab – im Unterschied zu Additionssystemen, bei denen dieser Zusammenhang (asymptotisch, d. h. für ganz große Zahlen) linear ist.

Die Größe des Ziffernvorrats spielt eine entscheidende Rolle. Bei den wichtigen ganzzahligen Systemen ist der Wert der dargestellten Zahl die Summe der Produkte der Ziffernwerte mit den Stellenwerten, also ein Polynom in mit den Werten der Ziffern als Koeffizienten. Deshalb wird als Basis oder Grundzahl des Systems bezeichnet und oft von der -adischen Darstellung von Zahlen (nicht zu verwechseln mit -adischen Zahlen) gesprochen. Eine jede ganze Zahl eignet sich als Basis für ein Stellenwertsystem.[1]

Beispiele für Stellenwertsysteme sind das im Alltag gewöhnlich gebrauchte Dezimalsystem (dekadisches System mit der Basis 10), das in der Datenverarbeitung häufig verwendete Dualsystem (dyadisches System mit der Basis 2), das Oktalsystem (mit der Basis 8), das Hexadezimalsystem (mit der Basis 16) sowie das Sexagesimalsystem (mit der Basis 60). Ein Beispiel für ein Zahlensystem, das kein Stellenwertsystem ist, ist das der römischen Ziffern. Es handelt sich dabei um ein Additionssystem.

Es gibt zwei unterschiedliche Arten, die Zifferndarstellung einer Zahl zu betrachten:

  • einerseits als Folge von Symbolen, also als Wort einer formalen Sprache,
  • andererseits als Folge von Zahlen, die diesen Symbolen entsprechen.

Durch die Zuordnung zwischen Symbolen und Zahlen stehen die beiden Sichtweisen in enger Beziehung. Für mathematische Anwendungen wie zum Beispiel bei Teilbarkeitsregeln wird meist die zweite Möglichkeit gewählt.

Geschichte[Bearbeiten | Quelltext bearbeiten]

Dieses System stammt ursprünglich aus Indien. Adam Ries verbreitete mit seinen Werken das schriftliche Rechnen mit dem Stellenwertsystem im deutschsprachigen Raum.

Grundbegriffe[Bearbeiten | Quelltext bearbeiten]

In einem Stellenwertsystem werden Zahlen mit Hilfe von Ziffern und gegebenenfalls Vorzeichen oder Trennzeichen, dargestellt. Der Wert einer Zahl ergibt sich dann aus der Anordnung der Zeichen.

Basis[Bearbeiten | Quelltext bearbeiten]

Die Anzahl der insgesamt vorhandenen Ziffern wird Basis des Stellenwertsystems genannt. Man spricht an dieser Stelle auch von einem -adischen Zahlensystem. Die gängigsten Basen sind:[2]

Zu weiteren in der Praxis verwendeten -adischen Zahlensystemen siehe den Abschnitt Gebräuchliche Basen.

Ziffernvorrat[Bearbeiten | Quelltext bearbeiten]

Bei einer -adischen Zahldarstellung werden genau verschiedene Ziffern verwendet. Die Ziffern stehen dabei für die natürlichen Zahlen .[3] In den gängigen Zahlensystemen werden folgende Ziffern und Zahlenwerte verwendet (zur besseren Unterscheidung werden hier Ziffersymbole fett und ihre zugehörigen Zahlenwerte normal gedruckt):

  • Im Dualsystem werden die beiden Ziffern 0 und 1 verwendet und ihnen jeweils die Zahlen 0 und 1 zugeordnet.
  • Im Dezimalsystem werden die zehn Ziffern 0, 1, 2, 3, 4, 5, 6, 7, 8 und 9 verwendet und ihnen jeweils die Zahlen von 0 bis 9 in der natürlichen Reihenfolge zugeordnet.
  • Im Hexadezimalsystem werden die sechzehn Ziffern 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E und F verwendet und ihnen jeweils die Zahlen von 0 bis 15 in der natürlichen Reihenfolge zugeordnet.

Stelle und Stellenwert[Bearbeiten | Quelltext bearbeiten]

Der Wert einer Zahl ergibt sich nun durch die Anordnung der Ziffern in einer Reihe. Jeder Platz, den eine Ziffer in dieser Anordnung einnimmt oder einnehmen soll, ist eine Stelle.[3] Jeder Stelle wird ein Stellenwert zugewiesen, der einer Potenz der Basis entspricht. Die Stelle mit der niedrigsten Bewertung steht dabei ganz rechts. Im Dezimalsystem gilt beispielsweise bei der Darstellung natürlicher Zahlen:

  • Der Stellenwert der ersten Stelle von rechts („Einerstelle“) ist .
  • Der Stellenwert der zweiten Stelle von rechts („Zehnerstelle“) ist .
  • Der Stellenwert der dritten Stelle von rechts („Hunderterstelle“) ist , und so weiter.

Es erweist sich hierbei als vorteilhaft, die Stellen nicht ab Eins, sondern ab Null zu zählen. Auf diese Weise hat dann die -te Stelle gerade den Stellenwert . Bei der Darstellung rationaler Zahlen werden auch negative Exponenten zugelassen.

Darstellungen verschiedener Zahlenmengen[Bearbeiten | Quelltext bearbeiten]

Darstellung natürlicher Zahlen[Bearbeiten | Quelltext bearbeiten]

Natürliche Zahlen werden in der -adischen Darstellung durch eine endliche Folge von Ziffern in der Form

dargestellt. Dieser Ziffernfolge wird nun die Zahl

zugeordnet, wobei der der Ziffer zugewiesene Ziffernwert ist.

Es lässt sich zeigen, dass zu jeder natürlichen Zahl x eine Folge von Ziffern existiert, deren zugeordneter Wert x ist. Im Allgemeinen gibt es sogar mehrere Folgen. Es genügt dazu beliebig oft die Ziffer 0 =0 anzuhängen (das heißt in der üblichen Schreibweise voranstellen). Werden Folgen verboten, die mit der Ziffer 0 enden (in der üblichen Schreibweise also solche mit führender 0), so lässt sich zeigen, dass diese Zuordnung sogar eineindeutig ist, das heißt zu jeder natürlichen Zahl x existiert genau eine Folge, deren zugeordneter Wert x ist. Entgegen diesem Verbot wird der Zahl 0 nicht die leere Folge (also die endliche Folge ohne ein einziges Folgenglied) zugeordnet, sondern die Folge, die aus genau einem Folgenglied besteht, nämlich der Ziffer, der der Wert 0 zugeordnet wird (also 0), um diese Zahl leichter typografisch erkennbar zu machen.

Als Beispiel betrachten wir die Ziffernfolge 4C3 im Hexadezimalsystem (b = 16):

a0 ist hier 3, a1 ist hier C und a2 ist 4. Ferner ist 3 = 3, C = 12 und 4 = 4. Also repräsentiert die Folge 4C3 die Zahl

Entsprechend repräsentiert die Folge 1010011 im Dualsystem (b = 2) die Zahl

Im Dezimalsystem (b = 10) steht 3072 für:

Darstellung ganzer Zahlen[Bearbeiten | Quelltext bearbeiten]

In einem System bestehend aus positiver Basis und rein nicht-negativem Ziffernvorrat lassen sich negative Zahlen nicht darstellen. Solchen Systemen wird ein Minuszeichen („“) beigefügt, das den Zahlkonstanten ggf. vorangestellt wird. Dies geht mit einem geringen Verlust an Eineindeutigkeit einher, da die Zahl 0 als vorzeichenbehaftete Null in der Form +0, –0 oder auch ±0 geschrieben werden kann. Darstellungen von Zahlen verschieden von 0, denen kein Minuszeichen vorangestellt wird, werden als positive Zahlen interpretiert. Manchmal möchte man diese Positivität jedoch besonders hervorheben. In solchen Fällen wird in der Darstellung ein Pluszeichen („+“) vorangestellt.

Darstellung rationaler Zahlen[Bearbeiten | Quelltext bearbeiten]

Die Notation wird in die negativen Exponenten der Basis erweitert, indem man die entsprechenden Stellen rechts von einem zu diesem Zweck angefügten Trennzeichen in lückenloser Folge anschließt. Im deutschsprachigen Raum (ausgenommen Schweiz) ist hierfür das Komma »,«, im englischsprachigen Raum dagegen der Punkt ».« gebräuchlich. Die Werte der Ziffern hinter dem Trennzeichen werden mit bi multipliziert, wobei i die Position hinter dem Komma angibt. Zum Beispiel wird die rationale Zahl 1+3/8 = 1,375 im 2-adischen Stellenwertsystem durch die Ziffernfolge 1,011 dargestellt. In der Tat ist

Nach der Hinzufügung des Trennzeichens lassen sich viele rationale Zahlen b-adisch darstellen. Jedoch keineswegs alle, denn es kann vorkommen, dass zur Darstellung eine unendliche Folge von Nachkommastellen benötigt wird, die dann aber periodisch ist. Gewöhnlich wird diese Periode durch eine über die periodischen Ziffern gezogene Linie gekennzeichnet und so eine (endliche) Aufschreibung ohne Pünktchen möglich.

Während die Zahl 1/5 = 0,2 im Dezimalsystem die endliche Ziffernfolge 0,2 hat, ist ihre Darstellung im Dualsystem periodisch:

Dagegen bedeutet die Ziffernfolge 0,1 im 3-adischen (triadischen) System die rationale Zahl 1·3−1 = 1/3, die im Dezimalsystem einer unendlichen periodischen Ziffernfolge 0,333… entspricht.

Allgemein gilt, dass ein Bruch genau dann eine endliche -adische Darstellung hat, wenn nach dem Kürzen alle Primfaktoren seines Nenners auch Primfaktoren von (bei und ) sind. (Für eine endliche Darstellung im Dezimalsystem muss der gekürzte Nenner also ein Produkt der Zahlen Zwei und Fünf sein.)

Die endlichen Darstellungen bilden den Ring

,

wobei für die Menge der Primfaktoren steht. Bei diesen rationalen Zahlen hat in einer vollständig gekürzten Bruchdarstellung der Nenner nur Primteiler . Für jedes nichtleere liegt der Unterring von (wie selbst) dicht sowohl in wie in , d. h. eine jede reelle Zahl lässt sich beliebig genau durch Zahlen aus approximieren.[4]

Gehören die unendlichen, nicht abbrechenden Darstellungen von Anfang an zum System, dann ist (bei positiver Basis) bei den abbrechenden Darstellungen die Zifferndarstellung nicht mehr eindeutig. So bezeichnen die Ziffernfolgen 1, 1,0, 1,000… und 0,999… im Dezimalsystem dieselbe rationale Zahl 1, siehe dazu den Artikel 0,999…

Dieses Phänomen tritt bei jeder Basis mit auf, denn die Ziffernfolge

hat den Wert , wobei die Ziffer bezeichnet. Den Wert hat aber auch die Ziffernfolge

.

Normalerweise sind Missverständnisse nicht zu befürchten, so dass man beide Darstellungen zulassen kann. Eindeutigkeit ist jedoch z. B. bei der Z-Kurve gefordert, die injektiv abbildet und bei der abwechselnd 2 -Ziffernfolgen in 1 gepresst werden. Die Unstetigkeitsstellen der Funktion sind übrigens genau die Argumente, die eine endliche -adische Darstellung haben.

Die Länge der Periode einer rationalen Zahl mit dem gekürzten Nenner , mit natürlichen Zahlen und dem (größter gemeinsamer Teiler) , in der -adischen Darstellung ist 0 für („endliche“ Darstellung), andernfalls der kleinste Exponent , für den Teiler von ist.

Darstellung reeller Zahlen[Bearbeiten | Quelltext bearbeiten]

Die Darstellung reeller Zahlen erfolgt prinzipiell genauso wie die von rationalen Zahlen durch b-adische Entwicklung. Bei rationalen Zahlen liefert diese eine abbrechende oder eine unendliche periodische Ziffernfolge.

Die b-adische Entwicklung einer irrationalen Zahl (wie π oder ) liefert dagegen stets eine unendliche nichtperiodische Ziffernfolge. Durch Verlängerung des Nachkommaanteils ist eine beliebig genaue Annäherung an die irrationale Zahl möglich.

Wie bei den rationalen Zahlen mit unendlich periodischer Ziffernfolge ist eine endliche Darstellung für irrationale Zahlen durch Einführung neuer Symbole möglich, so wie dies hier für die Beispiele π und geschehen ist.

Trotzdem kann selbst mit beliebig, aber endlich vielen zusätzlichen Zeichen nicht jede reelle Zahl als endliche Zeichenfolge dargestellt werden. Dies liegt daran, dass die Menge der reellen Zahlen überabzählbar, die Menge aller endlichen Darstellungen mit endlichem Zeichenvorrat aber nur abzählbar ist.[5]

Wenn aber unter der „Darstellung“ einer reellen Zahl die bei der b-adischen Entwicklung entstehende Ziffernfolge verstanden wird, dann ist jede reelle Zahl als (ggf. unendlicher) b-adischer Bruch darstellbar, auch wenn nicht jeder solche Bruch tatsächlich aufschreibbar ist.

Formeln[Bearbeiten | Quelltext bearbeiten]

Berechnung eines Ziffernwertes[Bearbeiten | Quelltext bearbeiten]

Die letzte Ziffer der b-adischen Darstellung einer natürlichen Zahl n ist der Rest von n bei Division durch b. Dieser Rest ist auch durch den Ausdruck

gegeben; dabei bezeichnet die Gaußklammer. Allgemeiner ist die durch die letzten k Ziffern von n gebildete Zahl der Rest von n bei Division durch bk.

Die k-te Ziffer (von rechts mit null beginnend gezählt) einer positiven reellen Zahl x ist

für negative k ergibt sich die entsprechende Nachkommastelle.

Berechnung der Stellenzahl[Bearbeiten | Quelltext bearbeiten]

Die Anzahl der Ziffern der b-adischen Darstellung einer natürlichen Zahl n ist

Hinzufügen einer Ziffer[Bearbeiten | Quelltext bearbeiten]

Hängt man an die b-adische Darstellung einer Zahl n eine Ziffer z an, so erhält man die b-adische Darstellung der Zahl bn + z.

Gebräuchliche Basen[Bearbeiten | Quelltext bearbeiten]

  • Das bekannteste und verbreitetste Stellenwertsystem ist das Dezimalsystem (Zehner-System) mit Basis 10 und den Ziffern 0 bis 9. Das Dezimalsystem stammt ursprünglich aus Indien. Der persische Mathematiker Muhammad ibn Musa al-Chwarizmi verwendete es in seinem Arithmetikbuch, das er im 8. Jahrhundert schrieb. Bereits im 10. Jahrhundert wurde das System in Europa eingeführt, damals noch ohne Null. Durchsetzen konnte es sich jedoch erst im 12. Jahrhundert mit der Übersetzung des genannten Arithmetikbuchs ins Lateinische. Zur Speicherung von Dezimalziffern im Computer dient der BCD-Code.
  • Im 17. Jahrhundert führte der Mathematiker Gottfried Wilhelm Leibniz mit der Dyadik das Dualsystem (binäres Zahlensystem) ein, also das Stellenwertsystem mit der Basis 2 und den Ziffern 0 und 1. Dieses wird vor allem in der Informationstechnik verwendet, da deren Logik allein auf Bits, welche entweder wahr oder falsch bzw. 1 oder 0 sind, ausgerichtet ist.
  • Da Binärdarstellungen großer Zahlen unübersichtlich lang sind, wird an ihrer Stelle oft das Hexadezimal- oder Sedezimalsystem verwendet, das mit der Basis 16 (und den Ziffern 0, 1, …, 9, A, B, …, F) arbeitet. Hexadezimale und binäre Darstellung lassen sich leicht ineinander umwandeln, da 4 Stellen (= 1 Nibble) einer binären Zahl gerade einer Stelle einer hexadezimalen Zahl entsprechen.
  • In der Computertechnik wird neben dem Binär- und Hexadezimalsystem auch das Oktalsystem zur Basis 8 (Ziffern 0 bis 7, drei Binärstellen = eine Oktalstelle) verwendet. Diese Verwendung nimmt aber immer mehr ab, da sich die heute üblichen Wortlängen von acht Bit nicht in eine ganze Anzahl von Stellen im Oktalsystem umwandeln lassen.
  • Ebenfalls Verwendung findet die Basis 64 bei Base64 (mit ungewohnter Symbolreihenfolge); die Basis 62 bei Base62 mit den Ziffern 0 bis 9, A bis Z und a bis z; sowie gelegentlich die Basis 32 mit den Ziffern 0 bis 9 und a bis v unter der Bezeichnung Radix32.
  • Ab ca. 1100 v. Chr. wurden im indo-chinesischen Raum Rechentafeln Abakus (Rechentafel) benutzt, denen ein Unärsystem zugrunde liegt. Aber siehe oben zum Unärsystem in Fünfer-Blöcken, das allerdings ein Additionsystem darstellt.
  • Das Vigesimalsystem verwendet 20 als Basis. Es dürfte entstanden sein, weil zum Zählen neben den Fingern auch die Zehen benutzt wurden, und war u. a. in fast allen mesoamerikanischen Kulturen gebräuchlich. Das am weitesten entwickelte System dieser Art wurde von den Maya in der Klassischen Periode für astronomische Berechnungen sowie zur Darstellung von Kalenderdaten verwendet. Es handelte sich um ein Stellenwertsystem »mit einem Sprung«, weil an der zweiten Stelle nur die Ziffern von 1 bis 18 auftreten, um so als dritten Stellenwert 360 (annähernde Länge des Sonnenjahres) zu erreichen. Die Maya kannten die Null und benutzten sie auch in ihren Kalendern.
  • Die Indianer Südamerikas verwendeten Zahlensysteme zur Basis 4, 8 oder 16, da sie mit Händen und Füßen rechneten, jedoch die Daumen dabei nicht einbezogen.
  • Das Duodezimalsystem hat als Basis die 12. Wir finden es in der Rechnung mit Dutzend und Gros und im angelsächsischen Maßsystem (1 Shilling = 12 Pence) (siehe auch Alte Maße und Gewichte). Auch die Stundenzählung hat in diesem System ihren Ursprung. In vielen polytheistischen Religionen gab es 12 Hauptgötter, die sich z. B. im alten Ägypten in drei oberste Götter und 3*3 zugeordnete Götter aufteilten. (Die Drei galt als perfekte Zahl; siehe auch Dreifaltigkeit).
  • Die Babylonier benutzten ein Zahlensystem mit der Basis 60 (Sexagesimalsystem; siehe auch Geschichte von Maßen und Gewichten).
  • Ein eventuell zu erwartendes Zahlensystem zur Basis fünf bei Völkern, die nur eine Hand zum Zählen benutzen, wurde bisher nicht entdeckt. In Bantusprachen sind die Namen der Zahlen 6, 7, 8 und 9 jedoch oft Fremdwörter oder als 5+1, 5+2, 5+3, 5+4 verstehbar, was auf ein Zahlensystem zur Basis 5 hinweist.
    Zum Beispiel:
    Swahili: 1=moja, 2=mbili, 3=tatu, 4=nne, 5=tano, 6=sita, 7=saba, 8=nane, 9=kenda (Arabisch: 6=sitta, 7=saba'a)
    Tshitschewa: 1=modzi, 2=wiri, 3=tatu, 4=nai, 5=sanu, 6=sanu ndi-modzi, 7=sanu ndi-wiri, 8=sanu ndi-tatu, 9=sanu ndi-nai
Besonders ausgeprägt ist das Quinärsystem bei den südamerikanischen Betoya: 1=tey, 2=cayapa, 3=tozumba, 4=cajezea, 5=teente, 10=caya ente, 15=tozumba-ente, 20=caesea ente.[6]
  • Das Senärsystem eignet sich zum Zählen bis fünfunddreißig mit 2·5 Fingern. Sprachliche Spuren eines solchen Systems sind sehr selten (beispielsweise Bretonisch 18 = triouec'h, etwa „3 6er“)[6]
  • Die frühere Vermutung, die Maori benützten ein System zur Basis 11, gilt mittlerweile als überholt.[6] Einige Völker benutzen das System zur Basis 18.

Konvertierungen[Bearbeiten | Quelltext bearbeiten]

Manchmal benötigt man Konvertierungen zwischen Stellenwertsystemen. Ist das Dezimalsystem nicht beteiligt, kann man es als Zwischenschritt verwenden. Die nachfolgenden Berechnungen können auch mit Hilfe eines Taschenrechners durchgeführt werden, bei dem in der Regel die Zahlenein- und -ausgabe nur im Dezimalsystem geschieht.

Insbesondere, wenn Zahlen von einem System in ein anderes zu konvertieren sind, ist es üblich und zweckmäßig, die Ziffernfolgen durch ein tiefgestelltes Suffix der Basis des verwendeten Zahlensystems zu kennzeichnen. Dabei steht ein fehlendes Suffix und das Suffix 10 standardmäßig für die konventionelle dezimale Darstellung, explizit auch dez oder dec. Die Suffixe 2 oder b kennzeichnen binär und 16 oder h hexadezimal dargestellte Zahlen. Ferner wird als Ziffernvorrat der Standardsatz angenommen. Gelegentlich wird die gekennzeichnete Ziffernfolge in eckige Klammern gesetzt.

Beispiel 1: Umwandlung einer Darstellung zur Basis 10 in eine Darstellung zur Basis 12[Bearbeiten | Quelltext bearbeiten]

Eine Zahl hat die dezimale Darstellung 4711. Gesucht ist ihre Darstellung im Zwölfersystem.

Um diese Darstellung zu erhalten, dividiert man die gegebene Darstellung schrittweise durch die neue Basis 12. Die verbleibenden Reste liefern die Darstellung zur Basis 12. Dabei entspricht der erste Rest dem niedrigsten Ziffernwert der gesuchten neuen Darstellung (in unserem Fall also der Stelle ), der zweite Rest entspricht dem zweitniedrigsten Ziffernwert (also der Stelle ) usw. Die zugehörige Rechnung dazu lautet demnach:

  • 4711 geteilt durch 12 ergibt 392 Rest 7 (entspricht der Ziffer zur Stelle im Ergebnis)
  • 0392 geteilt durch 12 ergibt 032 Rest 8 (entspricht der Ziffer zur Stelle im Ergebnis)
  • 0032 geteilt durch 12 ergibt 002 Rest 8 (entspricht der Ziffer zur Stelle im Ergebnis)
  • 0002 geteilt durch 12 ergibt 000 Rest 2 (entspricht der Ziffer zur Stelle im Ergebnis)

Als Duodezimaldarstellung der gegebenen Zahl erhalten wir somit 2887. Die Umwandlung in andere Stellenwertsysteme erfolgt analog.

Beispiel 2: Umwandlung einer Darstellung zur Basis 16 in eine Darstellung zur Basis 10[Bearbeiten | Quelltext bearbeiten]

Bezüglich des Hexadezimalsystems mit den Ziffern 0, 1, …, 9, A (Wert 10), B (Wert 11), C (Wert 12), D (Wert 13), E (Wert 14) und F (Wert 15) habe eine Zahl die Darstellung AFFE. Gesucht ist die Darstellung dieser Zahl im Zehnersystem.

Um diese Darstellung zu erhalten, multipliziert man die Ziffernwerte der gegebenen Darstellung mit den jeweiligen Stellenwerten und addiert die Ergebnisse auf. Die zugehörige Rechnung dazu lautet demnach:

  • 10 mal ergibt 40960
  • 15 mal ergibt 3840
  • 15 mal ergibt 240
  • 14 mal ergibt 14

Als Dezimaldarstellung der gegebenen Zahl erhalten wir somit . Die Umwandlung in andere Stellenwertsysteme erfolgt analog.

Beispiel 3: Nachkommastellen[Bearbeiten | Quelltext bearbeiten]

Bezüglich des Zehnersystems habe eine Zahl die Darstellung 0,1. Gesucht ist die Darstellung dieser Zahl im Dualsystem.

Hierzu wird der Nachkommaanteil wiederholt mit der Basis des Zielsystems multipliziert. Tritt dabei ein Wert größer 1 auf, wird dessen ganzzahliger Anteil der Reihe der Nachkommastellen hinzugefügt, andernfalls wird eine 0 den Nachkommastellen hinzugefügt. Tritt eine ganze Zahl als Multiplikationsergebnis auf, ist der Nachkommabetrag vollständig bestimmt, oft wird jedoch auch eine Periode auftreten.

Die zugehörige Rechnung dazu lautet demnach:

  • 0,1 mal 2 ergibt 0,2 , die erste Nachkommastelle ist also die 0
  • 0,2 mal 2 ergibt 0,4 , die zweite Nachkommastelle ist also die 0
  • 0,4 mal 2 ergibt 0,8 , die dritte Nachkommastelle ist also die 0
  • 0,8 mal 2 ergibt 1,6 , die vierte Nachkommastelle ist also die 1
  • 0,6 mal 2 ergibt 1,2 , die fünfte Nachkommastelle ist also die 1
  • 0,2 mal 2 (muss nicht mehr ausgeführt werden, da eine Periode aufgetreten ist)

Als Ergebnis erhalten wird somit 0,0001100110011…

Verallgemeinerungen[Bearbeiten | Quelltext bearbeiten]

Balancierte Stellenwertsysteme[Bearbeiten | Quelltext bearbeiten]

Eine besondere Form des Stellenwertsystems ist das balancierte Stellenwertsystem. Es hat immer eine ungerade Basis und verwendet sowohl natürliche als auch negative Ziffernwerte, nämlich die aus der Menge . Auch mit diesem lassen sich alle ganzen Zahlen (eindeutig) darstellen. Knuth macht die negativen Ziffern durch einen Überstrich kenntlich. So wird z. B. im balancierten Ternärsystem eine Zahl durch die Ziffern 1, 0, und 1 dargestellt, welchen die Werte -1, 0 und 1 zugeordnet sind.

Ein balanciertes Stellenwertsystem hat folgende Eigenschaften:

  • Das Negative einer Zahl erhält man durch Austausch einer jeden Ziffer mit ihrem inversen Gegenüber.
  • Die erste von 0 verschiedene Stelle zeigt das Vorzeichen an. Das System kommt also ohne ein separates Vorzeichen aus.
  • Eine Rundung zur nächsten ganzen Zahl geschieht durch einfaches Abschneiden beim Komma.

Zahlensysteme mit gemischten Basen[Bearbeiten | Quelltext bearbeiten]

Eine naheliegende Verallgemeinerung ist, verschiedene Basen für die verschiedenen Ziffernpositionen zu wählen. Man spricht dann von Zahlensystemen mit gemischten Basen. Ein paar interessante Beispiele sind:

  • alternierend a oder b, wobei a und b zwei verschiedene natürliche Zahlen > 1 sind[7]
  • 2 oder 3 aber in der Reihenfolge, so dass am „relativ engsten“ approximiert wird mit dem Produkt der ersten k Basen
  • als Basis werden die natürlichen Zahlen > 1 der Reihe nach genutzt („Fakultätsbasis“)

In den beiden letzten Fällen hat man im Prinzip unendlich viele verschiedene Ziffernsymbole bereitzustellen.[8]

Datumsformat als Zahlensystem mit gemischten Basen[Bearbeiten | Quelltext bearbeiten]

Hauptartikel: Datumsformat

Auch die Darstellung von Datum und Uhrzeit hat traditionell mehrere Basen und Ziffernsysteme. Im hiesigen Kontext sei als einziges Exempel die folgende im angelsächsischen Sprachraum gebräuchliche Darstellung

[1-12] [1–31] [0–9][2,4,*] [1-12] [am,pm] [0–59] [0–59] [0–9]*

angeführt, bei der zudem die Reihenfolge von Jahr-, Monat- und Tagangaben einerseits sowie Halbtag und Stunde andererseits entgegen der Rangfolge vertauscht sind.[9] Hier finden also die Basen 2, 10, 12, 28–31 und 60 Verwendung. Insbesondere ist bemerkenswert, dass sich die Basis der Tagesstelle nach dem Wert der Monatsstelle richtet.

Nicht-natürliche Zahlen als Basis[Bearbeiten | Quelltext bearbeiten]

Die Basis muss nicht notwendigerweise eine natürliche Zahl sein. Sämtliche (auch komplexe) Zahlen mit Betrag größer 1 können als Basis eines Stellenwertsystems verwendet werden.

Negative Basen[Bearbeiten | Quelltext bearbeiten]

Stellenwertsysteme mit negativen Basen mit kooperieren mit denselben Ziffernvorräten wie ihre positiven Entsprechungen und wird oft als Radix bezeichnet. Sie werden häufig mit der Vorsilbe nega- gekennzeichnet, bspw. das negadezimale, negabinäre, negaternäre usw. Stellenwertsystem.

Diese Stellenwertsysteme kommen ohne ein extra Vorzeichen aus. Andererseits benötigen die Darstellungen häufig eine Ziffer mehr als im entsprechenden System mit positiver Basis. Ferner sind die arithmetischen Operationen, insbesondere die Bildung des Absolutbetrags etwas komplexer.

Ist der Ziffernvorrat minimal, bspw. , dann sind alle ganzen Zahlen eindeutig darstellbar. Es gibt aber rationale Zahlen, die nicht eindeutig darstellbar sind. Sei dazu

und die größte Ziffer, dann ist sowohl

als auch

Zu jeder Zahl mit einem endlich darstellbaren aus dem Ring (s. o.) gibt es also zwei verschiedene Darstellungen. Das sind genau die Zahlen

mit

Siehe auch den englischsprachigen Artikel en:Negative base.

Irrationale Basen[Bearbeiten | Quelltext bearbeiten]

Will man alle reellen Zahlen darstellen, dann muss bei nicht-ganzzahliger oder irrationaler Basis die Minimalgröße des Ziffernsystems (Betragsstriche und Gaußklammern) sein. Für solche verallgemeinerten Stellenwertsysteme gelten einige der hier gemachten Aussagen über die endliche Darstellbarkeit rationaler Zahlen nicht.

Wird zum Beispiel der Goldene Schnitt als Basis und als Ziffernvorrat verwendet, dann stellt eine endliche Ziffernfolge stets eine ganze Zahl oder eine irrationale Zahl der Form mit rationalen dar. Trotzdem hat nicht jede solche Zahl eine endliche Darstellung.

Nicht-reelle Basen[Bearbeiten | Quelltext bearbeiten]

Das erste Zahlsystem, das eine komplexe Zahl nicht als zwei separate Ziffernfolgen – je eine für Real- und eine für Imaginärteil – darstellt, sondern eine komplexe Zahl als eine einzige Ziffernfolge, war das von D. Knuth 1955 vorgeschlagene „quater-imaginäre“ System[10]. Es hat als Basis und 0, 1, 2, 3 als Ziffern. Dort ist bspw. und . Siehe auch den englischsprachigen Artikel en:Quater-imaginary base.

Ein anderes System wurde 1964 von S. Khmelnik vorgeschlagen und für Digitalmaschinerie ausgearbeitet.[11] Es hat als Basis und 0, 1 als Ziffern. Bspw. ist und . Siehe auch den englischsprachigen Artikel en:Complex base systems.

p-adische Zahlen[Bearbeiten | Quelltext bearbeiten]

Hauptartikel: P-adische Zahl

Die hier vorgestellten Stellenwertsysteme beruhen auf der Konvergenz in Bezug auf die Metrik des gewöhnlichen archimedischen Absolutbetrags. Die unendlichen Reihen – die hier immer, und zwar „rechts“ bei den kleinen Potenzen der Basis (Exponenten ), konvergieren – sind dann reelle (oder komplexe) Zahlen. Es gibt aber für die rationalen Zahlen auch Metriken, die auf nichtarchimedischen Betragsfunktionen basieren und eine ganz ähnliche Notation mit Basis und Ziffernvorrat gestatten. Die unendlichen Reihen – die auch dort immer, und zwar der Konvention nach „links“ bei den großen Potenzen (Exponenten ), konvergieren – sind p-adische Zahlen.

Zwar stimmen endliche -adische Ausdrücke mit derselben Ziffernfolge in endlicher -adischer Darstellung überein, es gibt aber gravierende Unterschiede zu den ansonsten hier vorgestellten Systemen. Die wichtigsten sind:

  1. ist immer eine Primzahl (oder ein Primelement).
  2. Die nicht-abbrechenden Reihen stellen in beiden Systemen völlig verschiedene Zahlobjekte dar.

Weiterführende Texte[Bearbeiten | Quelltext bearbeiten]

Der Artikel Zahlbasiswechsel beschäftigt sich mit der Umrechnung der Darstellung von Zahlen in verschiedenen Zahlensystemen. Der Artikel Teilbarkeit erläutert, wie in der Darstellung von Stellenwertsystemen in bestimmten Fällen erkannt werden kann, ob eine Zahl Teiler einer anderen ist. Die Cantorsche Normalform verallgemeinert die Darstellung von Zahlen im Stellenwertsystem auf Ordinalzahlen.

Literatur[Bearbeiten | Quelltext bearbeiten]

Weblinks[Bearbeiten | Quelltext bearbeiten]

Einzelnachweise[Bearbeiten | Quelltext bearbeiten]

  1. Der Fall bedeutet einen nur aus einem einzigen Element bestehenden Ziffernvorrat, was zu einem nicht so mächtigen Darstellungssystem führt, dem Unärsystem. Dieses gilt nicht als Stellenwertsystem, da die Wertigkeit einer Ziffer unabhängig von ihrer Position immer gleich ist.
  2. DIN 1333, Kap. 8
  3. a b DIN 1333, Zahlenangaben, 1992, Kap. 10.1
  4. Im Fall für ein ist nicht mit dem diskreten Bewertungsring mit zu verwechseln, der auch dicht liegt in , dessen eingeprägte Bewertung aber zur völlig anderen Vervollständigung, nämlich den p-adischen Zahlen führt.
  5. Ihr Maß ist 0 und damit auch der Zahlen mit mehrfacher Darstellung.
  6. a b c Levi Leonard Conant: The Number Concept. Etext, Project Gutenberg (englisch)
  7. Wie oben bei den Zweierpotenzen kann eine solche Darstellung als „Sonderfall“ einer ab-adischen aufgefasst werden.
  8. Je nach Position unterschiedliche Ziffernsysteme heben allerdings den Unterschied zu den Additionssystemen auf.
  9. An tatsächlichen Zyklen angelehnt sind dabei nur Tag, Monat und Jahr. Alle anderen Eigenwilligkeiten der Darstellung sind menschliche, mit einer außerordentlichen Beständigkeit behaftete, Artefakte.
  10. Donald Knuth: An imaginary number system. In: Communications of the ACM. 3, Nr. 4, April 1960.
  11. S.I. Khmelnik: Specialized digital computer for operations with complex numbers. In: Questions of Radio Electronics (in Russian). XII, Nr. 2, 1964.
Dieser Artikel wurde in die Liste der lesenswerten Artikel aufgenommen.