Poincaré-Lemma

aus Wikipedia, der freien Enzyklopädie
Wechseln zu: Navigation, Suche

Das Poincaré-Lemma ist ein Satz aus der Mathematik und wurde nach dem französischen Mathematiker Henri Poincaré benannt.

Exakte und geschlossene Differentialformen[Bearbeiten | Quelltext bearbeiten]

  • Eine Differentialform vom Grad heißt geschlossen, falls gilt. Dabei bezeichnet die äußere Ableitung.
  • Eine Differentialform vom Grad heißt exakt, falls es eine -Differentialform gibt, so dass gilt. Die Form nennt man eine Potentialform von

Die Potentialform ist nicht eindeutig bestimmt, sondern nur "bis auf Umeichung" (siehe unten).

Wegen ist jede exakte Differentialform auch geschlossen. Das Poincaré-Lemma gibt Voraussetzungen an, unter denen auch die umgekehrte Aussage gilt. Beim Beweis ergibt sich darüber hinaus eine Verallgemeinerung des Lemmas: Von jeder Differentialform läßt sich „per Konstruktion“ ein exakter Anteil abspalten.

Aussage[Bearbeiten | Quelltext bearbeiten]

Das Poincaré-Lemma besagt, dass in jede auf einer sternförmigen offenen Menge definierte geschlossene Differentialform exakt ist.

Die Aussage lässt sich abstrakter auch so formulieren: Für eine sternförmige offene Menge verschwindet die -te de-Rham-Kohomologie für alle :

Im dreidimensionalen Spezialfall besagt das Poincaré-Lemma, in die Sprache der Vektoranalysis überführt, dass ein auf einem einfach-zusammenhängenden Gebiet definiertes wirbelfreies Vektorfeld – beispielsweise das elektrostatische Feld – als Gradient eines Potentialfeldes (), ein quellfreies Vektorfeld auf einem konvexen Gebiet– beispielsweise die magnetische Induktion – durch Rotation eines Vektorpotentials (), und eine skalare Felddichte („Quellendichte“) als Divergenz eines Vektorfeldes () dargestellt werden können.

Beweis (konstruktiv)[Bearbeiten | Quelltext bearbeiten]

Das Poincaré-Lemma gibt eine solche -Form explizit an, und zwar mit folgender Formel: Einer beliebigen k-Form, lässt sich, Geschlossenheit nicht notwendig vorausgesetzt, eine (k-1)-Form zuordnen, aus der sich bei Geschlossenheit die gesuchte Potentialform ergibt: Diese zugeordnete Form läßt sich durch folgende Abbildung definieren:

(Das Dachsymbol in der iα-ten Spalte der rechten Seite bedeutet, dass das entsprechende Differential ausgelassen wird.)

Nun zeigt man direkt, dass folgende Identität gilt: was formal der Produktregel der Differentiation entspricht und die durch repräsentierten Eigenschaften in zwei Anteile zerlegt, von denen der zweite die gesuchte Eigenschaft besitzt.

Wegen der Voraussetzung und wegen ergibt sich zunächst Dies gilt ohne Einschränkung der Allgemeinheit auch ohne das vorderste der rechten Seite, und zwar deshalb, weil durch die Forderung die Form nur am Nullpunkt betrachtet wird, sodass wie beim Totalen Differential einer Funktion aus bis auf sog. Eichtransformationen (siehe unten) auch gefolgert werden kann.

Somit bleibt nur der letzte Term der obigen Identität, und es folgt die gesuchte Aussage: mit

Die angegebene Identität verallgemeinert zugleich das Poincarésche Lemma durch Zerlegung einer beliebigen Differentialform ω in einen nicht-exakten („anholonomen“) und einen exakten („holonomen“) Anteil (die eingeklammerten Bezeichnungen entsprechen den sog. Zwangskräften in der analytischen Mechanik). Es entspricht zugleich der Zerlegung eines beliebigen Vektorfeldes in einen Wirbel- und einen Quellen-Anteil.

In der Sprache der homologischen Algebra ist eine kontrahierende Homotopie, die z. B. auf den zentralen Punkt des hier betrachteten sternförmigen Gebietes kontrahiert.

Umeichung[Bearbeiten | Quelltext bearbeiten]

Das so definierte ist nicht die einzige -Form, deren äußeres Differential ist. Alle anderen unterscheiden sich aber höchstens um das Differential einer -Form voneinander: Sind und zwei solche -Formen, so existiert eine -Form derart, dass gilt.

Der Zusatz wird auch als Eichtransformation bzw. Umeichung von bezeichnet.

Anwendung in der Elektrodynamik[Bearbeiten | Quelltext bearbeiten]

Aus der Elektrodynamik ist der Fall eines von einem stationären Strom erzeugten Magnetfeldes bekannt, mit dem sog. Vektorpotential Dieser Fall entspricht , wobei das sternförmige Gebiet der ist. Der Vektor der Stromdichte ist und entspricht der Stromform Für das Magnetfeld gilt Analoges: es entspricht der Magnetflussform und lässt sich aus dem Vektorpotential ableiten: , oder . Dabei entspricht das Vektorpotential der Potentialform Die Geschlossenheit der Magnetflussform entspricht der Quellenfreiheit des Magnetfeldes

Unter Verwendung der Coulomb-Eichung bzw. passend zu gilt dann für i=1,2,3

dabei ist eine Naturkonstante, die sogenannte Magnetische Feldkonstante.

An dieser Gleichung ist u.a. bemerkenswert, dass sie vollständig einer bekannten Formel für das elektrische Feld entspricht, dem Coulombpotential einer gegebenen Ladungsverteilung mit der Dichte . Man vermutet an dieser Stelle bereits, dass

  • und bzw.
  • und sowie
  • und

zusammengefasst werden können und dass sich die relativistische Invarianz der Maxwellschen Elektrodynamik daraus ergibt, siehe dazu Elektrodynamik.

Wenn man die Bedingung der Stationarität aufgibt, muss auf der linken Seite der obigen Gleichung bei zu den Raumkoordinaten das Zeitargument hinzugefügt werden, während auf der rechten Seite in die sog. „retardierte Zeit“ zu ergänzen ist. Es wird dabei wie zuvor über die drei Raumkoordinaten integriert. Schließlich ist die Lichtgeschwindigkeit im Vakuum.

Anwendung in der Kontinuumsmechanik[Bearbeiten | Quelltext bearbeiten]

In der Kontinuumsmechanik wird das Lemma auf Tensoren angewendet, was z. B. für die Aufstellung der Kompatibilitätsbedingungen gebraucht wird. Ausgangspunkt ist das Lemma in der Formulierung:

 

 

 (I)

 

Der Operator „grad“ bildet den Gradient, die Vektoren sind die Standardbasis des kartesischen Koordinatensystems mit Koordinaten und es wurde die einsteinsche Summenkonvention angewendet, dergemäß über in einem Produkt doppelt vorkommende Indizes, hier k, von eins bis drei zu summieren ist, was auch im Folgenden praktiziert werden soll.

Gegeben sei nun ein Tensorfeld , dessen Zeilenvektoren mit dem dyadischen Produkt“ zum Tensor zusammengefügt werden. Die Rotation des transponierten Tensors verschwinde

so dass also jeder Zeilenvektor rotationsfrei ist. Dann gibt es für jeden Zeilenvektor ein Skalarfeld , dessen Gradient er ist:

denn der Gradient des Vektors bildet sich gemäß:

Damit gilt die zweite Form des Lemmas:

 

 

 (II)

 

Wenn zusätzlich die Spur des Tensors verschwindet, dann ist das Vektorfeld divergenzfrei:

In diesem Fall berechnet sich mit dem Kronecker-Delta δij:

und der Tensor ist schiefsymmetrisch:

Darin ist das Permutationssymbol. Es folgt die dritte Form des Lemmas:

 

 

 (III)

 

In der Literatur wird auch ein Rotationsoperator benutzt, der direkt die Rotation der Zeilenvektoren bildet:

Mit diesem Operator gilt:

Literatur[Bearbeiten | Quelltext bearbeiten]

  • Otto Forster: Analysis. Band 3: Integralrechnung im Rn mit Anwendungen. 4. Auflage. Vieweg + Teubner, Braunschweig u. a. 2007, ISBN 978-3-528-37252-1.
  • John M. Lee: Introduction to Smooth Manifolds (= Graduate Texts in Mathematics 218). Springer-Verlag, New York NY u. a. 2003, ISBN 0-387-95448-1.
  • C. Truesdell: Festkörpermechanik II in S. Flügge (Hrsg.): Handbuch der Physik, Band VIa/2. Springer-Verlag, 1972, ISBN 3-540-05535-5, ISBN 0-387-05535-5.