Planck-Konstante

aus Wikipedia, der freien Enzyklopädie
Dies ist eine alte Version dieser Seite, zuletzt bearbeitet am 19. August 2016 um 21:19 Uhr durch Aka (Diskussion | Beiträge) (Datumsformat im Einzelnachweis korrigiert, Weiterleitung aufgelöst). Sie kann sich erheblich von der aktuellen Version unterscheiden.
Zur Navigation springen Zur Suche springen
Physikalische Konstante
Name Plancksches Wirkungsquantum
Formelzeichen
Größenart Wirkung
Wert
SI
Unsicherheit (rel.)
CGS
Planck-Einheiten
Quellen und Anmerkungen
Quelle SI-Wert: CODATA 2014 (Direktlink)
Gedenktafel – Humboldt-Universität zu Berlin

Das Plancksche Wirkungsquantum, oder die Planck-Konstante , ist das Verhältnis von Energie () und Frequenz () eines Photons, entsprechend der Formel . Die gleiche Beziehung gilt allgemein zwischen der Energie eines Teilchens oder physikalischen Systems und der Frequenz seiner quantenmechanischen Phase.

Die Entdeckung des Wirkungsquantums durch Max Planck in den Jahren 1899[1] und 1900[2][3] begründete die Quantenphysik. Das Wirkungsquantum verknüpft Eigenschaften, die vorher in der klassischen Physik entweder nur Teilchen oder nur Wellen zugeschrieben wurden. Damit ist es die Basis des Welle-Teilchen-Dualismus der modernen Physik.

Das Wirkungsquantum ist neben der Gravitationskonstante und der Lichtgeschwindigkeit die dritte der fundamentalen Naturkonstanten der Physik. Zusammen bilden sie die Grundlage des natürlichen Einheitensystems der Planck-Einheiten.[1]

Planck gab der von ihm entdeckten Konstante den Namen „elementares Wirkungsquantum“, weil sie bei „elementaren Schwingungsvorgängen“ eine entscheidende Rolle spielt und sich gemäß der Definition (s. o.) als Quotient einer Energie und einer Frequenz ergibt, weshalb sie die gleiche Dimension hat wie die physikalische Größe Wirkung.[4][5]

Definition

Das Plancksche Wirkungsquantum ist für jedes physikalische System, das harmonisch schwingen kann, das stets gleiche Verhältnis des kleinstmöglichen Energieumsatzes zur Schwingungsfrequenz. Größere Energieumsätze sind nur möglich, wenn sie ganzzahlige Vielfache dieses kleinsten Energiebetrages sind. Darüber hinaus gilt in der Quantenmechanik für jedes physikalische System, dass das Verhältnis seines gesamten Energieinhalts zur Frequenz seiner quantenmechanischen Phase ist.

Das Plancksche Wirkungsquantum hat die Dimension von Energie mal Zeit, die Wirkung genannt wird. Es erhält seine universelle Bedeutung durch sein Auftreten in den Grundgleichungen der Quantenphysik (Schrödinger-Gleichung, Heisenbergsche Bewegungsgleichung, Dirac-Gleichung). Einige allgemeingültige Folgen:

  • Jede harmonische Schwingung (mit Frequenz , Kreisfrequenz ) kann Energie nur in diskreten Beträgen aufnehmen oder abgeben, die ganzzahlige Vielfache des Schwingungsquants sind.
  • Jedes physikalische System kann seinen Drehimpuls(*) nur um ganzzahlige Vielfache von ändern.
(*) Genauer: die Projektion des Drehimpulsvektors auf eine beliebige Gerade
  • Jedem physikalischen System mit Impuls ist eine Materiewelle mit der Wellenlänge zugeordnet.
  • Bei jedem physikalischen System erfüllen Energie und Kreisfrequenz seiner quantenmechanischen Phase die Gleichung .
  • Je zwei Variablen eines physikalischen Systems, die zueinander kanonisch konjugiert sind (z. B. Ort und Impuls eines Teilchens, oder verallgemeinerter Ort und verallgemeinerter Impuls, z. B. Drehwinkel und Drehimpuls), erfüllen eine Unschärferelation, der zufolge sie in keinem Zustand des Systems beide gleichzeitig wohldefinierte Werte besitzen können. Vielmehr gilt für die Streuungen der Werte beider Variablen: .

Werte

Werte von h[6] Standardabweichung Einheiten
6,626 070 040 · 10−34 0,000 000 081 · 10−34 Joulesekunde
4,135 667 662 · 10−15 0,000 000 025 · 10−15 eV·s
6,626 070 040 · 10−27 0,000 000 081 · 10−27 erg·s
Werte von ħ
1,054 571 800 · 10−34 0,000 000 013 · 10−34 J·s
6,582 119 514 · 10−16 0,000 000 040 · 10−16 eV·s
1,054 571 800 · 10−27 0,000 000 013 · 10−27 erg·s

Der Wert von beträgt[7][8]

wobei die eingeklammerten Zahlen die geschätzte Unsicherheit (1 Standardabweichung) für den Mittelwert angeben und sich auf die beiden letzten angegebenen Dezimalziffern beziehen.

Weil bei Schwingungen oft, statt ihrer Frequenz, ihre (um den Faktor größere) Kreisfrequenz angegeben wird, wird statt auch das reduzierte Plancksche Wirkungsquantum (sprich „h quer“, früher auch nach Paul Dirac als Diracsche Konstante[9] bezeichnet) verwendet.

Das reduzierte Wirkungsquantum ist gleich dem Wirkungsquantum geteilt durch :[10][11]

Für die Energie eines Photons mit der Frequenz bzw. der Kreisfrequenz gilt damit:

Oft wird das Produkt mit der Lichtgeschwindigkeit c benötigt, das wegen seiner Dimension Energie mal Länge einen universellen Zusammenhang zwischen Energie- und Längenskala ausdrückt.[12] In den in der Kernphysik üblichen Einheiten gilt:[13]

In Unicode liegen die Symbole für das Plancksche Wirkungsquantum und das reduzierte Plancksche Wirkungsquantum auf Position U+210E () bzw. U+210F ().

Historisches zur Entdeckung und Rezeption[14]

Wärmestrahlung I (Planck 1899)

Max Planck war 1899 auf eine neue Naturkonstante gestoßen, als er eine thermodynamische Beschreibung der Wärmestrahlung schwarzer Körper, auch Hohlraumstrahlung genannt, entwickelte. Nach dem Kirchhoffschen Gesetz sollten das Spektrum der Wärmestrahlung und dessen Temperaturabhängigkeit, wie sie etwa an Holzkohle beim Übergang von Rotglut zu Weißglut sichtbar ist, für alle ideal schwarzen Körper exakt gleich sein, völlig unabhängig von ihrer sonstigen Beschaffenheit. Die Berechnung des Spektrums galt daher als ein herausragendes ungelöstes Problem der theoretischen Physik.

Die Messwerte zeigen im hochfrequenten (d. h. kurzwelligen) Bereich eine charakteristische Abnahme zu höheren Frequenzen hin. Diese lässt sich gemäß dem Wienschen Strahlungsgesetz gut durch einen Exponentialfaktor wiedergeben ( Frequenz, Temperatur, ein fester Parameter), diese Formel aber widerspricht jeder theoretischen Herleitung aus der klassischen Physik. Planck konnte jedoch eine neuartige theoretische Herleitung angeben.[15] Dazu analysierte er das thermische Gleichgewicht zwischen den Wänden eines Hohlraums und den elektromagnetischen Wellen in seinem Innern. Die Wände modellierte er als Ansammlung emittierender und absorbierender Oszillatoren und wählte für deren Entropie eine neuartige geeignete Formel mit zwei freien Parametern und . Diesen Parametern kam aufgrund der allgemeingültigen Ableitung nun eine universelle Bedeutung zu. erwies sich als der oben im Wienschen Strahlungsgesetz genannte Parameter, als Produkt von mit der Boltzmann-Konstante . Für , das später in umbenannt wurde, gab Planck den Wert an, nur 4 % über dem heutigen Wert für . Planck erkannte auch, dass diese neuen Konstanten zusammen mit der Gravitationskonstante und der Lichtgeschwindigkeit ein System von universellen Naturkonstanten bilden, aus denen sich auch für Länge, Masse, Zeit und Temperatur universelle Einheiten bilden lassen, die Planck-Einheiten.

Wärmestrahlung II (Planck 1900)

Neue Messungen widersprachen dem Wienschen Strahlungsgesetz, damit auch der von Planck gefundenen Deutung. Sie zeigten, dass im niederfrequenten (d. h. langwelligen, infraroten) Teil der Wärmestrahlung die Intensität zu größeren Frequenzen hin zunächst zunimmt, bevor sie dem Wienschen Strahlungsgesetz gemäß wieder abnimmt. Diese Zunahme entsprach gut dem Rayleigh-Jeans-Gesetz, wie es ohne weitere Annahmen aus der klassischen Elektrodynamik und dem Gleichverteilungssatz der Statistischen Mechanik abgeleitet worden war. Allerdings sagte dieses Gesetz auch eine unbegrenzte Zunahme der Intensität bei weiter steigender Frequenz voraus, was als Ultraviolettkatastrophe bezeichnet wurde und den älteren Messungen im hochfrequenten Teil des Spektrums (s. o.) widersprach. Planck fand (wörtlich) „eine glücklich erratene interpolierende Formel“, die nun mit allen (auch erst danach neu angestellten) Messungen hervorragend übereinstimmte. Theoretisch herleiten konnte er dieses als Plancksches Strahlungsgesetz bezeichnete Ergebnis nur, indem er versuchsweise den Exponentialfaktor des Wienschen Gesetzes wie den aus der kinetischen Gastheorie bekannten Boltzmann-Faktor interpretierte und darin für die je nach Frequenz verschiedenen diskreten Energiestufen ansetzte. Den Buchstaben nahm er von Hilfsgröße. Der Vergleich mit der Wienschen Formel zeigte, dass es sich bei gerade um das erwähnte Produkt handelt.[16]

Damit schrieb Planck den Oszillatoren die neue Eigenschaft zu, dass sie ihre Energie nur in endlichen Schritten der Größe ändern könnten. Er führte damit erstmals eine Quantelung einer scheinbar kontinuierlich variierbaren Größe ein, eine Vorstellung, die der Physik damals, als auch die Atomhypothese noch heftig angefeindet wurde, völlig fremd war. Doch alle Versuche, eine theoretische Herleitung ohne die Annahme diskreter Energieumsätze zu finden, schlugen fehl. Planck hielt den nicht-kontinuierlichen Charakter des Energieaustausches zunächst nicht für eine Eigenschaft der vermeintlich gut verstandenen Lichtwellen, sondern schrieb ihn ausschließlich den Emissions- und Absorptionsprozessen im Material der Hohlraumwände zu. Mit großer Verspätung wurde ihm 1918 für die Entdeckung der Quantisierung der Nobelpreis zuerkannt.

h und die Lichtquanten

Albert Einstein analysierte 1905 den photoelektrischen Effekt, der ebenfalls mit der klassischen Physik unvereinbar ist. Einstein war einer der wenigen Physiker, die die fundamentale Bedeutung von Plancks Arbeit früh erkannten und nutzten. Er konnte den Effekt mit Hilfe der Lichtquantenhypothese erklären, der zufolge auch das Licht Quanteneigenschaften aufweist. Demnach besteht, im Gegensatz zu Plancks damaliger Ansicht, die elektromagnetische Strahlung selbst aus teilchenartigen Objekten, den Lichtquanten, deren Energie je nach Frequenz  der Lichtwelle durch die Gleichung gegeben ist.[17] Später wurde diese Gleichung die Einsteinsche Gleichung für das Lichtquant (engl. Planck–Einstein relation) genannt. Damit erkannte er erstmals den Welle-Teilchen-Dualismus, ein neues Problem für die Physik. Nicht zuletzt deshalb brauchte auch diese Analyse Jahre, um sich durchzusetzen. 1921 brachte sie Einstein den Nobelpreis ein.

h und die spezifische Wärme fester Körper

Die Quantisierung der Schwingungsenergie war für Albert Einstein 1907 auch der Schlüssel zur Erklärung eines weiteren unverstandenen Phänomens, der Abnahme der spezifischen Wärme fester Körper zu niedrigen Temperaturen hin. Bei höheren Temperaturen hingegen stimmten die Messwerte meist gut mit dem von Dulong-Petit nach der klassischen Physik vorhergesagten Wert überein. Einstein nahm an, dass die Wärmeenergie im festen Körper in Form von Schwingungen der Atome um ihre Ruhelage vorliegt, und dass auch diese rein mechanische Art von Schwingungen nur in Energiestufen angeregt werden kann. Da die im thermischen Gleichgewicht zwischen den einzelnen Atomen fluktuierenden Energiemengen von der Größenordnung sind, ergab sich die Möglichkeit, zwischen „hohen“ Temperaturen () und „tiefen“ Temperaturen () zu unterscheiden. Dann hat die Quantelung bei hohen Temperaturen keine sichtbaren Auswirkungen, während sie bei tiefen Temperaturen die Aufnahme von Wärmeenergie behindert. Die Formel, die Einstein aus dieser Vorstellung heraus ableiten konnte, passte (nach geeigneter Festlegung von für jeden Festkörper) ausgezeichnet zu den damaligen gemessenen Daten. Trotzdem wurde lange weiter bezweifelt, dass die Plancksche Konstante nicht nur für elektromagnetische Wellen, sondern auch im Bereich der Mechanik wichtig sein könnte.

h und die Phasenraumzelle

Viele Gesetze der Thermodynamik, z. B. zur spezifischen Wärme von Gasen und Festkörpern, aber auch zum irreversiblen Anwachsen der Entropie und zur Form des dadurch erreichten Gleichgewichtszustands, hatten durch die Statistische Mechanik (vor allem durch Ludwig Boltzmann und Josiah Willard Gibbs) eine mechanische Deutung erfahren. Die statistische Mechanik gründet in der Annahme der ungeordneten Bewegung extrem vieler Atome oder Moleküle und ermittelt mit statistischen Methoden die wahrscheinlichsten Werte von makroskopisch messbaren Größen (wie Dichte, Druck usw.), um den Gleichgewichtszustand zu charakterisieren. Dazu muss zunächst die Gesamtmenge aller möglichen Zustände aller Teilchen mathematisch erfasst werden in einem Zustands- oder Phasenraum. Legt man einen bestimmten makroskopischen Zustand fest, dann bilden alle Teilchenzustände, in denen das System diesen makroskopischen Zustand zeigt, im Phasenraum ein Teilvolumen. Aus der Größe jedes solchen Teilvolumens wird ermittelt, mit welcher Wahrscheinlichkeit der betreffende makroskopische Zustand vorkommen wird. Mathematisch ist also ein Volumenintegral zu bilden, und dazu braucht man vorübergehend und als Hilfsgröße die Definition eines Volumenelements, auch Phasenraumzelle genannt. Im Endergebnis aber soll die Phasenraumzelle nicht mehr auftauchen. Wenn möglich, lässt man ihre Größe in der erhaltenen Formel gegen Null schrumpfen (wie differentielle Größen generell in der Infinitesimalrechnung), wenn nicht, sieht man sie als unerwünschten Parameter an (der z. B. eine unbekannte additive Konstante bestimmt) und versucht, nur solche Schlussfolgerungen zu betrachten, die von der Phasenraumzelle unabhängig sind (z. B. Differenzen, in denen sich die Konstante weghebt). Berechnet man auf diese Weise die Entropie eines Gases, heißt die Konstante chemische Konstante. Otto Sackur bemerkte 1913 zu seiner Überraschung, dass man der Phasenraumzelle eine bestimmte Größe geben muss, damit die chemische Konstante mit den Messwerten übereinstimmt. Die Phasenraumzelle (pro Teilchen und pro Raumdimension seiner Bewegung) muss gerade die Größe haben. Seiner Veröffentlichung[18] gab er den Titel Die universelle Bedeutung des sog. Planckschen Wirkungsquantums und Max Planck nannte es von „fundamentaler Bedeutung“, wenn sich die gewagte Hypothese bewahrheitete, dass dies Ergebnis unabhängig von der Art des Gases gilt.[19] Dies war der Fall.

Fundamental an diesem Ergebnis ist insbesondere, dass sich hier ein tiefer Grund für das Phänomen der Quantisierung zu zeigen beginnt, der in vollem Umfang allerdings erst Jahre später mit der Quantenstatistik der Strahlung klar wurde. Eine Phasenraumzelle kann man nämlich auch für Schwingungen definieren, und dann ergibt sich aus der Einsteinschen Formel , dass die Phasenraumzelle für das Lichtquant ebenfalls die Größe hat: Die für die Größe der Phasenraumzelle maßgebliche physikalische Größe ist hier die Wirkung, bei einer Schwingung ist die Wirkung das Produkt aus Energie und Periode : .

h und die Größe der Atome

Die klassische Physik muss bei der Erklärung der stabilen Größe der Atome versagen. Denn wenn sie eine bestimmte Größe erklären könnte, wäre ein z. B. halb so großes Atom dann nach denselben Gesetzen genau so gut möglich. Anders ausgedrückt: Die Grundformeln der klassischen Physik enthalten nicht genügend Naturkonstanten, als dass man aus ihnen eine Formel für eine Größe mit der Dimension einer Länge gewinnen könnte. Das Wirkungsquantum kann diese Lücke schließen, wie schon Planck selber 1899 bemerkte, als er erstmals die Planckschen Einheiten vorstellte (s. o.). Doch weil das Wirkungsquantum nach überwiegender Meinung nicht in die Mechanik eingeführt werden sollte, kam der erste Versuch, es zur Erklärung des Atomradius zu nutzen, erst 1910 durch Arthur Erich Haas zustande und wurde dann sogar z. T. lächerlich gemacht.[20] Dabei nahm Haas an, ein Elektron kreise im Feld einer positiven Ladung , und setzte die Umlauffrequenz und die Bindungsenergie dieses Systems ins Verhältnis . Daraus ergibt sich ein Radius im Bereich der aus der Chemie und der kinetischen Gastheorie bekannten Atomradien.

Mehr Erfolg hatte 1913 Niels Bohr, der in seinem Atommodell vom gleichen Bild ausging, aber auch Kreisbahnen verschiedener Energie und, vor allem, die Emission von Lichtquanten beim Quantensprung von einer zur anderen Bahn einführte. Die Übereinstimmung mit den gemessenen Wellenlängen, die er allerdings nur durch eine kaum zu begründende Quantenbedingung ( mit der neuen Hauptquantenzahl ) erhielt, machte das Modell schnell berühmt. Die tragende Rolle des Wirkungsquantums beim inneren Aufbau der Atome war bewiesen. Die Quantenbedingung wurde schnell als Drehimpulsquantelung erkannt, denn die Kreisbahn zur Hauptquantenzahl kann durch die Bedingung definiert werden, dass der Drehimpuls des Elektrons den Wert hat.

Dieser große Fortschritt machte das Bohrsche Atommodell zum maßgeblichen Ausgangspunkt der weiteren Entwicklungen, obwohl weitere ähnlich große Fortschritte dann jahrelang ausblieben. Insbesondere schlugen die Versuche fehl, Atome mit mehreren Elektronen zu verstehen.

h und die Materiewellen

Der Erfolg des Bohrschen Atommodells seit 1913 verdankte sich zum guten Teil der Bohrschen Quantenbedingung, die von außen hart in die Mechanik eingreift, indem sie dem Elektron nur wenige der mechanisch möglichen Bahnen erlaubt. Aufgrund der anhaltenden Schwierigkeiten mit der weiteren Entwicklung der Atomtheorie wurde nach Möglichkeiten gesucht, die Mechanik selbst so umzugestalten, dass sie die Quantenbedingung von vornherein berücksichtigt. Es sollte die bisherige Quantentheorie von einer regelrechten Quantenmechanik abgelöst werden. Den größten Schritt vor dem wirklichen Beginn der Quantenmechanik leistete Louis de Broglie 1924, indem er materiellen Teilchen, z. B. Elektronen, Welleneigenschaften zuschrieb. Er übertrug die für Photonen gefundene Beziehung zwischen Impuls und Wellenlänge auf die von ihm gedachte Materiewelle des Elektrons. Damit dehnte er den Welle-Teilchen-Dualismus auf Teilchen aus. Als unmittelbarer Erfolg zeigt sich, dass die Bohrsche Kreisbahn zur Hauptquantenzahl n gerade den Umfang hat, mithin die Materiewelle des Elektrons eine stehende Welle darauf ausbilden kann. Ohne über diese Materiewelle viel sagen zu können, fand Erwin Schrödinger Anfang 1926 eine Formel für die Ausbreitung dieser Welle in einem Kraftfeld, mit der er die Wellenmechanik begründete.[21] Für die stationären Zustände des Wasserstoffatoms konnte er mit dieser Schrödingergleichung ohne zusätzliche Quantenbedingung genau die bekannten Ergebnisse berechnen. Zusätzlich wurden bekannte Fehler des Bohrschen Modells behoben, z. B. dass das Atom flach sei oder dass der Drehimpuls nicht sein könne. Als einzige Naturkonstante tritt in der Schrödingergleichung das Wirkungsquantum auf. Gleiches gilt für die Gleichung, die Werner Heisenberg einige Monate zuvor aus einer „quantentheoretischen Umdeutung kinematischer und mechanischer Beziehungen“ gewann,[22] womit er die Matrizenmechanik begründete. Beide Ansätze sind mathematisch äquivalent und werden als Grundgleichungen der eigentlichen Quantenmechanik angesehen. Weiterhin geblieben sind allerdings die Schwierigkeiten, sich ein mit dem Welle-Teilchen-Dualismus verträgliches Bild von den quantenmechanischen Begriffen und Vorgängen zu machen.

Drehimpuls

Die Bezeichnung „Wirkungsquantum“ war für Planck zunächst alleine durch die physikalische Dimension Energie mal Zeit der Konstante motiviert, die als Wirkung bezeichnet wird. Indes hat der klassische mechanische Bahndrehimpuls die gleiche Dimension, und erwies sich ganz allgemein auch als die für den Drehimpuls maßgebliche Naturkonstante.

In dem 1913 von Niels Bohr aufgestellten Atommodell tritt, nachdem es 1917 zum Bohr-Sommerfeldschen Atommodell erweitert wurde, der Bahndrehimpulsvektor des Elektrons als zweifach gequantelte Größe in Erscheinung. Dem Betrag nach kann er wie im Bohrschen Modell nur ganzzahlige Vielfache von annehmen: mit der Drehimpulsquantenzahl . Zusätzlich gilt die Bedingung, dass die Projektion des Drehimpulsvektors der Länge auf eine Koordinatenachse nur die Werte annehmen kann, wobei die magnetische Quantenzahl ganzzahlig ist (s. Richtungsquantelung) und auf den Bereich von bis beschränkt ist. Für die Bahnen zur Hauptquantenzahl kann alle Werte haben.

In der 1925 von Werner Heisenberg und Erwin Schrödinger begründeten Quantenmechanik ergibt sich die gleiche Quantelung des Bahndrehimpulses, indem dieser durch den Operator dargestellt wird. Allerdings hat der Betrag des Drehimpulsvektors nun die Länge . Außerdem gehören im Wasserstoffatom zu den Elektronenzuständen mit Hauptquantenzahl nach quantenmechanischer Berechnung die Bahndrehimpulsquantenzahlen , diese sind also um 1 kleiner als im Bohr-Sommerfeldschen Modell. Dies stimmt mit allen Beobachtungen überein.

Außer dem Bahndrehimpuls können die Teilchen (ebenso Teilchensysteme) auch Spin besitzen, das ist ein Eigendrehimpuls um ihren eigenen Schwerpunkt, oft mit bezeichnet. Auch der Spin wird in Einheiten von ausgedrückt. Es gibt Teilchen, deren Spin ein ganzzahliges Vielfaches von ist (Bosonen), aber auch Teilchen mit halbzahligem Vielfachen von (Fermionen). Die Unterscheidung der zwei Teilchenarten Bosonen und Fermionen ist in der Physik grundlegend. Die Erweiterung von nur ganzzahligen zu halbzahligen Quantenzahlen des Drehimpulses ergibt sich aus den Eigenschaften des quantenmechanischen Spinoperators . Seine drei Komponenten erfüllen miteinander dieselben Vertauschungsrelationen wie die Komponenten des Bahndrehimpulsoperators . Für den Bahndrehimpuls gilt darüber hinaus , dies gilt jedoch nicht für den Spin.[23]

Unschärferelation

In der Heisenbergschen Vertauschungsrelation tritt das (reduzierte) Plancksche Wirkungsquantum als Wert des Kommutators zwischen Orts- und Impulsoperator auf:

Als Folge gilt für das Produkt aus Orts- und Impulsunschärfe die Heisenbergsche Unschärferelation

Von-Klitzing-Konstante

Die Von-Klitzing-Konstante ist die Größe , die beim Quanten-Hall-Effekt auftritt. Sie hat die von elektrischen Widerständen bekannte Einheit Ohm, ihr Wert ist .[24] Diese Konstante kann extrem genau gemessen werden. Sie könnte analog zur modernen Festlegung der Lichtgeschwindigkeit dazu dienen, die Bestimmung der Planckschen Konstanten auf sehr genaue Widerstandsmessungen zurückzuführen.

h und die Definition des Kilogramms

Das Bureau International des Poids et Mesures,[25] das für die Definition des Internationalen Einheitensystems (SI-Einheiten) zuständig ist, hat 2010 einen Vorschlag für ein erneuertes Einheitensystem verabschiedet,[26] in dem die Definition des Kilogramms auf das Plancksche Wirkungsquantum zurückgeführt wird. Da die Einheit des Wirkungsquantums ist, wird damit zusammen mit der Definition von Meter und Sekunde auch das Kilogramm auf eine physikalische Naturkonstante zurückgeführt.

Literatur

  • Domenico Giulini: „Es lebe die Unverfrorenheit!“ – Albert Einstein und die Begründung der Quantentheorie. online (PDF; 453 kB). In: Herbert Hunziker: Der jugendliche Einstein und Aarau. Birkhäuser 2005, ISBN 3-7643-7444-6.
  • Enrico G. Beltrametti: One Hundred Years of h. Italian Physical Soc., Bologna 2002, ISBN 88-7438-003-8.

Weblinks

Wiktionary: Wirkungsquantum – Bedeutungserklärungen, Wortherkunft, Synonyme, Übersetzungen

Einzelnachweise

  1. a b Max Planck (beachte: a = Boltzmannkonstante (Temp.), b = Wirkumsquantum, f = Gravitationskonstante, c = Lichtgeschwindigkeit): Über irreversible Strahlungsvorgänge. Sitzungsberichte der Königlich Preußischen Akademie der Wissenschaften zu Berlin. 1899 - Erster Halbband (Berlin: Verl. d. Kgl. Akad. d. Wiss., 1899). Seite 479–480.
  2. Michael Bonitz: Max Planck, das Wirkumsquantum und die moderne Physik. (PDF).
  3. Günter Sturm: 100 Jahre Quantentheorie. Bei: quanten.de. Sonderausgabe 14. Dezember 2000.
  4. Max Planck: Vorlesungen über die Theorie der Wärmestrahlung. Verlag Joh. Amb. Barth, Leipzig 1906, S. 154.
  5. Max Planck: Zur Geschichte der Auffindung des physikalischen Wirkungsquantums. Naturwissenschaften Bd. 31, Nr. 14 (1943), S. 153-159.
  6. CODATA Recommended Values. National Institute of Standards and Technology, abgerufen am 4. August 2015.
  7. CODATA Recommended Values. National Institute of Standards and Technology, abgerufen am 4. August 2015. Wert für in der Einheit Js. Die eingeklammerten Ziffern bezeichnen die Unsicherheit in den letzten Stellen des Wertes, diese Unsicherheit ist als geschätzte Standardabweichung des angegebenen Zahlenwertes vom tatsächlichen Wert angegeben.
  8. CODATA Recommended Values. National Institute of Standards and Technology, abgerufen am 4. August 2015. Wert für in der Einheit eVs. Die eingeklammerten Ziffern bezeichnen die Unsicherheit in den letzten Stellen des Wertes, diese Unsicherheit ist als geschätzte Standardabweichung des angegebenen Zahlenwertes vom tatsächlichen Wert angegeben.
  9. Die Ein-Zeichen-Notation für das reduzierte Plancksche Wirkungsquantum wurde im Jahr 1926 von P. A. M. Dirac eingeführt. Ein kurzer Abschnitt zur Historie findet sich z. B. in M. Jammer: The Conceptual Development of Quantum Mechanics. McGraw-Hill, New York 1966, S. 294. Diracs Originalarbeit: P. A. M. Dirac: Quantum mechanics and a preliminary investigation of the hydrogen atom. Proc. Roy. Soc. A, 110 (1926), S. 561–579.
  10. CODATA Recommended Values. National Institute of Standards and Technology, abgerufen am 4. August 2015. in der Einheit Js. Die eingeklammerten Ziffern bezeichnen die Unsicherheit in den letzten Stellen des Wertes, diese Unsicherheit ist als geschätzte Standardabweichung des angegebenen Zahlenwertes vom tatsächlichen Wert angegeben.
  11. CODATA Recommended Values. National Institute of Standards and Technology, abgerufen am 4. August 2015. in der Einheit eVs. Die eingeklammerten Ziffern bezeichnen die Unsicherheit in den letzten Stellen des Wertes, diese Unsicherheit ist als geschätzte Standardabweichung des angegebenen Zahlenwertes vom tatsächlichen Wert angegeben.
  12. J. Bleck-Neuhaus: Elementare Teilchen. 2. Auflage, Springer Verlag 2013, ISBN 978-3-642-32578-6, Seite 43–45.
  13. CODATA Recommended Values. National Institute of Standards and Technology, abgerufen am 4. August 2015. Wert von . Die eingeklammerten Ziffern bezeichnen die Unsicherheit in den letzten Stellen des Wertes, diese Unsicherheit ist als geschätzte Standardabweichung des angegebenen Zahlenwertes vom tatsächlichen Wert angegeben.
  14. Abraham Pais: Introducing Atoms and their Nuclei. In: Laurie M. Brown u. a. (Hrsg.): Twentieth Century Physics. Vol. I, IOP Publishing Ltd. AIP Press. Inc. 1995, ISBN 0-7503-0353-0.
  15. Max Planck: Über irreversible Strahlungsvorgänge. Sitzungsberichte der Königlich Preußischen Akademie der Wissenschaften zu Berlin. 1899 - Erster Halbband (Berlin: Verl. d. Kgl. Akad. d. Wiss., 1899). Seite 440-480.
  16. M. Planck: Zur Theorie des Gesetzes der Energieverteilung im Normalspektrum. Verhandlungen der Deutschen physikalischen Gesellschaft 2(1900) Nr. 17, S. 237–245, Berlin (vorgetragen am 14. Dezember 1900).
  17. Albert Einstein: Über einen die Erzeugung und Verwandlung des Lichtes betreffenden heuristischen Gesichtspunkt. Annalen der Physik, 17 (1905), S. 133 und S. 143. (Online-Dokument: PDF).
  18. Otto Sackur, Annalen der Physik Bd. 354 (1913) S. 67.
  19. Max Planck: Die gegenwärtige Bedeutung der Quantenhypothese für die kinetische Gastheorie. Phys. Zeitschr. Bd. 14 (1913) S. 258.
  20. Max Jammer: The Conceptual Development of Quantum Mechanics. McGraw-Hill, NewYork 1966.
  21. E. Schrödinger: Quantisierung als Eigenwertproblem I. Annalen der Physik 79 (1926), S. 361-376.
  22. W. Heisenberg: Über quantentheoretische Umdeutung kinematischer und mechanischer Beziehungen. In: Zeitschrift für Physik. Band 33, 1925, S. 879–893.
  23. Cornelius Noack: Bemerkungen zur Quantentheorie des Bahndrehimpulses. In: Physikalische Blätter. Band 41, Nr. 8, 1985, S. 283–285 (siehe Homepage. (PDF; 154 kB) Abgerufen am 26. November 2012.).
  24. CODATA Recommended Values. National Institute of Standards and Technology, abgerufen am 4. August 2015. Wert von
  25. Bureau International des Poids et Mesures
  26. Resolution 1 of the 24th CGPM. Bei: bipm.org. Zugriff am 9. April 2013.