Stiban

aus Wikipedia, der freien Enzyklopädie
Wechseln zu: Navigation, Suche
Strukturformel
Struktur von Stiban
Allgemeines
Name Stiban
Andere Namen
  • Antimonhydrid
  • Antimontrihydrid
  • Antimonwasserstoff
  • Monostiban
  • Stibin
Summenformel SbH3
CAS-Nummer 7803-52-3
Kurzbeschreibung

farbloses, unangenehm faulig riechendes Gas[1]

Eigenschaften
Molare Masse 124,77 g·mol−1
Aggregatzustand

gasförmig

Dichte

2,16 g·cm−3 (flüssig, −17 °C)[1]

Schmelzpunkt

−88,5 °C[1]

Siedepunkt

−17 °C[1]

Dampfdruck

82,8 kPa (−23 °C)[2]

Löslichkeit
Dipolmoment

0,4·10−30 C·m [4]

Sicherheitshinweise
GHS-Gefahrstoffkennzeichnung [1]
02 – Leicht-/Hochentzündlich 04 – Gasflasche 06 – Giftig oder sehr giftig
H- und P-Sätze H: 220​‐​280​‐​330
P: ?
EU-Gefahrstoffkennzeichnung [5][1]
Sehr giftig Hochentzündlich
Sehr giftig Hoch-
entzündlich
(T+) (F+)
R- und S-Sätze R: 12​‐​26
S: (1)​‐​9​‐​16​‐​33​‐​36​‐​45Vorlage:S-Sätze/Wartung/mehr als 5 Sätze
Thermodynamische Eigenschaften
ΔHf0

145 kJ/mol [4]

Soweit möglich und gebräuchlich, werden SI-Einheiten verwendet. Wenn nicht anders vermerkt, gelten die angegebenen Daten bei Standardbedingungen.
Vorlage:Infobox Chemikalie/Summenformelsuche nicht möglich

Stiban (Monostiban oder Antimonwasserstoff, veraltet auch als Stibin bezeichnet), chemische Formel SbH3, ist ein farbloses, übelriechendes und äußerst giftiges Gas, das bei der Auflösung von salzartigen Antimoniden in Wasser und verdünnten Säuren entsteht.

Gewinnung und Darstellung[Bearbeiten]

Stiban wird aus löslichen Antimonverbindungen und naszierendem Wasserstoff gewonnen. So entsteht bei der Reaktion von Antimon(III)-hydroxid mit naszierendem Wasserstoff Stiban und Wasser.

\mathrm{Sb(OH)_3 + 6 \ H \to SbH_3 + 3 \ H_2O}

Eine andere Möglichkeit besteht darin, Magnesiumantimonid in einem Überschuss verdünnter Salzsäure zu lösen.

\mathrm{Mg_3Sb_2 + 6 \ HCl \to 2 \ SbH_3 + 3 \ MgCl_2}

Beide Methoden bringen jedoch den Nachteil mit sich, dass das entstehende Gas hauptsächlich aus Wasserstoff besteht. Durch Abkühlen des Gases auf unter −17 °C kann dieser jedoch abgetrennt werden, da Stiban bei dieser Temperatur kondensiert.

Eine Methode, die diesen Nachteil nicht mit sich bringt, ist die Hydrierung von Antimon(III)-chlorid mittels Natriumborhydrid in salzsaurer Lösung.[3]

\mathrm{SbCl_3 + 3 \ NaBH_4 \longrightarrow\ SbH_3 + 3\ NaCl + 3 \ BH_3}

Eigenschaften[Bearbeiten]

Physikalische Eigenschaften[Bearbeiten]

Der Schmelzpunkt liegt bei −88 °C, der Siedepunkt bei −17 °C. Die Gibbs-Energie \Delta_f G^0_g beträgt 148 kJ/mol, die Standardentropie S^0_g 233 J/(mol·K) und die Wärmekapazität C^0_{pg} 41 J/(mol·K).[4] Stiban ist ein pyramidales Molekül mit den drei Wasserstoff-Atomen an der dreieckigen Pyramidenbasis und dem Antimon-Atom an der Pyramidenspitze. Die Winkel H-Sb-H betragen 91,7°, der Abstand Sb-H beträgt 1,707 Å.

Chemische Eigenschaften[Bearbeiten]

Die chemischen Eigenschaften des Stibans ähneln dem Arsenwasserstoff. Typisch für ein Schwermetallhydrid ist Stiban instabiler als die jeweiligen Elemente. Bei Raumtemperatur zerfällt das Gas langsam, bei 200 °C jedoch sehr schnell. Dieser Prozess verläuft autokatalytisch und unter Umständen explosiv.

\mathrm{2 SbH_3 \to 3 H_2 + 2 Sb}

Mit starken Basen lässt sich Stiban unter Bildung von Antimoniden deprotonieren.

Verwendung[Bearbeiten]

Stiban wird in der Halbleiterindustrie zur n-Dotierung von Silicium verwendet.

Sicherheitshinweise[Bearbeiten]

Aufgrund der hohen Toxizität und der leichten Entflammbarkeit ist beim Umgang mit Stiban Vorsicht geboten. Es sollte mit Schutzkleidung und Schutzmaske, fernab von offenen Flammen und Funkenbildung gehandhabt werden.

Einatmen von Stiban kann zu Husten, Übelkeit, Hals- und Kopfschmerzen, Mattigkeit, blutigem Urin und zu Atemnot führen. Es können Schädigungen des Blutes, der Leber, der Nieren und des Zentralnervensystems auftreten, die zum Tod führen können.

Aufgrund der Instabilität sollte Stiban wenn möglich nicht gelagert werden.

Nachweis[Bearbeiten]

Stiban lässt sich mit der Marsh’schen Probe nachweisen. Hierzu wird Stiban, vermischt mit Wasserstoff, durch ein dünnes, zu einer Spitze ausgezogenem Glasrohr, geleitet und am Ende abgefackelt. Dabei wird das Glasrohr mit einem Bunsenbrenner erhitzt, wobei sich bei Anwesenheit von Stiban im Glasrohr ein Antimonspiegel bildet. Der Antimonspiegel unterscheidet sich von einem Arsenspiegel durch seine dunklere Farbe, außerdem ist er in Natriumhypochloritlösung unlöslich und färbt sich mit Polysulfidlösung orange.

Literatur[Bearbeiten]

  • A.F. Holleman, E. Wiberg: Lehrbuch der Anorganischen Chemie. 101. Auflage. Walter de Gruyter, Berlin/New York 1995, ISBN 3-11-012641-9.
  • G. Jander, E. Blasius: Lehrbuch der analytischen und präparativen anorganischen Chemie. 15. Auflage. S. Hirzel Verlag, Stuttgart/Leipzig 2002, ISBN 3-7776-1146-8.
  • Antimonwasserstoff. In: Römpp Online. Georg Thieme Verlag, abgerufen am 13. Juni 2014.

Einzelnachweise[Bearbeiten]

  1. a b c d e f Eintrag zu Stiban in der GESTIS-Stoffdatenbank des IFA, abgerufen am 14. September 2007 (JavaScript erforderlich)
  2. L. Berka, T. Briggs, M. Millard, W. Jolly: The preparation of stibine and the measurement of its vapour pressure. In: Journal of Inorganic and Nuclear Chemistry. 14, 1960, S. 190–194, doi:10.1016/0022-1902(60)80257-6.
  3. a b c Antimonwasserstoff. In: Römpp Online. Georg Thieme Verlag, abgerufen am 13. Juni 2014.
  4. a b c G.H. Aylward, T.J.V. Findlay: Datensammlung Chemie in SI-Einheiten. 3. Auflage. Wiley-VCH, 1999, ISBN 3-527-29468-6.
  5. Seit 1. Dezember 2012 ist für Stoffe ausschließlich die GHS-Gefahrstoffkennzeichnung zulässig. Bis zum 1. Juni 2015 dürfen noch die R-Sätze dieses Stoffes für die Einstufung von Gemischen herangezogen werden, anschließend ist die EU-Gefahrstoffkennzeichnung von rein historischem Interesse.