„Supercomputer“ – Versionsunterschied

aus Wikipedia, der freien Enzyklopädie
Zur Navigation springen Zur Suche springen
[ungesichtete Version][ungesichtete Version]
Inhalt gelöscht Inhalt hinzugefügt
Eagleeye2222 (Diskussion | Beiträge)
K →‎TOP10 Juni 2007: http://www.spiegel.de/netzwelt/tech/0,1518,516854,00.html
Zeile 375: Zeile 375:
<TR>
<TR>
<TD align=right>2</TD>
<TD align=right>2</TD>

<TD>-</TD>
<TD>Jülich<ref>[http://www.spiegel.de/netzwelt/tech/0,1518,516854,00.html Deutschland rechnet am schnellsten im zivilen Bereich]</ref></TD>
<TD>Deutschland</TD>
<TD align=middle>-</TD>
<TD>65.000</TD>
<TD>167</TD></TR>

<TR>
<TD align=right>3</TD>


<TD>Jaguar (Cray TX3)</TD>
<TD>Jaguar (Cray TX3)</TD>
Zeile 383: Zeile 393:
<TD>101,7</TD></TR>
<TD>101,7</TD></TR>
<TR>
<TR>
<TD align=right>3</TD>
<TD align=right>4</TD>
<TD>Red Storm (Cray)</TD>
<TD>Red Storm (Cray)</TD>


Zeile 392: Zeile 402:
<TD>101,4</TD></TR>
<TD>101,4</TD></TR>
<TR>
<TR>
<TD align=right>4</TD>
<TD align=right>5</TD>
<TD>eServer BlueGene (IBM)</TD>
<TD>eServer BlueGene (IBM)</TD>
<TD>IBM, Thomas Watson</TD>
<TD>IBM, Thomas Watson</TD>
Zeile 401: Zeile 411:
<TD>91,3</TD></TR>
<TD>91,3</TD></TR>
<TR>
<TR>
<TD align=right>5</TD>
<TD align=right>6</TD>
<TD>eServer BlueGene (IBM)</TD>
<TD>eServer BlueGene (IBM)</TD>
<TD>Stony Brook, BNL</TD>
<TD>Stony Brook, BNL</TD>
Zeile 410: Zeile 420:
<TD>82,2</TD></TR>
<TD>82,2</TD></TR>
<TR>
<TR>
<TD align=right>6</TD>
<TD align=right>7</TD>
<TD>ASCI Purple - eServer pSeries p5 575 (IBM)</TD>
<TD>ASCI Purple - eServer pSeries p5 575 (IBM)</TD>
<TD>DOE/NNSA/LLNL</TD>
<TD>DOE/NNSA/LLNL</TD>
Zeile 419: Zeile 429:
<TD>75,8</TD></TR>
<TD>75,8</TD></TR>
<TR>
<TR>
<TD align=right>7</TD>
<TD align=right>8</TD>
<TD>eServer BlueGene (IBM)</TD>
<TD>eServer BlueGene (IBM)</TD>
<TD>Rensselaer Polytechnic Inst.</TD>
<TD>Rensselaer Polytechnic Inst.</TD>
Zeile 428: Zeile 438:
<TD>73,0</TD></TR>
<TD>73,0</TD></TR>
<TR>
<TR>
<TD align=right>8</TD>
<TD align=right>9</TD>
<TD>Dell PowerEdge 1955</TD>
<TD>Dell PowerEdge 1955</TD>
<TD>NCSA</TD>
<TD>NCSA</TD>
Zeile 437: Zeile 447:


<TR>
<TR>
<TD align=right>9</TD>
<TD align=right>10</TD>
<TD>MareNostrum (IBM) </TD>
<TD>MareNostrum (IBM) </TD>
<TD>Barcelona Supercomputer</TD>
<TD>Barcelona Supercomputer</TD>
Zeile 444: Zeile 454:
<TD>12208 Power970 2,3 GHz</TD>
<TD>12208 Power970 2,3 GHz</TD>
<TD>62,6</TD></TR>
<TD>62,6</TD></TR>
<TR>
<TD align=right>10</TD>

<TD>Altix 4700</TD>
<TD>Leibniz-Rechenzentrum</TD>
<TD>Deutschland</TD>
<TD align=middle>11</TD>
<TD>9728 Itanium2 Montecito 1,6 GHz</TD>
<TD>56,5</TD></TR>
|}
|}



Version vom 12. November 2007, 17:19 Uhr

Der Columbia-Supercomputer der NASA mit 20 x 512 Intel-Itanium-2-Prozessoren)
Logik-Recheneinheit des Cray-1-Rechners

Als Supercomputer oder Superrechner werden Hochleistungsrechner bezeichnet, die zum Zeitpunkt ihrer Einführung im obersten realisierbaren Leistungsbereich operieren. Dabei ist es unerheblich, auf welcher Bauweise die Rechner beruhen. Ein typisches Merkmal eines modernen Supercomputers ist seine große Anzahl an Prozessoren, die auf gemeinsame Peripheriegeräte und einen teilweise gemeinsamen Hauptspeicher zugreifen können.

Da sich nicht beliebig schnelle Prozessoren bauen lassen, sind alle Hochleistungsrechner Parallelrechner. Ein Parallelrechner ist ein Computer, in dem Operationen gleichzeitig auf mehrere CPUs verteilt werden, um die Arbeitsgeschwindigkeit zu erhöhen. Für die optimale Nutzung eines Supercomputers (Parallelrechners) muss die Programmierung deshalb möglichst genau auf die einzelnen, parallel arbeitenden Prozessoren abgestimmt werden.

Supercomputer werden heute zumeist als Vektorrechner oder Skalarrechner konzipiert. Sie basieren auf unterschiedlichen Prozessorarchitekturen. Vektorprozessoren (auch Vektorrechner oder Array-Prozessoren genannt) führen eine Berechnung gleichzeitig auf vielen Daten (in einem Vektor bzw. Array) aus. Skalarprozessoren können dagegen nur ein Operandenpaar pro Befehl bearbeiten. Skalarrechner basieren daher oft auf Tausenden von Standardprozessoren, die miteinander vernetzt sind (Computercluster).

Ursprünglich wurde die herausragende Rechenleistung durch maximale Ausnutzung der verfügbaren Technik erzielt, indem Konstruktionen gewählt wurden die für größere Serienproduktion zu teuer waren (z.B. Flüssigkeitskühlung, exotische Bauelemente und Materialien, kompakter Aufbau für kurze Signalwege), die Zahl der Prozessoren war eher gering. Seit geraumer Zeit etablieren sich vermehrt sog. Cluster, bei denen eine große Anzahl von (meist preiswerten) Einzelrechnern zu einem großen Rechner vernetzt werden. Im Vergleich zu einem Vektorrechner besitzen die Knoten in einem Cluster eigene Peripherie und ausschließlich einen eigenen, lokalen Hauptspeicher. Cluster verwenden Standardkomponenten, deshalb bieten sie gegenüber Vektorrechnern zunächst Kostenvorteile gegenüber Vektorrechnern. Sie erfordern aber einen weit höheren Programmieraufwand. Es ist abzuwägen, ob die eingesetzten Programme sich dafür eignen, auf viele Prozessoren verteilt zu werden. Supercomputer werden grundsätzlich in 64 Bit programmiert, Programmiersprachen sind unter anderem Fortran und C.

Eng verbunden mit dem Begriff Supercomputer ist die Firma Cray. Sie ist benannt nach ihrem Gründer Seymour Cray und stellte die ersten Supercomputer in den 1970er Jahren her. Der erste offiziell installierte Supercomputer Cray-1 schaffte 1976 130 MegaFLOPS. Zum Vergleich, ein normaler PC kann heutzutage mehrere GigaFLOPS ausführen.

Die schnellsten Supercomputer werden halbjährlich in der Top-500 Liste aufgeführt. Als Bewertungsgrundlage dient der Linpack-Benchmark.

Einsatzzweck von Supercomputern

Die Herstellungskosten eines Supercomputers aus der TOP10 bewegen sich derzeit in einem sehr hohen zweistelligen, oftmals bereits dreistelligen Euro-Millionenbetrag. Nach oben sind dabei keine Grenzen gesetzt. Für den in Planung stehenden neuen Supercomputer im Bereich um 10 PFLOPS werden derzeit fast 700 Millionen Euro veranschlagt. Bei diesen enormen Investitionssummen stellt sich zwangsläufig die Frage, wofür diese sehr teuren Geräte benötigt werden und ob sich die Investition in die Entwicklung eines solchen Gerätes, außer aus reinen Prestigegründen, rentiert.

Die heutigen Supercomputer werden überwiegend zu Simulationszwecken eingesetzt. Je realitätsnäher eine Simulation komplexer Zusammenhänge wird, desto mehr Rechenleistung wird in der Regel benötigt. Der Vorteil der Supercomputer ist außerdem, dass sie durch ihre extrem schnelle und große Rechenleistung immer mehr Interdependenzen berücksichtigen können. Dies erlaubt also das Einbeziehen immer weiterreichender, oftmals auch unscheinbarer Neben- oder Randbedingungen zur eigentlichen Simulation und gewährleistet dadurch ein immer aussagekräftigeres Gesamtergebnis.

Die derzeitigen Haupteinsatzgebiete der Supercomputer umfassen dabei die Bereiche Biologie, Chemie, Geologie, Luft- und Raumfahrt, Medizin, Wetter- sowie Klimaforschung, Militär und Physik.

Bis auf das Militär, welches hauptsächlich militärische Planspiele betreibt, kennzeichnen sich die Bereiche dadurch, dass es sich um sehr komplexe Systeme bzw. Teilsysteme handelt, die in weitreichendem Maße miteinander verknüpft sind. So haben Veränderungen in dem einen Teilsystem meist mehr oder minder starke Auswirkungen auf benachbarte oder angeschlossene Systeme. Durch den Einsatz von Supercomputern wird es immer leichter möglich viele solcher Konsequenzen zu berücksichtigen oder sogar zu prognostizieren, wodurch bereits weit im Vorfeld etwaige Gegenmaßnahmen getroffen werden könnten. Dies gilt z. B. bei Simulationen zum Klimawandel, der Vorhersagen von Erdbeben oder Vulkanausbrüchen sowie in der Medizin bei der Simulation neuer Wirkstoffe auf den Organismus. (Jedoch sind logischerweise solche Simulationen nur so genau, wie es die programmierten Parameter bzw. Modelle zur Berechnung zulassen.) Die enormen Investitionsummen in die stetige Steigerung der FLOPS und damit die Entwicklung von immer schnelleren Supercomputern werden vor allem mit den Nutzenvorteilen und dem eventuellen „Wissensvorsprung“ für die Menschheit gerechtfertigt, weniger aus den Aspekten des allgemeinen technischen Fortschritts.

Ausgewählte Supercomputer (weltweit)

Name Standort TeraFLOPS Konfiguration Zweck
BlueGene/L Lawrence Livermore National Laboratory Livermore (USA) 280,6 131.072 PowerPC 440-Prozessoren 700 MHz , 32.768 GB RAM Physikalische Simulationen
Blue Gene Watson IBM Thomas J. Watson Research Center (USA) 91,29 40.960 PowerPC 440 Prozessoren Forschungsabteilung von IBM, aber auch Anwendungen aus Wissenschaft und Wirtschaft
ASCI Purple Lawrence Livermore National Laboratory Livermore (USA) 75,76 12.208 Power5 CPUs, 48.832 GB RAM Physikalische Simulationen (z. B. Atomwaffensimulationen)
MareNostrum Universitat Politècnica de Catalunya (Spanien) 63,63 10.240 PowerPC 970MP 2,3 GHz Klima- und Genforschung, Pharmazie
HLRB II LRZ Garching bei München (Deutschland) 56,52 9.728 CPUs 1,6 GHz Intel Itanium 2 (Montecito Dual Core), 39 TB RAM Naturwissenschaften, Astrophysik und Materialforschung
Columbia NASA Ames Research Center (Silicon Valley, Kalifornien, USA) 51,87 10.160 Intel Itanium 2 Prozessoren (Madison Kern) Klimamodellierung, astrophysikalische Simulationen
JUBL (Jülicher BlueGene/L) Forschungszentrum Jülich (Deutschland) 37,33 16.384 PowerPC 440-Prozessoren 700 MHz, 4096 GB RAM Materialwissenschaften, theoretische Chemie, Elementarteilchenphysik, Umwelt, Astrophysik
Earth Simulator Yokohama Institute for Earth Sciences (Japan) 35,86 5120 500 MHz NEC SX-6 CPUs, 10 TB RAM Klimamodellierung
ASCI Q Los Alamos National Laboratory (New Mexico, USA) 13,88 8192 DEC Alpha EV68 CPUs, 12 TB RAM Simulation
System X oder alt: Terascale Cluster Virginia Polytechnic Institute and State University (USA) 12,25 1100 Dual 2,3 GHz Apple Xserve G5 (IBM PPC970FX CPU), 4,4 TB RAM Quantenchemie, Simulationen, Nanoelektronik und weitere
NEC SX-8/576M72 Höchstleistungsrechenzentrum Stuttgart (HLRS) 8,92 (nur Vektorteil) 576 CPUs 2 GHz SX-8, 9216 GB RAM Ingenieurwissenschaftliche Anwendungen, Physik, Chemie, Lebenswissenschaften, Nutzung durch Industrie, CFD
Albert2 BMW Sauber F1 Team / Hinwil (Schweiz) 12.2 512 CPU Intel Xeon 5160-Prozessoren (DualCore) 1.024 Kerne;2.048 GB RAM Computergestützte Strömungssimulation (CFD)
MCR Linux Cluster Lawrence Livermore National Laboratory, Livermore (USA) 7,63 2304 Intel 2,4 GHz Xeon CPUs, 4,6 TB RAM Simulation von Nuklearwaffen

Ausgewählte Supercomputer (deutschlandweit)

Name Standort TeraFLOPS Konfiguration Zweck
JUGENE Forschungszentrum Jülich 167 65.536 CPUs Materialwissenschaften, theoretische Chemie, Elementarteilchenphysik, Umwelt, Astrophysik
HLRB II LRZ Garching (Deutschland) 56,52 9.728 CPUs 1,6 GHz Intel Itanium 2 (Montecito Dual Core), 39 TB RAM Naturwissenschaften, Astrophysik und Materialforschung
JUBL (Jülicher BlueGene/L) Forschungszentrum Jülich 37,33 16.384 PowerPC440-Prozessoren 700 MHz, 4096 GB RAM Materialwissenschaften, theoretische Chemie, Elementarteilchenphysik, Umwelt, Astrophysik
HP XC4000 Höchstleistungsrechner-Kompetenzzentrum Baden-Württemberg (hkz-bw), Karlsruhe über 15 AMD Opteron, 12 TB RAM Physikalische Simulationen
NEC SX8/576M72 Höchstleistungsrechenzentrum Stuttgart (HLRS) 8,92 (nur Vektorteil) 576 CPUs 2 GHz SX-8, 9216 GB RAM Ingenieurwissenschaftliche Anwendungen, Physik, Chemie, Lebenswissenschaften, Nutzung durch Industrie
CHiC Cluster (IBM x3455) TU Chemnitz 8,21 2152 Cores aus 1076 Dual-Core 64 bit AMD Opteron 2218 (2600 MHz) Modellierung und numerische Simulation
JUMP (IBM pSeries 690-Knoten) Forschungszentrum Jülich 5,57 1312 CPUs 1,7 GHz Power4+, 5000 GB RAM Materialwissenschaften, theoretische Chemie, Elementarteilchenphysik, Umwelt, Astrophysik
HLRN-I (IBM pSeries 690-Knoten) Zuse-Institut Berlin, Rechenzentrum der Universität Hannover 5,2 1024 CPUs 1,7 GHz Power4, 5 TB RAM Physik, Chemie, Umwelt- und Meeresforschung, Ingenieurwissenschaften
IBM eSeries p5 575-Knoten Max-Planck-Gesellschaft MPI/IPP Garching 4,56 688 CPUs 1,7 GHz Power5, 2816 GB RAM Physikalische Simulationen, z. B. die Millennium-Simulation
IBM eSeries p5 575-Knoten Deutscher Wetterdienst 2,75 416 CPUs 1,9 GHz Power5
ARMINIUS Universität Paderborn 2,56 200 Dual INTEL XEON je 3,2 GHz + 4GB RAM, 16 Dual AMD Opteron je 2,2GHz + 8GB RAM
ALiCEnext Bergische Universität Wuppertal 2,08 1024 CPUs 1,8 GHz Opteron Wissenschaftliche Anwendungen
HHLR (Hessischer Hochleistungsrechner) Technische Universität Darmstadt 2,05 (siehe Diskussion) 584 CPUs 1,5 – 1,9 GHz Power4 und Power5 Wissenschaftliche Anwendungen
Hitachi SR8000-F1/168 LRZ Garching 1,65 1512 CPUs, 1376 GB RAM vektorisierbare Programme, 2006 stillgelegt
NEC SX-6 Deutsches Klimarechenzentrum 1,5 192 Vektor-CPUs, 1,5 TB RAM Klimamodellierung
Beowulf-Cluster CLIC TU Chemnitz 0,2216 528 Pentium-III-Prozessoren (800 Mhz), 264 GB SDRAM im Wesentlichen Forschung auf dem Gebiet der Physik an der TU-Chemnitz
Kepler-Cluster Tübingen 0,096 196 Pentium-III-Prozessoren mit 650 MHz, 100 GB RAM Astrophysik und Strömungsmechanik, Entwicklung stabiler numerischer Verfahren

Die schnellsten Supercomputer ihrer Zeit


Jahr Supercomputer Spitzengeschwindigkeit Ort
1906 Babbage Analytical Engine, Mill 0,3 OPS RW Munro, Woodford Green, Essex, England
1928 IBM 301[1] 1,7 OPS verschiedene Orte weltweit
1931 IBM Columbia Difference Tabulator[2] 2,5 OPS Columbia University
1942 Atanasoff-Berry Computer (ABC) 30 OPS Iowa State University, Ames (Iowa), USA
TRE Heath Robinson 200 OPS Bletchley Park, Milton Keynes, England
1943 Flowers Colossus 5 kOPS
1946
 
UPenn ENIAC
(vor den Modifikationen von 1948+)
50 kOPS Aberdeen Proving Ground, Maryland, USA
 
1954 IBM NORC 67 kOPS U.S. Naval Proving Ground, Dahlgren, Virginia, USA
1956 MIT TX-0 83 kOPS Massachusetts Inst. of Technology, Lexington, Massachusetts, USA
1958 IBM SAGE 400 kOPS 25 U.S. Air Force-Stützpunkte in den USA und ein Ort in Kanada (52 Computer)
1960 UNIVAC LARC 500 kFLOPS Lawrence Livermore National Laboratory, Kalifornien, USA
1961 IBM 7030 "Stretch" 1,2 MFLOPS Los Alamos National Laboratory, New Mexico, USA
1964 CDC 6600 3 MFLOPS Lawrence Livermore National Laboratory, Kalifornien, USA
1969 CDC 7600 36 MFLOPS
1974 CDC STAR-100 100 MFLOPS
1975 Burroughs ILLIAC IV 150 MFLOPS NASA Ames Research Center, Kalifornien, USA
1976 Cray-1 250 MFLOPS Los Alamos National Laboratory, New Mexico, USA (weltweit über 80 Mal verkauft)
1981 CDC Cyber 205 400 MFLOPS verschiedene Orte weltweit
1983 Cray X-MP/4 941 MFLOPS Los Alamos National Laboratory; Lawrence Livermore National Laboratory; Battelle; Boeing
1984 M-13 2,4 GFLOPS Scientific Research Institute of Computer Complexes, Moskau, UdSSR
1985 Cray-2/8 3,9 GFLOPS Lawrence Livermore National Laboratory, Kalifornien, USA
1989 ETA10-G/8 10,3 GFLOPS Florida State University, Florida, USA
1990 NEC SX-3/44R 23,2 GFLOPS NEC Fuchu Plant, Fuchū, Japan
1993 Thinking Machines CM-5/1024 65,5 GFLOPS Los Alamos National Laboratory; National Security Agency
Fujitsu Numerical Wind Tunnel 124,50 GFLOPS National Aerospace Laboratory, Tokio, Japan
Intel Paragon XP/S 140 143,40 GFLOPS Sandia National Laboratories, New Mexico, USA
1994 Fujitsu Numerical Wind Tunnel 170,40 GFLOPS National Aerospace Laboratory, Tokio, Japan
1996 Hitachi SR2201/1024 220,4 GFLOPS Universität Tokio, Japan
1996 Hitachi/Tsukuba CP-PACS/2048 368,2 GFLOPS Center for Computational Physics, University of Tsukuba, Tsukuba, Japan
1997 Intel ASCI Red/9152 1,338 TFLOPS Sandia National Laboratories, New Mexico, USA
1999 Intel ASCI Red/9632 2,3796 TFLOPS
2000 IBM ASCI White 7,226 TFLOPS Lawrence Livermore National Laboratory, Kalifornien, USA
2002 NEC Earth Simulator 35,86 TFLOPS Earth Simulator Center, Yokohama-shi, Japan
2004 SGI Project Columbia 42,7 TFLOPS Project Columbia, NASA Advanced Supercomputing Facility, USA
2004 IBM BlueGene/L 70,72 TFLOPS U.S. Department of Energy/IBM, USA
2005 136,8 TFLOPS U.S. Department of Energy/U.S. National Nuclear Security Administration,
Lawrence Livermore National Laboratory, Kalifornien, USA

Leistungen von Supercomputern

(im weiteren Sinne)

  • zum Vergleich: sämtliche Berechnungen aller Computer weltweit von 1960 bis 1970 könnte der Earth Simulator in etwa 35 Minuten durchführen.
  • in einem angenommenen Balkendiagramm, in welchem 1 Millimeter Balkenlänge für 100 MegaFLOPS stehen, wäre der entsprechende Balken für 100 TeraFLOPS 1 Kilometer groß.
  • Deep Blue 2 (Hochleistungsrechner von IBM) schlägt als erster Computer einen Schachweltmeister in einem offiziellen Zweikampf.
  • Yasumasa Kanada bestimmt die Kreiszahl Pi mit einem Hitachi SR8000 der Universität Tokio auf 1,24 Billionen Stellen genau.
  • Intels Desktop Prozessor Core 2 Duo Quad Q6600 schafft ca. 21,4 GFLOPS und hat damit Supercomputerniveau der frühen 90er Jahre.

TOP10 Juni 2007

Platz Rechner (Hersteller) Betreiber Land Platz im
November 2006
Prozessoren Rmax [TFlop/s]
1 eServer BlueGene (IBM) DOE/NNSA/LLNL USA 1 131072 PowerPC440, 700 MHz 280,6
2 - Jülich[1] Deutschland - 65.000 167
3 Jaguar (Cray TX3) Oak Ridge National Lab USA 10 23016 DC-Opteron, 2,6 GHz 101,7
4 Red Storm (Cray) Sandia National Labs USA 2 26544 DC-Opteron, 2,4 GHz 101,4
5 eServer BlueGene (IBM) IBM, Thomas Watson USA 3 40960 PowerPC440, 700 MHz 91,3
6 eServer BlueGene (IBM) Stony Brook, BNL USA - 36864 PowerPC440, 700 MHz 82,2
7 ASCI Purple - eServer pSeries p5 575 (IBM) DOE/NNSA/LLNL USA 4 12208 Power5, 1,9 GHz 75,8
8 eServer BlueGene (IBM) Rensselaer Polytechnic Inst. USA - 32768 PowerPC440, 700 MHz 73,0
9 Dell PowerEdge 1955 NCSA USA - 9600 Xeon Clovertown, 2,33 GHz 62,7
10 MareNostrum (IBM) Barcelona Supercomputer Spanien 5 12208 Power970 2,3 GHz 62,6

Weblinks

Commons: Supercomputer – Album mit Bildern, Videos und Audiodateien
  1. Deutschland rechnet am schnellsten im zivilen Bereich