Benutzer:Physikaficionado/Atominterferometer-erweitert

aus Wikipedia, der freien Enzyklopädie
Zur Navigation springen Zur Suche springen

Ein Atominterferometer ist ein Präzisionsmessgerät, das die Interferenz von Materiewellen nutzt, um genaue Messungen von Beschleunigung, Rotation oder Gravitationsfeldern durchzuführen. Mit Atominterferometern lassen sich fundamentale Konstanten wie die Gravitationskonstante mit hoher Genauigkeit bestimmen, möglicherweise aber auch Phänomene wie Gravitationswellen untersuchen.[1]

Die Interferometrie beruht auf der Eigenschaft von Wellen, sich zu überlagern. Wie Louis de Broglie in seiner Dissertation postulierte, können sich Teilchen, also auch Atome, wie Wellen verhalten (so genannter Welle-Teilchen-Dualismus) – dies ist ein zentrales Prinzip der Quantenmechanik. Für Experimente, die eine sehr hohe Genauigkeit erfordern, werden zunehmend Atominterferometer eingesetzt, da Atome der Masse und der Geschwindigkeit einen hohen Impuls und eine sehr kleine De-Broglie-Wellenlänge

haben, wobei das Plancksche Wirkungsquantum ist[2]. Natriumatome mit der Masse von und einer Atomstrahlgeschwindigkeit von , nach adiabatischer Expansion, haben eine Materiewellenlänge von 17 pm.[3]

In einigen Experimenten werden sogar Moleküle verwendet, um noch kleinere Wellenlängen zu erreichen und die Grenzen der Gültigkeit der Quantenmechanik zu erforschen.[4] In vielen Experimenten mit Atomen sind die Rollen von Materie und Licht im Vergleich zu Laser-basierten Interferometern vertauscht; statt Licht interferiert Materie. Die Quantenzustände der interferierenden Atome werden mit Laserstrahlung kontrolliert. Die Wirkung dieser Laserstrahlen entspricht z. B. der von Spiegeln und Strahlteilern in einem optischen Interferometer.

Die de-Broglie-Wellenlänge von Neutronen ist ebenfalls kurz. Im Gegensatz zu Atomen können Neutronen jedoch Kristalle durchdringen und werden an den dicht benachbarten Kristallebenen gebeugt[5]. Elektronen erfahren ebenfalls Beugung in Kristallen, und ihre wellenartigen Eigenschaften wurden bereits vor langer Zeit von Davison und Germer in ihrem berühmten Experiment zur Bestätigung des Teilchen-Wellen-Dualismus in der Quantenmechanik nachgewiesen[6].

Interferometertypen für Atome

[Bearbeiten | Quelltext bearbeiten]

Die Verwendung von Atomen ermöglicht höhere Frequenzen (und damit Genauigkeiten) als mit Licht, allerdings sind die Atome auch stärker der Schwerkraft ausgesetzt. In einigen Apparaturen werden die Atome nach oben geschleudert, und die Interferometrie findet statt, während sich die Atome im Flug oder im freien Fall befinden. In anderen Experimenten werden zusätzliche Kräfte angewendet, um die Gravitationskräfte zu kompensieren. Diese geführten Systeme erlauben im Prinzip unbegrenzte Messzeiten, ihre Kohärenz wird jedoch noch diskutiert. Neuere theoretische Untersuchungen deuten darauf hin, dass die Kohärenz in geführten Systemen erhalten bleibt, dieses ist aber noch experimentell zu bestätigen.

Die Konstruktion eines Atominterferometers gestaltet sich anspruchsvoll, da Atome im Gegensatz zu Elektronen keine Ladung tragen und wie Neutronen nicht in kondensierter Materie eindringen können. Daher sind innovative Techniken erforderlich, um kohärente Strahlteiler für atomare Materiewellen zu entwickeln. Die ersten Atominterferometer verwendeten Schlitze oder Drähte als Strahlteiler und Spiegel. Spätere Systeme, insbesondere geführte Systeme, nutzten Lichtkräfte zur Aufteilung und Reflexion der Materiewelle.[7]

Youngscher Doppelspaltversuch mit Atomen

[Bearbeiten | Quelltext bearbeiten]

Das Youngsche Doppelspaltexperiment ist die wohl einfachste Anordnung, in der Atome zwei räumlich getrennte Bahnen durchlaufen. Es ist das quantenmechanische Analogon zum Doppelspaltinterferometer der klassischen Optik. Letzteres beschreibt das Interferenzmuster von Licht, das durch zwei schmale Spalte auf einem dahinter angeordneten Schirm erzeugt wird.

Youngscher Doppelspaltversuch (schematisch)

Auch Materiewellen der Wellenlänge können interferieren. Die Intensität auf dem Schirm in Bezug auf den Winkel (der Winkel relativ zur Mittelsenkrechten) kann durch die Youngsche Doppelspaltformel beschrieben werden[8]:

mit als maximaler Intensität auf der Achse und als dem Abstand zwischen den beiden Spalten. Konstruktive Interferenz mit maximaler Intensität tritt auf, wenn das Argument des Kosinus ein Vielfaches von ist. Für kleine Winkel erwarten wir auf einem Schirm im Abstand vom Doppelspalt Intesitätsmaxima im Abstand von

Materiewellen interferieren, wenn sie bei und durch zwei je breite Spalten laufen. Ein Youngsches Doppelspaltexperiment mit Heliumatomen[9] bei einem Spaltabstand von liefert für den Schirmabstand für die de Broglie Wellenlänge von ein und für die de Broglie Wellenlänge von ein . Die angeregten Heliumatome werden durch den Quellenspalt der Breite in einer dünnen Goldfolie über den Winkel durch den Spalt so gebeugt, dass Doppelspalt im Abstand kohärent beleuchtet wird.


Das Heliumatom wird ausgewählt, da es eine geringe Masse besitzt, was zu einer erheblichen de-Broglie-Wellenlänge führt. Zusätzlich ist Helium ein inertes Edelgas, was die Verwendung äußerst empfindlicher Transmissionsstrukturen ermöglicht. Die Erzeugung eines intensiven Heliumstrahls ist gut etabliert. Darüber hinaus sind metastabile Heliumatome einfach nachweisbar und weisen optische Übergänge im nahen Infrarot auf, was ihre Manipulation in Bezug auf innere und äußere Freiheitsgrade durch Laserfelder erleichtert.

Drei-Gitter-Interferometer

[Bearbeiten | Quelltext bearbeiten]
Drei-Gitter-Interferometer (schematisch)

Die Grundidee hinter einem Drei-Gitter-Atominterferometer ist es, Atome durch eine Serie von Gittern zu leiten, wodurch ihre materiewellenartigen Eigenschaften ausgenutzt werden. Im Experiment von Pritchard[10] wird ein Strahl von Natriumatomen mit der Geschwindigkei durch zwei 20--Schlitze, die sich im Abstand von 0,9 m befinden, kollimiert, so dass ein streifenförmiger Strahl von mit einer Divergenz von 20- entsteht. Bei dieser Geschwindigkeit haben Natriumatome mit der Masse von eine Materiewellenlänge von 17 pm.

Das Interferometer besteht aus drei Gittern mit einer Periode von 400 nm, die im Abstand von 0,66 m in einer Vakuumkammer angeordnet sind. Das erste Gitter dient als Strahlteiler und teilt die Natriumatome in zwei Teilstrahlen der nullten und ersten Beugungsordnung auf. Diese treffen auf das 140 μm breite Zwischengitter, wo sie in erster und negativer erster Ordnung gebeugt werden, so dass sie auf das dritte Gitter konvergieren. Am Zwischengitter haben die Strahlen eine Breite von 30 µm (FWHM) und einen Abstand von 27 µm. Die ersten beiden Gitter bilden ein Interferenzmuster in der Ebene des dritten Gitters, das als Maske für die Abtastung dieses Musters dient. Der Detektor, der sich 0,30 m hinter dem dritten Gitter befindet, registriert den Natrium-Atomstrom, der durch das dritte Gitter transmittiert wird. Das Bild rechts zeigt nur einen der vielen Wege, die die Atome durch das Interferometer nehmen. Der Detektor ist so weit vom dritten Gitter entfernt, dass er nur die entsprechende Interferenz detektiert.

Dieser Interferometertyp ist nahezu unempfindlich gegenüber dem Einfallswinkel und wird achromatisch durch gleiche Weglängen auf beiden Seiten des Interferometers, erzwungen durch die geringe Geschwindigkeitsbreite der Atomstrahlquellen (∆v/v ~ 12%).

Durch die Analyse des entstehenden Interferenzmusters auf einem Detektor kann die relative Phasenverschiebung der Materiewellen gemessen werden. Änderungen dieser Phasenverschiebung können dann für Präzisionsmessungen wie die Bestimmung von Gravitationskonstanten, Beschleunigungen oder Winkeln verwendet werden. Im Sagnac-Interferometer interferieren zwei kohärente Lichtstrahlen der Wellenlänge , die gegenläufig um eine Fläche kreisen. Rotiert die gesamte Anordnung senkrecht zur Fläche mit der Kreisfrequenz , so verschieben sich die Interferenzstreifen um[11]

Im Drei-Gitter-Interferometer laufen Atomstrahlen auf einer geschlossenen Bahn um eine Fläche . Im Vergleich zu den Photonen in optischen Interferometern haben Xe-Atome in Materiewelleninterferometern mit ihrer Masse eine geringere Geschwindigkeit (relativ zum Licht) und eine kürzere Wellenlänge . Damit erhöht sich die Phasenverschiebung deutlich auf

für Licht der Wellenlänge . Damit beispielsweise die Erdrotation von die Interferenz um einen Streifen verschiebt, benötigt man eine umschlossene Fläche von . In einem Materiewelleninterferometer mit Xe-Atomen genügt für die gleiche Empfindlichkeit eine umschlossene Fläche von nur .[12]


|1991 |Na, Na2 |nanostrukturiertes Beugungsgitter |Polarisierbarkeit, Brechungsindex |-

Erzeugung der Superposition

[Bearbeiten | Quelltext bearbeiten]

Impulsmanipulation

[Bearbeiten | Quelltext bearbeiten]

Talbot-Lau-Atominterferometer

[Bearbeiten | Quelltext bearbeiten]
Eine kollimierte Lichtwelle trifft auf ein Gitter . In regelmäßigen Abständen stromabwärts beobachtete Talbot Bilder des Gitters mit einer Lupe .

Im Jahre 1836 beleuchtete William Talbot ein Gitter mit der Gitterperiode mit einer annähernd ebenen Welle, die von einer Lichtquelle in einer Entfernung von 3 bis 6 m ausging. Mit einer Lupe beobachtete er das Licht hinter dem Gitter. Bewegte er die Lupe weiter vom Gitter weg, sah er in regelmäßigen Abständen rote und grüne Streifen als Abbild des Gitters, dann gelbe und blaue Streifen, dann wieder rote und grüne Streifen und so weiter. Obwohl sich das Gitter weit außerhalb des Brennpunktes der Lupe befand, war das Aussehen der Streifen vollkommen klar und scharf umrissen[13] So entstanden im Nahfeld in regelmäßigen Abständen Selbstbilder des Strichgitters. Im Jahre 1881 zeigte Lord Rayleigh, dass ein Gitter mit einer Periode von , das mit einer ebenen Welle der Wellenlänge beleuchtet wird, bereits ab einem Abstand von vom Gitter in regelmäßigen Abständen von immer wieder identische Bilder des Gitters erzeugt.[14] Für grünes Licht der Wellenlänge sind die entsprechenden Werte und . Die Intervalle verhalten sich wie . Die Fresnel-Länge[15] ist . Für ein Gitter mit der Breite ist . Man befindet sich im Bereich der Fresnelschen-Beugung[16] und die Krümmung der Wellenfronten kann nicht mehr vernachlässigt werden.

Phasenverschiebungen beim Talbot Effekt

Betrachtet man daher die Phasenverschiebung zwischen den Pfaden vom ersten Gitter über das mittlere Gitter zum dritten Gitter, wie in der Abbildung rechts dargestellt

mit der reduzierten Länge des Interferometers[17] und der Talbot-Rayleigh-Wellenlänge . Ist diese Phasendifferenz ein Vielfaches der Lichtwellenlänge , so addieren sich die Intensitäten von einer zeitlich inkohärenten Quelle.

Phasenverschiebungen beim Lau Effekt

Bei einer ausgedehnten, räumlich inkohärenten Lichtquelle verschwimmen die Selbstbilder. Im Falle einer solchen räumlich inkohärenten Quelle hat Ernst Lau ein zusätzliches Gitter vor das erste gesetzt und so ein Bild des ersten Gitters hinter dem zweiten erzeugt, wenn die Gitterabstände ein ganzzahliges Vielfaches einer charakteristischen Länge sind. Für den Gangunterschied vom Gitter zu den Spalten und gilt

Wählt man für die charakteristische Länge , so sind die Gangunterschiede der Strahlen, die sowohl das erste als auch das zweite Gitter passieren, Vielfache der Wellenlänge , wie in der Abbildung rechts dargestellt. Für diesen Abstand ergibt sich dann für und die Gangdifferenz

Die vom Gitter ausgehende Welle erzeugt an den Spalten des zweiten Gitters Sekundärlichtquellen. Diese sekundären Lichtquellen strahlen mit gleichen Phasen ab, da sich die Weglängen um ganzzahlige Vielfache von unterscheiden, wenn der Gitterabstand ist.

Beim Lau-Effekt dient das erste Gitter als Anordnung kleiner, aber inkohärent divergierender Lichtquellen. Die Nahfeldbeugung des zweiten Gitters führt dann zur Auslöschung der Schatteneffekte. Im Abstand vom zweiten Gitter tritt die räumliche Intensitätsstruktur wieder hervor. Die linsenfreie Abbildung durch den Talbot- und den Lau-Effekt tritt nur bei nicht verschwindender Krümmung der Wellenfront auf.

Talbot-Lau-Atominterferometer

[Bearbeiten | Quelltext bearbeiten]
Atominterferometer mittels Talbot und Lau Effekt im Fresnelscher Nahfeldbeugung

Interferenzstreifen des Talbot-Lau-Effekts treten auch bei Materiewellen auf[18]. Bei geeigneter Wahl der Gitterperioden , und sowie der Abstände und addieren sich die Talbot-Muster der einzelnen Schlitze konstruktiv[19]. Die Detektion erfolgt ohne ortsauflösenden Detektor durch Überlagerung eines dritten Gitters, dessen Periode der des Dichtemusters entspricht, und Messung des Gesamtflusses durch dieses Gitter als Funktion seiner transversalen Position . Ein ausgeprägtes Dichtemuster ergibt sich beispielsweise für und .

Das Drei-Gitter-Interferometer von John Clauser[20] verwendet die Gitterperioden , bei gleichen Gitterabständen . Die Quelle ist gegenüber der Achse des Interferometers verschoben. Kalte, langsame Atome mit geeigneter Geschwindigkeit werden mit Hilfe von Laserlicht aus dem thermischen Ausgangsstrahl auf die Interferometerachse abgelenkt. Der inkohärente Atomstrahl aus Kaliumteilchen tritt durch das erste Gitter in das Talbot-Lau-Interferometer ein. Das erste Gitter bildet eine Reihe von Kollimationsschlitzen mit der Periode , die nach einem Abstand die transversale Kohärenz erzeugen, die für die Beugung am zweiten Gitter erforderlich ist. Die verschiedenen Beugungsordnungen überlagern sich weiter stromabwärts zu einem Streifenmuster, das genau die Struktur des ersten Gitters wiedergibt. Ein drittes Gitter mit der gleichen Gitterperiode, wie führt zu periodischen Helligkeitsänderungen in einem Detektor , wenn um transversal verschoben wird.

Das Streifenmuster wird durch verschiedene Resonanzen erzeugt. Eine Resonanz für die -te Harmonische tritt bei auf, wenn und näherungsweise kleine ganze Zahlen sind.[21] Bei einer Geschwindigkeit von haben die Kaliumatome der Masse eine de Broglie Wellenlänge von . Mit der reduzierten Länge des Interferometers von ist die Talbot-Rayleigh Wellenlänge des Interferometers . Für diese Geometrie ist die entsprechende resonante Wellenlänge .

Die in einem Talbot-Lau-Interferometer beobachteten Intensitätsschwankungen sind kein strahlenoptisches Phänomen. Die Atomstrahlen werden nicht aufgespalten. Sie entstehen durch Interferenz der Wellen entlang der abgebildeten Mehrfachpfade. Ein Beweis dafür ist, dass von abhängt und daher eine ziemlich monochromatische Geschwindigkeitsverteilung für optimalen Kontrast erforderlich ist.

Das Talbot-Lau-Atominterferometer hat zwei wesentliche Vorteile gegenüber der Atomstrahl-Interferometrie. Erstens erfordert die Atomstrahl-Interferometrie eine enge Kollimation des Eingangsstrahls, um die Überlagerung von Beugungsordnungen zu vermeiden, was ihren Durchsatz stark einschränkt. Die Talbot-Lau-Interferometrie erlaubt aufgrund des Lau-Effekts einen sehr großen Raumwinkel des Strahls und benötigt keine Linsen zur Abbildung! Außerdem skaliert die benötigte Beugungsgitterperiode nicht linear, sondern mit der Quadratwurzel der de Broglie-Wellenlänge .


Clauser[22] |1994 |K |Talbot-Lau-Interferometer (nutzt den Talbot-Effekt) |

Beugung von Atomen durch Licht

[Bearbeiten | Quelltext bearbeiten]

Ein Atominterferometer mit stehenden Lichtwellen besteht in der Regel aus drei Hauptkomponenten: einer Quelle für Atome mit Blenden zur Strahlformung, Phasengitter aus Laserstrahlen zur Manipulation der Atom-de-Broglie-Wellen und einem Detektor mit Blende zur Messung des Interferenzmusters.

Bei dem Atominterferometer von Rasel, Oberthaler, Batelaan, Schmiedmayer und Zeilinger[23] beugt einen Phasengitter aus stehenden Lichtquellen die Materiewellen der metastabilen Ar*-Atome. Verglichen mit Interferometern für Licht sind die Rollen beim Atominterferometer mit stehenden Lichtwellen genau vertauscht. Statt dass ein Lichtstrahl ein materielles Gitter trifft, beleuchtet eine Materiewelle ein Lichtgitter.

Quelle des Atominterferometers mit stehenden Lichtwellen

[Bearbeiten | Quelltext bearbeiten]

Die Quelle liefert metastabile Ar*-Atome der Masse mit der wahrscheinlichsten Geschwindigkeit[24] . Das entspricht einer de Broglie Wellenlänge von . Zwei Blenden mit Schlitzweite von 5 µm im Abstand von kollimieren den Strahl und schaffen eine Winkeldivergenz von 5 µm / 85 cm = 6 µrad und somit eine ausreichende räumliche Kohärenz.

Aufspaltung der Materiewellen

[Bearbeiten | Quelltext bearbeiten]

Die entlang der -Achse einfallenden Atome mit dem Materiewellenpaket werden durch stehende Laserwellen manipuliert, deren Wellenvektor parallel zur -Achse verläuft. Sie wechselwirken mit dem zeitabhängigen periodischen Potential[25]

mit der frequenzabhängigen elektrischen Polarisierbarkeit des Atoms und dem elektrischen Feld der stehenden Welle. Dies bewirkt eine zeitliche und räumliche Modulation der Gesamtenergie des Atoms. Auf einer bestimmten Bahn durch eine stehende Lichtwelle mittelt das Atom die schnelle Zeitmodulation weg und erfährt die Phasenverschiebung von Das Materiewellenpaket des Atoms weist eine räumliche Phasenmodulation auf, wie sie nach dem Durchgang durch ein sinusförmiges Phasengitter mit der Periode und maximaler Amplitude entspricht.

Die Polarisierbarkeit und damit die Wechselwirkung von Ar*-Atomen ist besonders hoch in der Nähe des Zwei-Niveau-Systemübergangs bei der Wellenlänge mit Pumpübergängen 801 und 795 nm. Ein Phasengitter mit einem Abstand der Wellenbäuche der stehenden Lichtwelle von beugt die Materiewellen der Wellenlänge bei den Winkeln , die durch die Bedingung

erfüllt sind[26]. Die Strahlteilung verändert den inneren Zustand des Atoms nicht, da die Wellenlänge der stehenden Lichtwellen des Phasengitters mit dem zigfachen der natürlichen Linienbreite des optischen Übergangs entfernt ist. Die Materiewellen überstreichen 6 µm/405 nm = 150 Wellenbäuche des ersten Lasergitters bei einer Laserwellenlänge . Damit werden die Beugungen nullter und erster Ordnung deutlich getrennt!

Wellenausbreitung und Phasenakkumulation

[Bearbeiten | Quelltext bearbeiten]

Im Atominterferometer werden die einfallenden Atome an der ersten stehenden Lichtwelle gebeugt. Eine kohärente Überlagerung von Strahlen hauptsächlich nullter und erster Ordnung entsteht. Im Experiment wurde ein zwischen dem Winkel der nullten und ersten Beugung erreicht. Der vom vom Gitter gebeugte Strahl trifft das Gitter im Abstand von bei 8 µm, was die Strahlbreite von 5 µm übersteigt. Damit ist der Atomstrahl so gebündelt, dass die Beugung nullte und erste Ordnung am ersten Phasengitter räumlich getrennt auf das zweite Phasengitter fallen[27]. Hier am zweiten Gitter werden für beide Strahlen die erste Beugungsordnung genutzt, die sich am dritten Gitter überlagern.

Rekombination und Interferenz

[Bearbeiten | Quelltext bearbeiten]

Die nullte und erste Beugungsordnung am Gitter der dritten stehenden Lichtwelle überlagern sich kohärent. Die Interferenzen wurden durch Verschieben des dritten Gitters und Beobachtung der Intensität abwechselnd in den beiden ausgehenden Strahlen des ausgewählten Interferometers im Fernfeld nachgewiesen. Die Strahlen durchlaufen deutlich unterschiedliche Wege im realen Raum. Das Interferenzmuster hängt von der akkumulierten Phasendifferenz zwischen den beiden Pfaden ab.

Die beiden Ausgänge des Atominterferometers zeigen komplementäre Intensitätsschwankungen. Das ist eine Konsequenz der Teilchenerhaltung[28].

Die beiden kohärenten atomaren Wellenpakete breiten sich auf unterschiedlichen Wegen aus und akkumulieren dabei unterschiedliche Phasen. Die einfache Manipulation von Phase, Intensität und Polarisation der stehenden Lichtwelle ermöglicht neuartige Untersuchungen der atomaren Kohärenz-Eigenschaften. Die akkumulierte Phase ist empfindlich gegenüber äußeren Kräften wie Schwerkraft oder Beschleunigung, was Atominterferometer zu hochempfindlichen Trägheitssensoren macht.

Damit wurden Atominterferometer für Präzisionsmessungen der Gravitationsbeschleunigung, der Rotationsgeschwindigkeit und anderer Trägheitskräfte eingesetzt. Sie werden auch bei Tests der fundamentalen Physik eingesetzt, einschließlich Experimenten zum Äquivalenzprinzip und der Suche nach Verletzungen des allgemeinen Relativitätsprinzips.

Zusammenfassend lässt sich sagen, dass Atominterferometer den Welle-Teilchen-Dualismus der Atome ausnutzen, um Interferenzmuster zu erzeugen, die sehr empfindlich auf äußere Kräfte reagieren. Sie finden Anwendung bei Präzisionsmessungen und Experimenten in der Grundlagenphysik.

Fontänen-Interferometer

[Bearbeiten | Quelltext bearbeiten]

Ein Fontänen-Interferometer basiert im Prinzip auf dem Mach-Zehnder-Interferometer. Eine Atomwolke wird in eine Superposition von zwei Impulszuständen gebracht, die dann unterschiedlich beschleunigt werden. Da sie sich im Schwerefeld der Erde befinden, durchlaufen die beiden Wellenpakete unterschiedlich hohe Parabelbahnen. Am Scheitelpunkt werden die beiden Impulse vertauscht, sodass die Strahlen gleichzeitig wieder auf Abschusshöhe auftreffen und dort interferieren. Das beobachtbare Interferenzbild gibt Aufschluss über die Phasenverschiebung durch Effekte wie unterschiedliche Gravitation, Erdrotation oder Raumzeitkrümmung.

Der gesamte Aufbau kann bis zu 10 Meter hoch sein, trotzdem sind die Strahlen meist nur wenige Millimeter voneinander entfernt.

Die verwendeten Atome, meist Alkalimetalle, werden bis knapp über den absoluten Nullpunkt gekühlt. Außerdem wird heute meist ein Bose-Einstein-Kondensat verwendet.

Erzeugung der Superposition

[Bearbeiten | Quelltext bearbeiten]

Um die Interferenz beobachten zu können, müssen die Atome in eine Superposition zweier Impulszustände gebracht werden (Strahlteilung). Dazu werden die Atome mit zwei antiparallelen Laserpulsen mit dem Wellenvektor und Impuls beschossen, die gerade die Anregungsenergie der Atome haben. Absorbiert nun ein Atom ein Photon, so wird es nicht nur angeregt, sondern übernimmt auch den Impuls des Photons, bewegt sich also in die Richtung des entsprechenden Lasers. Koppelt das angeregte Atom nun mit einem anderen Photon, kommt es zur stimulierten Emission, und es wird wieder ein Photon mit dem Impuls emittiert. Danach hat das Atom einen Impuls von oder .

Der Übergang in den angeregten Zustand erfordert jedoch einen Drehimpulsübergang. Durch rechts- bzw. linkshändige Polarisation des Laserlichts kann ein Laser für die Anregung und ein Laser für die stimulierte Emission verwendet werden. Dabei werden die Atome nur in eine Richtung beschleunigt.

Aufgrund der Dopplerverschiebung „sehen“ die bewegten Atome eine leicht verschobene Laserfrequenz, die nicht mehr genau der Anregungsfrequenz entspricht. Um dies zu korrigieren, hat der zweite Laser eine etwas niedrigere Frequenz.

Spontane Emission findet auf einer viel größeren Zeitskala statt als die stimulierte Emission und kann daher hier weitgehend vernachlässigt werden. Auch Mehrfachanregungen der Atome werden stark unterdrückt, da durch die Dopplerverschiebung die Laserfrequenz für eine zweite Anregung zu hoch ist.

Durch die Einstellung von Dauer und Intensität des Laserpulses lässt sich genau die Hälfte der Atome auf einen Impuls beschleunigen, während die andere Hälfte in Ruhe verbleibt. Dieser Laserpuls wird wegen der Entsprechung einer Drehung auf der Bloch-Kugel als -Puls bezeichnet und fungiert als Strahlteiler.

Impulsmanipulation

[Bearbeiten | Quelltext bearbeiten]

Wegen der Dopplerverschiebung ist es nun möglich, die beiden Impulszustände getrennt zu beschleunigen. Dies geschieht durch mehrere Laserpulse, die nun allerdings so stark sind, dass fast alle Atome beschleunigt werden (-Pulse). Dadurch wird die gewünschte Flugbahn erreicht.

Damit die beiden Wellenpakete am Abschusspunkt wieder in Phase sind, befindet sich am Scheitelpunkt der Flugbahn ein „Spiegel“. Wieder wird unter Ausnutzung der Dopplerverschiebung durch -Pulse der Impuls des höheren Wellenpakets verringert und der des niedrigeren erhöht.

Wie bei der Erzeugung der Superposition befindet sich am Ende der Parabelbahn wieder ein Strahlteiler, hinter dem die beiden Strahlen dann interferieren.[29][30]

Beispiele
Gruppe Jahr Atomarten Methode Gemessene(r) Effekt(e)
Pritchard[31] 1991 Na, Na2 nanostrukturiertes Beugungsgitter Polarisierbarkeit, Brechungsindex
Clauser[32] 1994 K Talbot-Lau-Interferometer (nutzt den Talbot-Effekt)
Zeilinger[33] 1995 Ar Beugungsgitter aus stehenden Lichtwellen
Sterr (PTB) Ramsey-Bordé Polarisierbarkeit,
Aharonov-Bohm-Effekt: exp/theo ,
Sagnac
Kasevich, Chu Doppler-Effekt bei fallenden Atomen Gravimeter:
Rotation: ,
Feinstrukturkonstante:

Die Trennung von Materiewellen kompletter Atome wurde 1929 das erste Mal beobachtet von Estermann und Stern, als Wasserstoffmolekül- und Helium-Strahlen an einer Oberfläche von Lithiumfluorid gebeugt wurden.[34] Die ersten berichteten modernen Atominterferometer waren 1991 ein Doppelspaltexperiment nach Young mit metastabilen Helium-Atomen und einem mikrostrukturierten Doppelspalt von Carnal and Mlynek[35] und ein Interferometer mit drei mikrostrukturierten Beugungsgittern und Natrium-Atomen in der Gruppe um Pritchard beim MIT.[36] Kurz danach wurde bei der Physikalisch-Technischen Bundesanstalt (PTB) festgestellt, dass ein optisches Ramsey-Spektrometer, welches üblicherweise in Atomuhren verwendet wird, auch als Atominterferometer verwendet werden kann.[37] Die größte räumliche Trennung zwischen Paketen von Partialwellen von 54 cm wurde mittels Laserkühlung und stimulierten Raman-Übergängen durch Chu und Mitarbeiter in Stanford erzielt.[38]

Atominterferometrie ist ein relativ neues und sich schnell entwickelndes Gebiet. Man hofft, zahlreiche Naturkonstanten wie die Gravitationskonstante und Feinstrukturkonstante präziser bestimmen zu können als dies mit herkömmlichen Methoden realisierbar ist.[39]

Durch die Reaktion auf bereits kleine Beschleunigungsunterschiede lassen sich auch Rotationen wie beispielsweise durch die Corioliskraft oder Gravitation messen.

Außerdem lassen sich fundamentale Theorien der modernen Physik überprüfen wie die allgemeine Relativitätstheorie. Dies geschieht zum Beispiel durch die Vermessung der gravitativen Rotverschiebung durch die unterschiedlichen Bahnen der Wellenpakete im Gravitationspotential der Erde.[40] Auch viele nicht etablierte Theorien lassen sich durch Atominterferometrie überprüfen, wie beispielsweise Theorien für Dunkle Materie oder Quantengravitation.[41][42]

  • Alexander D. Cronin, Jörg Schmiedmayer, David E. Pritchard: Optics and interferometry with atoms and molecules. In: Reviews of Modern Physics. Band 81, Nr. 3, 28. Juli 2009, S. 1051–1129, doi:10.1103/RevModPhys.81.1051.
  • C. S. Adams: Atom optics. In: Contemporary Physics. Band 35, Nr. 1, 1994, S. 1–19, doi:10.1080/00107519408217492 (Übersicht zu Atom-Licht-Wechselwirkungen).
  • Paul R. Berman (Hrsg.): Atom Interferometry. Academic Press, 1997, ISBN 0-08-052768-X (Detaillierte Übersicht der Atominterferometer zu dieser Zeit; gute Einführungen und Theorie).
  • Uwe Sterr, Fritz Riehle: Atominterferometrie. In: PTB-Mitteilungen. Band 119, Nr. 2, 2009, S. 159–166 (Atominterferometrie (Memento vom 29. Dezember 2013 im Internet Archive) [PDF; 5,6 MB; abgerufen am 17. Juni 2016]).

Einzelnachweise

[Bearbeiten | Quelltext bearbeiten]
  1. Savas Dimopoulos, Peter W. Graham, Jason M. Hogan, Mark A. Kasevich, Surjeet Rajendran: Gravitational wave detection with atom interferometry. In: Physics Letters B. Band 678, Nr. 1, 6. Juli 2009, S. 37–40, doi:10.1016/j.physletb.2009.06.011.
  2. Broglie, Louis de: Licht und Materie - Ergebnisse der neuen Physik. de Gruyter, H. Goverts 1939, S. 56.
  3. David W. Keith, Christopher R. Ekstrom, Quentin A. Turchette, David E. Pritchard: An interferometer for atoms. In: Physical Review Letters. Band 66, Nr. 21, 27. Mai 1991, S. 2693–2696, doi:10.1103/PhysRevLett.66.2693 (aps.org [abgerufen am 13. Januar 2023]).
  4. Klaus Hornberger, Stefan Gerlich, Philipp Haslinger, Stefan Nimmrichter, Markus Arndt: Colloquium: Quantum interference of clusters and molecules. In: Reviews of Modern Physics. Band 84, Nr. 1, 8. Februar 2012, S. 157–173, doi:10.1103/RevModPhys.84.157.
  5. Bergmann Schaefer, Clemens Schaefer: Lehrbuch der Experimentalphysik -- Band IV, Teil 1. 2. Auflage. de Gruyter, Berlin / New York 1981, ISBN 3-11-008074-5, S. 470.
  6. C. Davisson, L. H. Germer: Diffraction of Electrons by a Crystal of Nickel. In: Physical Review. Band 30, Nr. 21, 1927, S. 705–740 (aps.org [PDF; abgerufen am 9. März 2024]).
  7. Ernst M. Rasel, Markus K. Oberthaler, Herman Batelaan, Jörg Schmiedmayer, Anton Zeilinger: Atom Wave Interferometry with Diffraction Gratings of Light. In: Physical Review Letters. Band 75, Nr. 14, 2. Oktober 1995, S. 2633–2637, doi:10.1103/PhysRevLett.75.2633.
  8. Francis A. Jenkins, Harvey E. White: Fundamentals of Optics. 4. Auflage. McGraw-Hill, Kogakusha 1976, ISBN 0-07-032330-5, S. 263.
  9. O. Carnal, and J. Mlynek: Young's double-slit experiment with atoms: A simple atom interferometer. In: Physical Review Letters. Band 66, Nr. 21, 27. Mai 1991, S. 2689–2692, doi:10.1103/PhysRevLett.66.2689 (aps.org [abgerufen am 5. März 2024]).
  10. David W. Keith, Christopher R. Ekstrom, Quentin A. Turchette, David E. Pritchard: An interferometer for atoms. In: Physical Review Letters. Band 66, Nr. 21, 27. Mai 1991, S. 2693–2696, doi:10.1103/PhysRevLett.66.2693 (aps.org [abgerufen am 13. Januar 2023]).
  11. Demtröder, Wolfgang: Experimentalphysik 2 - Elektrizität und Optik. 6. Auflage. Springer-Verlag, Berlin Heidelberg New York 2013, ISBN 978-3-642-29943-8, S. 310.
  12. Barut, Asim Orhan: New Frontiers in Quantum Electrodynamics and Quantum Optics. Springer-Verlag, New York 1990, ISBN 978-0-306-43669-7, S. 467–475.
  13. Henry Fox Talbot: LXXVI. Facts relating to optical science. No. IV. In: The London and Edinburgh Philosophical Magazine and Journal of Science. Band 9, Nr. 56, 1836, §2 Experiments on Diffraction, S. 401–407 (eingeschränkte Vorschau in der Google-Buchsuche).
  14. Lord Rayleigh F.R.S.: On copying diffraction-gratings, and on some phenomena connected therewith. In: Philosophical Magazine Series 5. Band 11, Nr. 67, 1881, XXV., S. 196–205, doi:10.1080/14786448108626995.
  15. Kip S. Thorne, Roger D. Blandford: Modern Classical Physics - Optics, Fluids, Plasmas, Elasticity, Relativity, and Statistical Physics. 1. Auflage. Princeton University Press, Princeton 2017, ISBN 0-691-15902-5, S. 418.
  16. Meschede, Dieter: Optik, Licht und Laser. 3. Auflage. Vieweg + Teubner, Wiesbaden 2008, ISBN 978-3-8351-0143-2, S. 68.
  17. John F. Clauser, Shifang Li: Talbot-von Lau atom interferometry with cold slow potassium. In: Physical Review A. Band 49, Nr. 4, 1. April 1994, ISSN 1050-2947, S. R2213–R2216, doi:10.1103/PhysRevA.49.R2213 (aps.org [abgerufen am 13. Januar 2023]).
  18. Letokhov, V. S.: Laser Control of Atoms and Molecules. 1. Auflage. Oxford University Press, Oxford 2007, ISBN 978-0-19-852816-6, S. 130.
  19. John F. Clauser, Matthias Reinsch: New theoretical and experimental results in fresnel optics with applications to matter-wave and X-ray interferometry. In: Applied Physics B. Band 54, Nr. 5, 17. Januar 1992, S. 380–395, doi:10.1007/BF00325384 (researchgate.net [abgerufen am 3. April 2024]).
  20. John F. Clauser, Shifang Li: Talbot-vonLau atom interferometry with cold slow potassium. In: Physical Review A. Band 49, Nr. 4, 1. April 1994, ISSN 1050-2947, S. R2213–R2216, doi:10.1103/PhysRevA.49.R2213 (aps.org [abgerufen am 13. Januar 2023]).
  21. John F. Clauser, Shifang Li: Talbot-vonLau atom interferometry with cold slow potassium. In: Physical Review A. Band 49, Nr. 4, 1. April 1994, ISSN 1050-2947, S. R2213–R2216, doi:10.1103/PhysRevA.49.R2213 (aps.org [abgerufen am 13. Januar 2023]).
  22. John F. Clauser, Shifang Li: Talbot-vonLau atom interferometry with cold slow potassium. In: Physical Review A. Band 49, Nr. 4, 1. April 1994, ISSN 1050-2947, S. R2213–R2216, doi:10.1103/PhysRevA.49.R2213 (aps.org [abgerufen am 13. Januar 2023]).
  23. Ernst M. Rasel, Markus K. Oberthaler, Herman Batelaan, Jörg Schmiedmayer, Anton Zeilinger: Atom Wave Interferometry with Diffraction Gratings of Light. In: Physical Review Letters. Band 75, Nr. 14, 2. Oktober 1995, S. 2633–2637, doi:10.1103/PhysRevLett.75.2633.
  24. Dieter Richter: Mechanik der Gase. Springer-Verlag, Berlin / Heidelberg 2010, ISBN 978-3-642-12722-9, S. 16.
  25. Ernst M. Rasel, Markus K. Oberthaler, Herman Batelaan, Jörg Schmiedmayer, Anton Zeilinger: Atom Wave Interferometry with Diffraction Gratings of Light. In: Physical Review Letters. Band 75, Nr. 14, 2. Oktober 1995, S. 2633–2637, doi:10.1103/PhysRevLett.75.2633 (aps.org [abgerufen am 13. Januar 2023]).
  26. Christopher R. Foot: Atomphysik. 1. Auflage. Oldenbourg Wissenschaftsverlag, München 2011, ISBN 978-3-486-70546-1, S. 330.
  27. Ernst M. Rasel, Markus K. Oberthaler, Herman Batelaan, Jörg Schmiedmayer, Anton Zeilinger: Atom Wave Interferometry with Diffraction Gratings of Light. In: Physical Review Letters. Band 75, Nr. 14, 2. Oktober 1995, S. 2633–2637, doi:10.1103/PhysRevLett.75.2633 (aps.org [abgerufen am 13. Januar 2023]).
  28. Letokhov, V. S.: Laser Control of Atoms and Molecules. 1. Auflage. Oxford University Press, Oxford 2007, ISBN 978-0-19-852816-6, S. 134.
  29. Tim Byrnes, Ebubechukwu O. Ilo-Okeke: Quantum Atom Optics. 2020, S. 106–113.
  30. M. Kasevich: Tests of quantum mechanics and gravitation with atom interferometry at Département de Physique de l'ENS. 2018 (youtube.com).
  31. David W. Keith, Christopher R. Ekstrom, Quentin A. Turchette, David E. Pritchard: An interferometer for atoms. In: Physical Review Letters. Band 66, Nr. 21, 27. Mai 1991, S. 2693–2696, doi:10.1103/PhysRevLett.66.2693 (aps.org [abgerufen am 13. Januar 2023]).
  32. John F. Clauser, Shifang Li: Talbot-vonLau atom interferometry with cold slow potassium. In: Physical Review A. Band 49, Nr. 4, 1. April 1994, ISSN 1050-2947, S. R2213–R2216, doi:10.1103/PhysRevA.49.R2213 (aps.org [abgerufen am 13. Januar 2023]).
  33. Ernst M. Rasel, Markus K. Oberthaler, Herman Batelaan, Jörg Schmiedmayer, Anton Zeilinger: Atom Wave Interferometry with Diffraction Gratings of Light. In: Physical Review Letters. Band 75, Nr. 14, 2. Oktober 1995, S. 2633–2637, doi:10.1103/PhysRevLett.75.2633 (aps.org [abgerufen am 13. Januar 2023]).
  34. I. Estermann, O. Stern: Beugung von Molekularstrahlen. In: Zeitschrift für Physik. Band 61, Nr. 1-2, 1. Januar 1930, S. 95–125, doi:10.1007/BF01340293.
  35. O. Carnal, J. Mlynek: Young’s double-slit experiment with atoms: A simple atom interferometer. In: Physical Review Letters. Band 66, Nr. 21, 27. Mai 1991, S. 2689–2692, doi:10.1103/PhysRevLett.66.2689.
  36. David W. Keith, Christopher R. Ekstrom, Quentin A. Turchette, David E. Pritchard: An interferometer for atoms. In: Physical Review Letters. Band 66, Nr. 21, 27. Mai 1991, S. 2693–2696, doi:10.1103/PhysRevLett.66.2693.
  37. F. Riehle, Th. Kisters, A. Witte, J. Helmcke, Ch. J. Bordé: Optical Ramsey spectroscopy in a rotating frame: Sagnac effect in a matter-wave interferometer. In: Physical Review Letters. Band 67, Nr. 2, 8. Juli 1991, S. 177–180, doi:10.1103/PhysRevLett.67.177.
  38. M. Kasevich, S. Chu: Measurement of the gravitational acceleration of an atom with a light-pulse atom interferometer. In: Applied Physics B. Band 54, Nr. 5, 1. Mai 1992, S. 321–332, doi:10.1007/BF00325375.
  39. Léo Morel, Zhibin Yao, Pierre Cladé, Saïda Guellati-Khélifa: Determination of the fine-structure constant with an accuracy of 81 parts per trillion. In: Nature. Band 588, 2020, S. 61–65, doi:10.1038/s41586-020-2964-7.
  40. Fabio Di Pumpo et al.: Gravitational Redshift Tests with Atomic Clocks and Atom Interferometers. In: PRX Quantum. Band 2, 2021, S. 040333, doi:10.1103/PRXQuantum.2.040333, arxiv:2104.14391.
  41. Holger Müller et al.: Atom-interferometry constraints on dark energy. In: Science. Band 349, 2015, S. 849, doi:10.1126/science.aaa8883, arxiv:1502.03888.
  42. Holger Müller et al.: Snowmass 2021 White Paper: Tabletop experiments for infrared quantum gravity. 2022, arxiv:2203.11846.

Kategorie:Interferometrie Kategorie:Quantenphysik