Inkreis

aus Wikipedia, der freien Enzyklopädie
Wechseln zu: Navigation, Suche
Tangentenfünfeck mit Inkreis

Der Inkreis eines Polygons (Vielecks) ist der Kreis, der alle Seiten des Polygons in ihrem Inneren berührt (das heißt, er berührt die Strecken zwischen den Eckpunkten und nicht ihre Verlängerungen). Er ist gleichzeitig der größte Kreis, der vollständig in dem gegebenen Polygon liegt.

Nur solche Polygone, bei denen sich alle Winkelhalbierenden der Innenwinkel des Polygons in einem Punkt schneiden, besitzen einen Inkreis. Der Schnittpunkt ist in diesem Fall der Mittelpunkt des Inkreises.

Existiert der Inkreis eines Polygons mit Flächeninhalt und Umfang , so hat der Inkreisradius den Wert

.

Inkreis eines Dreiecks[Bearbeiten | Quelltext bearbeiten]

Dreieck mit Inkreis

Eine besonders große Bedeutung hat der Inkreis in der Dreiecksgeometrie. Jedes Dreieck besitzt einen Inkreis, sein Mittelpunkt liegt im Schnittpunkt der drei Winkelhalbierenden. Zeichnet man um diesen Schnittpunkt einen Kreis, der eine Seite des Dreiecks berührt (die Seite wird somit eine Kreistangente des Inkreises), so berührt dieser Kreis auch die beiden anderen Seiten.

Alle Punkte der Winkelhalbierenden des Innenwinkels haben den gleichen Abstand von den Seiten und . Entsprechend haben die Punkte der Winkelhalbierenden von den gleichen Abstand von und . Der Schnittpunkt dieser beiden Winkelhalbierenden hat also von allen drei Seiten des Dreiecks (, und ) gleichen Abstand. Er muss also auch auf der dritten Winkelhalbierenden liegen.

Der Inkreis berührt alle drei Seiten von innen – im Gegensatz zu den drei Ankreisen, die jeweils eine Seite von außen und die Verlängerungen der beiden anderen Seiten berühren.

Der Inkreismittelpunkt, also der Schnittpunkt der Winkelhalbierenden, zählt zu den ausgezeichneten Punkten des Dreiecks. Er trägt die Kimberling-Nummer .

Radius[Bearbeiten | Quelltext bearbeiten]

Ist der Flächeninhalt des Dreiecks mit den Seiten , und , so berechnet sich der Radius des Inkreises durch:

mit

Je nach den gegebenen Parametern des Dreiecks ist folgender Zusammenhang interessant:

Koordinaten[Bearbeiten | Quelltext bearbeiten]

Die kartesischen Koordinaten des Inkreis-Mittelpunktes berechnen sich als das mit den Seitenlängen der gegenüberliegenden Seiten gewichtete Mittel der Eckpunkt-Koordinaten. Wenn sich die drei Eckpunkte bei , und befinden und die den Eckpunkten gegenüberliegenden Seiten die Längen , und haben, dann befindet sich der Inkreis-Mittelpunkt bei

mit

Inkreismittelpunkt eines Dreiecks ()
Trilineare Koordinaten
Baryzentrische Koordinaten

Weitere Eigenschaften[Bearbeiten | Quelltext bearbeiten]

  • Die Entfernung zwischen der Ecke A und einem der benachbarten Berührpunkte des Inkreises ist gleich ; dabei bedeutet wie oben den halben Umfang. Entsprechendes gilt für die Ecken B und C.

Inkreise anderer Vielecke[Bearbeiten | Quelltext bearbeiten]

Während bei Dreiecken stets ein Inkreis existiert, trifft dies bei Vielecken (Polygonen) mit mehr als drei Ecken nur in Sonderfällen zu.

Vierecke, die einen Inkreis besitzen, heißen Tangentenvierecke. Zu ihnen gehören alle konvexen Drachenvierecke, insbesondere alle Rauten und Quadrate.

Regelmäßige Polygone haben – unabhängig von der Zahl der Ecken – stets einen Inkreis. Für den Inkreisradius eines regelmäßigen -Ecks mit der Seitenlänge gilt:

Siehe auch[Bearbeiten | Quelltext bearbeiten]

Literatur[Bearbeiten | Quelltext bearbeiten]

Weblinks[Bearbeiten | Quelltext bearbeiten]

 Wiktionary: Inkreis – Bedeutungserklärungen, Wortherkunft, Synonyme, Übersetzungen