„Kola-Bohrung“ – Versionsunterschied

aus Wikipedia, der freien Enzyklopädie
Zur Navigation springen Zur Suche springen
[gesichtete Version][gesichtete Version]
Inhalt gelöscht Inhalt hinzugefügt
KKeine Bearbeitungszusammenfassung
Überarbeitung: Einleitung und Abschnitt zu den Bohrarbeiten und der Bohrtechnik nochmal erweitert und ausgebaut und dabei soweit es ging nur auf naturwissenschftlich-technische Literatur zurückgegriffen
Zeile 1: Zeile 1:
{{Positionskarte|Europa |maptype=relief |mark=Red Dot.svg |marksize=12.5 |lat=69/23/46 |long=30/36/31 |region=RU |position=right |width=250 |float=right}}
{{QS-Geowissenschaften|1=Die Angaben zur Kola-Bohrung an sich basieren anscheinend auf nicht-geowissenschaftlichen, nicht mal populärwissenschaftlichen Quellen. Klassisch zusammengestoppeltes Machwerk mit tw. widersprüchlichen Angaben (jedenfalls zum Temperaturgradienten im durchteuften Gebirge); für Details siehe [[Diskussion:Kola-Bohrung|Artikeldisk]]}}
[[Datei:1987 CPA 5892.jpg|miniatur|Bohrung als sowjetisches Briefmarken-Motiv, 1987]]
[[Datei:1987 CPA 5892.jpg|miniatur|Gebäude des Bohrplatzes unter dem [[Polarlicht|Nordlicht]] und stilisierte technische Skizze der Bohrung mit Verrohrung, Bohr­gestänge, Turbine(n), Reduzier­getriebe und Meißel (für Details siehe Text) als sowjetisches Briefmarken-Motiv, 1987]]
[[Datei:Кольская сверхглубокая скважина crop.jpg|miniatur|Bohrturm der Kola-Bohrung, 2007]]


Die '''Kola-Bohrung''' ({{lang|ru|Кольская сверхглубокая скважина}}; {{lang|ru-lit|Kol'skaja swerchglubokaja skwaschina}}) ist eine von 1970 bis 1989 für wissenschaftliche Zwecke durchgeführte [[Bohrung (Geologie)|geologische Bohrung]] auf der [[Russland|russischen]] [[Halbinsel]] [[Kola]]. Sie erreichte 12.262 Meter Tiefe, ist seit 1979 die tiefste Bohrung der Welt und besaß bis 2008 auch das längste Bohrloch.
Die '''Kola-Bohrung''' ({{lang|ru|Кольская сверхглубокая скважина}}; {{lang|ru-lit|Kolʹskaja swerchglubokaja skwashina}}), auch ''Kola SG-3'' genannt, ist eine von 1970 bis 1989 zu wissenschaftlichen Zwecken durchgeführte ultratiefe [[Bohrung (Geologie)|geologische Bohrung]] auf der [[Russland|russischen]] [[Halbinsel]] [[Kola]], etwa zehn Kilometer südwestlich der Kleinstadt [[Sapoljarny]]. Sie erreichte 12.262 Meter [[Teufe]], ist seit 1979 die tiefste Bohrung der Welt und besaß bis 2008 auch das längste Bohrloch. Sie ist zudem die einzige übertiefe Bohrung in einen stabilen [[Kraton]] bzw. [[Schild (Geologie)|Kontinentalschild]].<ref name="uvarova_et_al_2011" /> Die Kola-Bohrung war die erste von insgesamt 11 geplanten übertiefen Bohrungen eines ambitionierten staatlichen Forschungsprogramms der [[Sowjetunion]].<ref name="vidal1984" /><ref name="vidal1985" /> Mit den Arbeiten an der zweiten dieser Bohrungen, die jedoch nur eine Teufe von 8200&nbsp;m erreichte, wurde ebenfalls Anfang der 1970er Jahre in [[Saatly]] in den Ölfeldern des [[Kura-Becken]]s ([[Aserbaidschan]]) begonnen.


== Regionale Geologie ==
Die Halbinsel Kola wurde ausgewählt, weil sich hier bis zu 2,5 Milliarden Jahre alte Gesteinsformationen befinden. Die Bohrung befindet sich etwa zehn Kilometer südwestlich von [[Sapoljarny]].
Die Halbinsel Kola gehört zum [[Baltischer Schild|Baltischen Schild]], dem größten [[Ausbiss (Geologie)|Ausbiss]] des [[Präkambrium|präkambrischen]] [[Grundgebirge]]s des europäischen [[Kraton]]s ([[Baltica (Kontinent)|Baltica]]). Der Baltische Schild ist geprägt durch [[Kristallingestein]]e, das heißt intensiv verfaltete und meist höhergradig [[Metamorphes Gestein|metamorphe Gesteine]] (überwiegend verschiedene [[Gneis]]e) und unmetamorphe [[Magmatisches Gestein|magmatische Gesteine]] (überwiegend [[Granitoid]]e). Der Nordosten des Baltischen Schildes einschließlich der Kola-Halbinsel ist dessen ältester Teil („[[Archaikum|archaischer]] Kern“), mit Gesteinsaltern bis zu 3,5 Milliarden Jahren. Annähernd parallel zu den Küsten von Barentssee und Weißem Meer zieht sich, NW-SE streichend, die sogenannte Kola-Provinz längs durch das Landesinnere der Kola-Halbinsel. Die Kola-Provinz ist sehr komplex aufgebaut, wird als Teil eines archaisch-[[Paläoproterozoikum|paläoproterozoischen]] Orogens interpretiert und enthält neben verschiedenen Granitoid-Gneiskomplexen auch sogenannte [[Grünsteingürtel]].<ref name="slabunov_et_al_2006" /> Die Bohrstelle von Kola SG-3 liegt innerhalb der Kola-Provinz im Ausbiss des sogenannten Petschenga-Komplexes (auch Petschenga-Grünsteingürtel genannt), einer paläoproterozoischen, niedrig- bis mittelgradig metamorphen Abfolge aus [[Vulkanisches Gestein|vulkanischen]], [[Pyroklastisches Sediment|vulkanosedimentären]] sowie verschiedenen [[Sedimente und Sedimentgesteine|sedimentären Gesteinen]], die als orogenetisch überprägte Füllung eines [[Grabenbruch]]s (Petschenga-Varsuga-Rift)<ref name="melezhik&hanski2013" /><ref name="naldrett2004" /> oder [[Backarc-Becken]]s<ref name="sharkov&smolkin1997" /> interpretiert wird.


== Ziele ==
Die Bohrung war Teil eines Tiefbohrprogramms der Sowjetunion, gleichzeitig wurde auch in [[Saatly]] im Ölgebiet um Baku mit einer Bohrung begonnen, die 8500 m erreichte.
Der entlegene Standort nahe Sapoljarny wurde unter anderem wegen der [[Sulfide|sulfidischen]] Kupfer-Nickel-Lagerstätte vom [[Sudbury-Becken|Sudbury]]-Typ ausgewählt, die unweit der Bohrstelle seit Ende der 1940er Jahre abgebaut wird.<ref name="vidal1985" /><ref>aktueller Betreiber der hiesigen Nickelerzbergwerke ist ''MMC Norilsk Nickel'' (''Nornickel'') bzw. dessen regionale Tochter ''Kola MMC'', siehe ''Nornickel Annual Report 2016.'' Moskau 2017 ([https://ar2016.nornik.ru/pdf/ar/en/en_annual_report_pages.pdf PDF] 16&nbsp;MB, S.&nbsp;8, 46)</ref> Durch die Bohrung sollte diese Lagerstätte in die Tiefe verfolgt und Erkenntnisse über ihre Entstehung gewonnen werden. Ursprüngliche Zielteufe für die Bohrung waren 15.000&nbsp;m. Weitere Zielstellungen bzw. Erwartungen waren
* der [[Aufschluss (Bergbau)|Aufschluss]] bzw. die Beprobung von Bereichen der [[Erdkruste]], in denen [[Diskontinuität (Geologie)|seismische Diskontinuitätsflächen]] registriert wurden, insbesondere die sogenannte [[Conrad-Diskontinuität]], die Grenzfläche zwischen der oberen (bzw. mittleren) und unteren Erdkruste,
* die Erkundung der geothermischen Verhältnisse und potenzieller Vorkommen von Wässern und Gasen in größerer Krustentiefe sowie
* die Überprüfung der Praxistauglichkeit der speziell für diese Rekordbohrung entwickelten Bohr- und Messtechnik und Gewinnung neuer Erkenntnisse für eine Weiterentwicklung derselben<ref name="vidal1985" />


== Technische Details und Chronologie ==
== Bohrung ==
[[Datei:Кольская сверхглубокая скважина crop.jpg|miniatur|Bohrturm der ''Uralmasch-15000'' im Jahr 2007, die übrigen Gebäude der Bohrstation sind von Hügeln verdeckt]]
Die Vorbereitungen für die Bohrung begannen 1967. Am 24. Mai 1970 begann man mit der Bohrung unter Einsatz des auch für herkömmliche Erdölbohrungen eingesetzten Bohrturms ''[[Uralmasch]]-4E''. 1975 wurde dieser abgebaut und bis 1976 durch den eigens entwickelten ''Uralmasch-15000'' ersetzt, der für eine Tiefe von 15.000&nbsp;m konzipiert war. Das Gebäude erreicht etwa die Höhe eines 20-stöckigen Hauses.<ref name="spon-2011"/>
[[Datei:Кольская сверхглубокая скважина (2012).jpg|mini|Verfallenes Hauptgebäude ohne den bereits abgerissenen Bohrturm im Jahr 2012]]
[[Datei:Сама скважина(заварена), август 2012.JPG|mini|Der versiegelte Bohrlochkopf der Kola-Bohrung (2012)]]


Die Planungen und Vorbereitungen für die Bohrung erfolgten ab den frühen 1960er Jahren. Am 24. Mai 1970 begann der Bohrbetrieb unter Einsatz der auch für herkömmliche Erdölbohrungen genutzten Bohranlage ''[[Uralmasch]]-4E''. Anfang 1975<ref name="jprs_rep_1976:22" /> wurden die Arbeiten bei Erreichen einer Teufe von 7263&nbsp;m unterbrochen, die Bohranlage abgebaut und im Laufe eines Jahres durch die eigens entwickelte, 68&nbsp;m hohe ''Uralmasch-15000'' ersetzt, die speziell für die Zielteufe von 15.000&nbsp;m konzipiert war.<ref name="vidal1985" /> Die Bohrtürme wurden wegen der ungünstigen Witterung in der Tundra der Kola-Halbinsel jeweils voll verkleidet und heizbar konstruiert.<ref name="vidal1985" /><ref>[http://www.spiegel.de/fotostrecke/die-supertiefe-kola-bohrung-sg-3-fotostrecke-107058-13.html ''Ur-Turm.''] Bild 3 in der Fotostrecke zum Spiegel-Online-Artikel ''Hoppla, wir haben die Hölle angebohrt!'' von Danny Kringiel vom 26. April 2011</ref> In angeschlossenen und umstehenden Gebäuden waren Steuer- und Messtechnik, Werkstätten, Material- und Bohrkernlager sowie Büros und Schlafquartiere für die Mitglieder des Bohrteams untergebracht.
Das Bohrgestänge bestand aus einer hochfesten Aluminiumlegierung, so dass das gesamte Gestänge auch im Bereich über 10 km Tiefe nur 400 bis 500 Tonnen wog. Das zum Beispiel zur Gewinnung von Kernproben oder bei Ersatz von Verschleissteilen nötige Ziehen des gesamten Gestänges erforderte bei 12 km Tiefe nur 18 Stunden. Die Aluminiumlegierung war bis rund 250 Grad Celsius temperaturstabil. Angewandt wurde die Turbo-Bohrmethode. Dabei treibt eine Turbine am Boden des Bohrlochs den Bohrkopf an, die durch den mit hohem Druck (250 Atmosphären) eingepressten Bohrschlamm angetrieben wird. Das Gestänge bewegt sich kaum. Ein Getriebe reduziert die Umdrehungsgeschwindigkeit des Bohrkopfs auf 80 bis 150 Umdrehungen pro Minute und entsprechend erhöhtem Drehmoment. Eine Hydraulik-Leitung meldet Änderungen im Druck des Bohrschlamms an die Oberfläche und ermöglicht eine Regulierung. Die Gesamtneigung des Bohrlochs liegt im Mittel bei 10 Grad, die Spitze in 12 km Tiefe weicht rund 750 m zur Seite ab.<ref>Vidal, GeoJournal 1984. Kozlovsky, Scientific American 1984, gibt als größte horizontale Abweichung 840 m bei 10500 m an, danach geht sie wieder zurück.</ref> Die Bohrkerne von 60 bis 80 mm Durchmesser wurden in großer Tiefe mit einer speziellen Auffangvorrichtung entnommen, um dem teilweisen Zerbersten beim Transport an die Oberfläche Rechnung zu tragen Das Bohrloch war 1984 nur bis in eine Tiefe von rund 2000 m verrohrt (das war notwendig, da bei 1800 m ein unerwartet hoher Wassereinbruch stattfand).<ref>Kozslovsky gibt in seinem Aufsatz in Scientific American, Dezember 1984 an, dass nur bis 2000 m verrohrt ist. In einem Aufsatz über Fluidpegelmessungen im Kola-Bohrloch mit Bezug auf Messungen von 1996 ist von einem unverrohrten Abschnitt zwischen 8280 und 8580 m die Rede. Katja Schulze: Messung von Fluidpegelschwankungen in der Kola-Bohrung, Universität Bonn 2001</ref>


Das eingesetzte Bohrgestänge bestand im obersten Teil (bis 2000&nbsp;m) aus Stahl, darunter aus einer hochfesten Aluminiumlegierung, sodass das Gewicht des gesamten Gestänges auch im Bereich über 10.000&nbsp;m Teufe die 400 Tonnen Hubkraft der Bohranlage nicht überstieg (einschließlich des durch Anliegen des Gestänges an der Bohrlochwand erzeugten Reibungswiderstands). Die Aluminiumlegierung war bis rund 250 °C temperaturstabil. Das zur Gewinnung von [[Bohrkern|Kernproben]] oder bei verschleißbedingtem Austausch des [[Bohrmeißel]]s nötige Ziehen des gesamten Gestänges (''{{enS|round trip}}'') erfolgte bei der ''Uralmasch-15000'' vollautomatisch<ref name="kozlovsky1982" /> und erforderte bei 12&nbsp;km Teufe nur 18 Stunden.<ref name="vidal1984" /><ref name="vidal1985" /> Effektiv gebohrt wurde zwischen der 10.000- und 11.500-m-Marke dennoch nur in 3,1 % der Zeit (d.&nbsp;h. im Schnitt 45&nbsp;min/d), im Vergleich zu 27,1 % auf den ersten 2000&nbsp;m (6,5&nbsp;h/d).<ref name="clarke1986:211" /> Statt des konventionellen [[Rotary-Bohrverfahren|Rotary-Verfahrens]] wurde mittels des [[Turbinenbohren|Turbinen-Verfahrens]] gebohrt. Dabei sitzt oberhalb des Bohrmeißels (mindestens) eine Turbine, die durch die mit hohem Druck{{FN|*}} eingepresste [[Bohrspülung]] angetrieben wird und ihrerseits den Meißel antreibt. Dadurch wirken keine [[Torsion (Mechanik)|Torsionskräfte]] auf das Gestänge, das infolgedessen wesentlich weniger anfällig für Brüche ist und aus weniger festem, aber dafür leichterem Material bestehen kann. Das Gestänge in der Kola-Bohrung rotierte trotzdem mit wenigen Umdrehungen pro Minute, um einem Verklemmen im Bohrloch vorzubeugen. Ein [[Planetengetriebe]] mit hohem [[Drehmoment]] reduzierte die [[Drehzahl|Umdrehungsgeschwindigkeit]] des Meißels – verwendet wurden stets [[Rollenmeißel]] mit Hartmetallwarzen ohne Diamant – auf maximal 150 Umdrehungen pro Minute, um den Verschleiß des Materials zu verlangsamen. Die Telemetrie für Umdrehungsgeschwindigkeit, Drehmoment, Meißeldruck auf die Bohrlochsohle usw. erfolgte innovativ mittels einer weitgehend hitzeunempfindlichen Hydraulik-Leitung, in der die Informationen in Form von Druckimpulsen von den Instrumenten an der Bohrlochsohle an die Messwarte geliefert wurden.<ref name="vidal1984" /><ref name="vidal1985" /> Die Neigung des Bohrlochs gegenüber der Lotrechten liegt im Mittel bei 10 Grad, die Sohle in 12&nbsp;km Tiefe weicht rund 750&nbsp;m{{FN|**}} zur Seite ab.<ref name="vidal1984" /><ref name="vidal1985" /> Ursprünglich sollte eine möglichst geringe Strecke des Bohrloches [[Rohrtour|verrohrt]] werden, um Kosten zu sparen und um möglichst viel „offenes Bohrloch“ (engl. ''open-hole'') für wissenschaftliche Messungen zur Verfügung zu haben.<ref name="vidal1985" /> Das [[Standrohr (Bohrtechnik)|Standrohr]] hat einen Durchmesser von 426&nbsp;mm und ist rund 40&nbsp;m lang. Von dort aus wurde zunächst unverrohrt bis in 5300&nbsp;m Teufe mit 215&nbsp;mm Meißeldurchmesser gebohrt. Dann musste wegen Ausbrüchen aus der Bohrungswand bei 1800&nbsp;m im Bereich einer stark wasserführenden Formation die Bohrung bis in 2000&nbsp;m Teufe weiter aufgebohrt und eine Verrohrung mit 342&nbsp;mm{{FN|***}} Durchmesser einzementiert werden. In diese Verrohrung wurde zum Schutz derselben zunächst ein austauschbarer Rohrstrang mit 245&nbsp;mm Durchmesser eingezogen.<ref name="vidal1985" /> Bis zum Jahr 1990 wurde der innere Rohrstrang als permanente Verrohrung bis in 8770&nbsp;m Teufe{{FN|¶}} verlängert, wobei neu entwickelte Zementmischungen eingesetzt wurden, die bei Temperaturen von weit über 100 °C abbinden können.<ref name="kozlovsky1990" /> Von den ersten 11.500&nbsp;m Bohrstrecke wurden 9325,2&nbsp;m gekernt<ref name="clarke1986:214" /> (Kerndurchmesser 60&nbsp;mm<ref name="vidal1985" />). Bis 4600&nbsp;m Teufe lief dies relativ unproblematisch, mit einem Kerngewinn von 53 %. Darunter jedoch begann das Gestein infolge der Druckentlastung in Scheiben zu zerplatzen (engl. ''disking''), die sich im Kernrohr verkeilten. Dadurch reduzierte sich der Kerngewinn um mehr als die Hälfte. Ab Beginn des Einsatzes der ''Uralmasch-15000'' bei rund 7300&nbsp;m konnte infolge der Verwendung eines Doppelkernrohres mit nicht-mitrotierendem Innenrohr der Kerngewinn zunächst wieder auf 40 % gesteigert werden, fiel aber unterhalb 9000&nbsp;m wieder auf 29 % ab.<ref name="dahlem1988" /> Insgesamt wurden 3700,1&nbsp;m Bohrkern gewonnen (40 %).<ref name="clarke1986:214" />
Am 6. Juni 1979 wurden 9.584&nbsp;Meter erreicht, ein Meter mehr als der bisherige Tiefenrekord der Bohrung [[Bertha Rogers]] in Oklahoma, USA. Der Durchmesser der Bohrung beträgt 21,4&nbsp;Zentimeter. Am 27. Dezember 1983 erreichte die Bohrung eine Tiefe von 12.000&nbsp;Metern. Mit dem Erreichen dieser Tiefe wurde die Bohrtätigkeit ein Jahr lang unterbrochen.


Am 6. Juni 1979 wurde die Teufenmarke von 9.584&nbsp;Meter erreicht, und damit die bisherige Rekordbohrung [[Bertha Rogers]] in Oklahoma, USA, um 1&nbsp;m übertroffen. Aber bereits lange vorher war Kola die tiefste Bohrung, die bis dahin je außerhalb eines [[Sedimentbecken]]s bzw. vollständig in [[Kristallingestein]] niedergebracht wurde. 1980 erreichte das Bohrloch eine Tiefe von 10.700&nbsp;m.<ref name="clarke1986:4" /> Für August 1982 wurde eine Teufe von 11.515&nbsp;m angegeben.<ref name="kozlovsky1982" /> Am 27. Dezember 1983 erreichte die Bohrung die Marke von 12.000&nbsp;m<ref>[http://www.spiegel.de/fotostrecke/die-supertiefe-kola-bohrung-sg-3-fotostrecke-107058-16.html Bild 16] in der Fotostrecke zum Spiegel-Online-Artikel ''Hoppla, wir haben die Hölle angebohrt!'' von Danny Kringiel vom 26. April 2011</ref> und am 10. August 1984 betrug die Teufe 12.046&nbsp;m.<ref name="vidal1984" /><ref name="vidal1985" />
Insgesamt wurden vom senkrechten Hauptschacht aus mehrere abzweigende Bohrungen erstellt. 1989 erreichte die Bohrung SG-3 eine Tiefe von 12.262 Metern. Die Bohrung musste in dieser Tiefe abgebrochen werden, weil dort unerwartet hohe Temperaturen von 180&nbsp;°C anstatt der erwarteten 100&nbsp;°C angetroffen wurden. Im Jahr 1992 wurden die Bohrarbeiten endgültig eingestellt. Die Bohranlage wurde nunmehr für seismische und erdmagnetische Messungen und Tests genutzt.<ref name="spon-2011"/>


Bis 1984 war die Kola-Bohrung eine Einzelbohrung. Dann verkantete sich am 27. September nach Erreichen der Teufenmarke von 12.066&nbsp;m das Gestänge beim Ziehen desselben im Bohrloch und riss bei dem Versuch, es wieder zu lösen, in ca. 7000&nbsp;m Teufe ab, sodass ca. 5000&nbsp;m Bohrstrang nebst Turbine, Reduziergetriebe und Meißel unwiederbringlich im Bohrloch verblieben.<ref name="UHMG2004" /> Im Folgenden wurden in mehreren Neuversuchen Teilbohrungen{{FN|‡}} erstellt, die ab ca. 7000&nbsp;m Teufe von der Hauptbohrung abzweigen. Drei Teilbohrungen drangen bis unterhalb der Marke von 11.600&nbsp;m vor, und eine dieser drei erreichte schließlich 1989 mit 12.262&nbsp;m die Endteufe.<ref name="vetrin_et_al_2002" /> Dabei sah sich die Bohrmannschaft immer wieder mit zunehmender Tiefe zunehmenden technischen Schwierigkeiten gegenüber. Problematisch waren nicht zuletzt die unerwartet hohen Temperaturen von 180 bis über 200 °C im Teufenbereich unterhalb von 11.000&nbsp;m, die die Technik an die Grenze ihrer Leistungsfähigkeit brachten. Nachdem noch im Juli 1992 bekannt gegeben wurde, dass man wenigstens die Marke von 13.000&nbsp;m schaffen will,<ref>[https://www.ogj.com/articles/print/volume-90/issue-49/in-this-issue/exploration/russia-won39t-drill-superdeep-kola-peninsula-hole-to-15000-m-target.html ''Russia won’t drill superdeep Kola peninsula hole to 15,000 m target.''] Oil & Gas Journal, 12. Juli 1992</ref> wurden die Bohrarbeiten im gleichen Jahr endgültig eingestellt. Die Anlage wurde vorerst für seismische und diverse andere wissenschaftliche Messungen und Experimente weiter genutzt.<ref name="spon-2011"/>
Der Bohrturm wurde im Sommer 2009 teilweise abgerissen. Die Station wird nicht mehr genutzt.


2008 vermeldete [[ITAR-TASS]], dass die Demontage der Station bereits im Gange sei.<ref>[http://www.russia-ic.com/news/show/7177/#.XEJ0oFrE6JC ''Kola Superdeep Borehole Will Be Destroyed.''] Russia-IC, 3. Oktober 2008</ref> Der Bohrturm war bis 2012 komplett abgerissen. Die übrigen Gebäude wurden stehen gelassen und dem Verfall überlassen. 2014 war einer Meldung von ITAR-TASS zu entnehmen, dass sich das Objekt seinerzeit im Besitz einer privaten „Kola-Bohrungs-Gesellschaft“ befand, die sich ihrerseits in der [[Liquidation|Abwicklung]] befand.<ref>[https://tass.ru/spb-news/1249639 Прокуратура: процедура банкротства научной скважины под Мурманском незаконно затянута.] ITAR-TASS, 10. Juni 2014 (Russisch)</ref>
== Wissenschaftliche Nutzung ==
{{FNBox|
1984 wurden 31 internationale Wissenschaftler eingeladen, sich das Projekt vor Ort anzuschauen.
{{FNZ|*|<small>im Bereich von mehreren 10&nbsp;M[[Pascal (Einheit)|Pa]] (mehrere 100&nbsp;[[Physikalische Atmosphäre|atm]]), die Pumpanlage der Uralmasch-15000 konnte einen Injektionsdruck von 35 bis 40&nbsp;MPa (ca. 350 bis 400&nbsp;atm) erzeugen<ref name="clarke1986:203" /></small>}}
{{FNZ|**|<small>Jewgeni Koslowski gibt in seinem Aufsatz in ''[[Scientific American]]'' als größte horizontale Abweichung 840&nbsp;m bei 10.500&nbsp;m Teufe an, danach gehe sie wieder zurück.<ref name="kozlovsky_1984_SciAm" /> Helmut Vidal (1985) berichtet von 560&nbsp;m Abweichung in 11.000 m Teufe.<ref name="vidal1985" /></small>}}
{{FNZ|***|<small>Andere Quellen sprechen von 325&nbsp;mm Durchmesser<ref>Yuri A. Fetko: ''Wellhead equipment.'' S.&nbsp;504–506 in: Yevgeny A. Kozlovsky (Hrsg.): ''The Superdeep Well of the Kola Peninsula.'' Springer-Verlag, 1987, ISBN 978-3-642-71139-8</ref></small>}}
{{FNZ|¶|<small>Katja Schulze spricht allerdings im Zusammenhang mit Fluidpegelmessungen im Kola-Bohrloch von einem unverrohrten Abschnitt zwischen 8280 und 8580&nbsp;m im Jahr 1996.<ref name="schulze2001" /></small>}}
{{FNZ|‡|<small>Ein Artikel im Hausblatt von Uralmasch gibt an, es seien insgesamt 12 Teilbohrungen gewesen<ref name="UHMG2004" /></small>}}
}}
== Wissenschaftliche Ergebnisse ==
1984 wurden 31 internationale Wissenschaftler eingeladen, sich das Projekt vor Ort anzuschauen, darunter auch der [[Geschichte der Bundesrepublik Deutschland (bis 1990)|westdeutsche]] Geologe und Wegbereiter des [[Kontinentales Tiefbohrprogramm der Bundesrepublik Deutschland|Kontinentalen Tiefbohrprogramms der Bundesrepublik Deutschland]] (KTB) [[Helmut Vidal]].


Das [[Proterozoikum]] reichte bis zu einer Tiefe von 6842 m. Darin lassen sich vier Phasen unterscheiden:<ref>Nach Helmut Vidal, The Kola Super-deep Borehole SG-3 — First Look at the Deepest Hole of the World, GeoJournal, Band 9, 1984, Heft 4</ref>
Das [[Proterozoikum]] reichte bis zu einer Tiefe von 6842 m. Darin lassen sich vier Phasen unterscheiden:<ref>Nach Helmut Vidal, The Kola Super-deep Borehole SG-3 — First Look at the Deepest Hole of the World, GeoJournal, Band 9, 1984, Heft 4</ref>
Zeile 27: Zeile 41:
*Sub-Plattform Akkumulation von [[Andesit]]en/[[Basalt]]en und Sedimenten (Sandsteine, Karbonate)
*Sub-Plattform Akkumulation von [[Andesit]]en/[[Basalt]]en und Sedimenten (Sandsteine, Karbonate)
*[[Pikrit]]-Basalt Vulkanismus und gefolgt von [[Ultrabasisches Gestein|ultrabasischen]] [[Intrusion (Geologie)|Intrusion]]en.
*[[Pikrit]]-Basalt Vulkanismus und gefolgt von [[Ultrabasisches Gestein|ultrabasischen]] [[Intrusion (Geologie)|Intrusion]]en.
*Faltung und Metamorphose, die damals bei Temperaturen von 300 bis 600 Grad Celsius bei einem [[Geothermische Tiefenstufe|Temperaturgradient]]en von 10 Grad Celsius pro 100 m erfolgten.
*Faltung und Metamorphose, die damals bei Temperaturen von 300 bis 600 °C bei einem [[Geothermische Tiefenstufe|Temperaturgradient]]en von 10 °C pro 100 m erfolgten.


In 1500 bis 1800 m finden sich auch in den ultrabasischen Intrusionen Kupfer- und Nickel-haltige sulfidische Erze vom [[Sudbury-Becken|Sudbury]]-Typ, die anderswo auf der Kola-Halbinsel im Tagebau abgebaut wurden.
In 1500 bis 1800 m finden sich auch in den ultrabasischen Intrusionen Kupfer- und Nickel-haltige sulfidische Erze vom [[Sudbury-Becken|Sudbury]]-Typ, die anderswo auf der Kola-Halbinsel im Tagebau abgebaut wurden.


Das Archaikum von 6842 bis 12000 m besteht aus einem [[Gneis]]-[[Granit]] Komplex, wobei der Gneis stark metamorph geprägt war (bis zur [[Granulit]]isierung). Zu rund zwei Dritteln fanden sich hier rhythmisch gebettete Folgen von [[Biotit]]- und Zweiglimmer-Plagioklas-Gneisen,<ref>Zwei Glimmer: Biotit und [[Muskovit]]</ref> die bei der Metamorphose vor 2,7 bis 2,8 Milliarden Jahren Temperaturen von 750 bis 900 Grad Celsius erfuhren (und Drücke von 500 bis 110 Mega-Pascal). Erwartet war bei der [[Conrad-Diskontinuität]] bei rund 7000 m eigentlich eine basaltische Schicht statt des Gneis-Granit-Komplexes. In einer Tiefe von 4500 bis 9000 m fand sich eine Inversionszone mit niedrigerer Ausbreitungsgeschwindigkeit seismischer Wellen, aber ebenfalls ohne Übergang zu Basalten bei der Diskontinuität bei 9000 m. Die Kola-Bohrung war die erste Bohrung, die diese Diskontinuität erreichte.<ref>Kozlovsky, The world`s deepest well, Scientific American, Dezember 1984, S. 98</ref>
Das Archaikum von 6842 bis 12000 m besteht aus einem [[Gneis]]-[[Granit]] Komplex, wobei der Gneis stark metamorph geprägt war (bis zur [[Granulit]]isierung). Zu rund zwei Dritteln fanden sich hier rhythmisch gebettete Folgen von [[Biotit]]- und Zweiglimmer-Plagioklas-Gneisen,<ref>Zwei Glimmer: Biotit und [[Muskovit]]</ref> die bei der Metamorphose vor 2,7 bis 2,8 Milliarden Jahren Temperaturen von 750 bis 900 °C erfuhren (und Drücke von 500 bis 110 Mega-Pascal). Erwartet war bei der [[Conrad-Diskontinuität]] bei rund 7000 m eigentlich eine basaltische Schicht statt des Gneis-Granit-Komplexes. In einer Tiefe von 4500 bis 9000 m fand sich eine Inversionszone mit niedrigerer Ausbreitungsgeschwindigkeit seismischer Wellen, aber ebenfalls ohne Übergang zu Basalten bei der Diskontinuität bei 9000 m. Die Kola-Bohrung war die erste Bohrung, die diese Diskontinuität erreichte.<ref>Kozlovsky, The world`s deepest well, Scientific American, Dezember 1984, S. 98</ref>


Zwischen 4500 und 11000 m gibt es Hinweise auf hydrothermale Erzbildung (es finden sich Zonen zertrümmerter und mit Calciten, Quarzen und Sulfiderzen zementierter Gesteine). Entgegen den Erwartungen wurden in Tiefen von über 4500 m tektonisch stark beanspruchte Gesteine mit relativ hoher Permeabilität und Zirkulation von stark mineralhaltigen Flüssigkeiten (Brom, Jod, einige Schwermetalle) gefunden. Sie enthielten auch Gase, darunter Methan und andere Kohlenwasserstoffe. Das Kohlendioxid war nach der Isotopendatierung teilweise archaischen Ursprungs (aus dem Mantel), teilweise proterozoisch und biogen. Es fanden sich in den rund zwei Milliarden Jahre alten metamorphen Gesteinen (hervorgegangen aus Sandsteinen und Konglomeraten) Mikrofossilien.
Zwischen 4500 und 11000 m gibt es Hinweise auf hydrothermale Erzbildung (es finden sich Zonen zertrümmerter und mit Calciten, Quarzen und Sulfiderzen zementierter Gesteine). Entgegen den Erwartungen wurden in Tiefen von über 4500 m tektonisch stark beanspruchte Gesteine mit relativ hoher Permeabilität und Zirkulation von stark mineralhaltigen Flüssigkeiten (Brom, Jod, einige Schwermetalle) gefunden. Sie enthielten auch Gase, darunter Methan und andere Kohlenwasserstoffe. Das Kohlendioxid war nach der Isotopendatierung teilweise archaischen Ursprungs (aus dem Mantel), teilweise proterozoisch und biogen. Es fanden sich in den rund zwei Milliarden Jahre alten metamorphen Gesteinen (hervorgegangen aus Sandsteinen und Konglomeraten) Mikrofossilien.


Der Temperaturgradient war vorher an der Oberfläche zu 1 Grad Celsius pro 100 m bestimmt worden. In 3000 m Tiefe fand sich ein Gradient von 2,5 Grad Celsius pro 100 m. In 12000 m Tiefe wurde eine Temperatur von 205 Grad Celsius erreicht, was auch über den Erwartungen lag.
Der Temperaturgradient war vorher an der Oberfläche zu 1 °C pro 100 m bestimmt worden. In 3000 m Tiefe fand sich ein Gradient von 2,5 °C pro 100 m. In 12000 m Tiefe wurde eine Temperatur von 205 °C erreicht, was auch über den Erwartungen lag.


Messungen des Flüssigkeitspegels im Bohrloch (durchgeführt ab 1996) lassen Rückschlüsse auf mechanische Wechselwirkungen zwischen den Gesteinen der Erdkruste und den Flüssigkeiten in deren Porenraum, unter anderem bedingt durch [[Erdgezeiten]], zu.<ref>Katja Schulze: {{Webarchiv | url=http://www2.geo.uni-bonn.de:80/members/schulze/references/Bochum2001sg3/node1.html | wayback=20130120084732 | text= ''Messung von Fluidpegelschwankungen in der Kola-Bohrung – Einleitung und Zielsetzungen.''}} Webpräsenz des Instituts für Geodynamik und Geophysik der Rheinischen Friedrich-Wilhelms-Universität Bonn, 2001</ref>
Messungen des Flüssigkeitspegels im Bohrloch (durchgeführt ab 1996) lassen Rückschlüsse auf mechanische Wechselwirkungen zwischen den Gesteinen der Erdkruste und den Flüssigkeiten in deren Porenraum, unter anderem bedingt durch [[Erdgezeiten]], zu.<ref name="schulze2001" />


Die meisten der über 45.000 Gesteinsproben wurden noch nicht untersucht (Stand 2010).<ref name="geo">Matthias Cassel: ''Ein Traum von einem Loch''. In GEO 7/2010, S. 128–136.</ref>
Die meisten der über 45.000 Gesteinsproben wurden noch nicht untersucht (Stand 2010).<ref name="geo">Matthias Cassel: ''Ein Traum von einem Loch''. In GEO 7/2010, S. 128–136.</ref>
Zeile 52: Zeile 66:
== Siehe auch ==
== Siehe auch ==
* [[International Continental Scientific Drilling Program]] (ICDP)
* [[International Continental Scientific Drilling Program]] (ICDP)
* [[Kontinentales Tiefbohrprogramm der Bundesrepublik Deutschland]]


== Literatur ==
== Literatur ==
* J. W. Clarke, R.C. McDowell, J.R. Matzko, P.P. Hearn, D.J. Milton, D.J. Percious, D.B. Vitaliano, Gregory Ulmishek: ''The Kola Superdeep Drill Hole by Ye. A. Kozlovskiy (1984): A detailed summary.'' Open-File Report 86-517. United States Geological Survey, Wahington, D.C. 1986, [[doi:10.3133/ofr86517]] (englische Langzusammenfassung des russischen, vom damaligen sowjetischen Geologieminister Jewgeni Koslowski [Евгений Козловский] herausgegebenen Sammelbandes Кольская сверхглубокая. Nedra-Verlag, Moskau 1984, [http://www.geokniga.org/books/2957 geokniga.org], 1987 beim Springer-Verlag in vollständiger englischer Übersetzung erschienen unter dem Titel ''The Superdeep Well of the Kola Peninsula'', ISBN 978-3-642-71139-8)
* [[Helmut Vidal]]: ''Kola-SG-3, die tiefste Bohrung der Welt.'' Geowissenschaften in unserer Zeit; 3, 2; 1985, S. 52–57, {{doi|10.2312/geowissenschaften.1985.3.52}}.
* Yevgeny A. Kozlovsky: ''Kola super-deep: interim results and prospects.'' Episodes. Bd.&nbsp;5, Nr.&nbsp;4, 1982, S.&nbsp;9–11 ([http://52.172.159.94/index.php/epi/article/download/72929/56700 PDF] 500&nbsp;kB)
* Yevgeny A. Kozlovsky (Hrsg.): ''The Superdeep Well of the Kola Peninsula'', Springer 1987 (russisches Original 1984)
* Helmut Vidal: ''Kola-SG-3, die tiefste Bohrung der Welt.'' Geowissenschaften in unserer Zeit. Bd.&nbsp;3, Nr.&nbsp;2, 1985, S. 52–57, {{doi|10.2312/geowissenschaften.1985.3.52}}.
*Yevgeny A. Kozlovsky: ''The world`s deepest well'', Scientific American, Dezember 1984
* Helmut Vidal: ''The Kola super-deep borehole SG-3 – first look at the deepest hole of the world.'' GeoJournal. Bd.&nbsp;9, Nr.&nbsp;4, 1984, S.&nbsp;431–432, [[doi:10.1007/BF00171607]]


== Weblinks ==
== Weblinks ==
{{Commonscat|Kola Superdeep Borehole|Kola-Bohrung}}
{{Commonscat|Kola Superdeep Borehole|Kola-Bohrung}}

* [http://russlandonline.ru/barent01/morenews.php?iditem=29 Übertiefe Bohrung im Norden Russlands]
* [http://www.freitag.de/kultur/0917-geoarchaeologie-kola-halbinsel-sg3-forschungsstation Das tiefste Loch der Welt] (Alexandre Sladkevich, der Freitag, 2009)
== Einzelnachweise ==
== Einzelnachweise ==
<references>
<references>
<ref name="clarke1986:4">

J. W. Clarke: ''The Kola Superdeep Drill Hole by Ye. A. Kozlovskiy.'' 1986 (siehe [[#Literatur|Literatur]]), S.&nbsp;4
</ref>
<ref name="clarke1986:203">
J. W. Clarke: ''The Kola Superdeep Drill Hole by Ye. A. Kozlovskiy.'' 1986 (siehe [[#Literatur|Literatur]]), S.&nbsp;203
</ref>
<ref name="clarke1986:211">
J. W. Clarke: ''The Kola Superdeep Drill Hole by Ye. A. Kozlovskiy.'' 1986 (siehe [[#Literatur|Literatur]]), S.&nbsp;211
</ref>
<ref name="clarke1986:214">
J. W. Clarke: ''The Kola Superdeep Drill Hole by Ye. A. Kozlovskiy.'' 1986 (siehe [[#Literatur|Literatur]]), S.&nbsp;214
</ref>
<ref name="dahlem1988">
James S. Dahlem: ''Bit Design for Crystalline Rock.'' S.&nbsp;235-261 in: Anders Bodén, K. Gösta Eriksson (Hrsg.): ''Deep Drilling in Crystalline Bedrock: Volume 2: Review of Deep Drilling Projects, Technology, Sciences and Prospects for the Future.'' Springer-Verlag, 1988, ISBN 978-3-642-73457-1, S.&nbsp;250&nbsp;ff.
</ref>
<ref name="jprs_rep_1976:22">
''USSR and Eastern Europe Scientific Abstracts: Geophysics, Astronomy and Space. Nr. 384.'' JPRS Report 68212. U.S. Joint Publications Research Service, Arlington (VA) 1976 ([https://apps.dtic.mil/docs/citations/ADA374682 Online]), S.&nbsp;22 (englischer Abstract eines Artikels von A. Asan-Nuri und M. Woroshbitow in der sowjetischen Zeitschrift ''Nauka i shisn'' [Наука и жизнь] Nr. 3/1976, S.34-40)
</ref>
<ref name="kozlovsky1982">
Y. A. Kozlovsky: ''Kola super-deep: interim results and prospects.'' 1982 (siehe [[#Literatur|Literatur]])
</ref>
<ref name="kozlovsky_1984_SciAm">
Yevgeny A. Kozlovsky: ''The world’s deepest well.'' Scientific American. Bd.&nbsp;251, Nr.&nbsp;6, 1984, S.&nbsp;98–107, [[doi:10.1038/scientificamerican1284-98]]
</ref>
<ref name="kozlovsky1990">
Yevgeny A. Kozlovsky: ''The USSR integrated program of continental crust investigations and studies of the earths deep structure unter the “Globus” Project.'' S.&nbsp;90–103 in: Karl Fuchs, Yevgeny A. Kozlovsky, Anatoly I. Krivtsov, Mark D. Zoback (Hrsg.): ''Super-Deep Continental Drilling and Deep Geophysical Sounding.'' Springer-Verlag, 1990, ISBN 978-3-642-73457-1, S.&nbsp;96&nbsp;f.
</ref>
<ref name="melezhik&hanski2013">
Viktor A. Melezhik, Eero J. Hanski: ''Paleotectonic and palaeogeographic evolution of Fennoscandia in the Early Palaeoproterozoic.'' S.111–178 in: Victor Melezhik, Anthony R. Prave, Anthony E. Fallick, Lee R. Kump, Harald Strauss, Aivo Lepland, Eero J. Hanski (Hrsg.): ''Reading the Archive of Earth’s Oxygenation. Volume 1: The Palaeoproterozoic of Fennoscandia as Context for the Fennoscandian Arctic Russia - Drilling Early Earth Project.'' Springer, 2013, ISBN 978-3-642-29681-9, S.&nbsp;114
</ref>
<ref name="naldrett2004">
Anthony J. Naldrett: ''Magmatic Sulfide Deposits.'' Springer, 2004, ISBN 978-3-642-06099-1, S.&nbsp;279&nbsp;ff. (Kap. 5: Deposits of the Pechenga area, Russia)
</ref><ref name="schulze2001">
Katja Schulze: {{Webarchiv | url=http://www2.geo.uni-bonn.de:80/members/schulze/references/Bochum2001sg3/node1.html | wayback=20130120084732 | text= ''Messung von Fluidpegelschwankungen in der Kola-Bohrung – Einleitung und Zielsetzungen.''}} Webpräsenz des ehemaligen Instituts für Geodynamik und Geophysik der Rheinischen Friedrich-Wilhelms-Universität Bonn, 2001
</ref>
<ref name="sharkov&smolkin1997">
Evgenii V. Sharkov, Valery F. Smolkin: ''The early Proterozoic Pechenga-Varzuga Belt: a case of Precambrian back-arc spreading.'' Precambrian Research. Bd.&nbsp;82, Nr.&nbsp;1–2, 1997, S.&nbsp;133–151, [[doi:10.1016/S0301-9268(96)00041-1]]
</ref>
<ref name="slabunov_et_al_2006">
A. I. Slabunov, S. B. Lobach-Zhuchenko, E. V. Bibikova, P. Sorjonen-Ward, V. V. Balagansky, O. I. Volodichev, A. A. Shchipansky, S. A. Svetov, V. P. Chekulaev, N. A. Arestova, V. S. Stepanov: ''The Archaean nucleus of the Fennoscandian (Baltic) Shield.'' S.&nbsp;627–644 in: D. G. Gee, R. A. Stephenson (Hrsg.): ''European Lithosphere Dynamics.'' Geological Society, London, Memoirs 32. 2006, [[doi:10.1144/GSL.MEM.2006.032.01.37]]
</ref>
<ref name="spon-2011">
<ref name="spon-2011">
{{internetquelle |url=http://einestages.spiegel.de/static/topicalbumbackground/22620/aus_versehen_in_der_hoelle.html |titel=Hoppla, wir haben die Hölle angebohrt! |autor=Danny Kringiel |werk=[[Spiegel Online]] |datum=2011-04-26 |zugriff=2011-04-26}}</ref>
{{internetquelle |url=http://einestages.spiegel.de/static/topicalbumbackground/22620/aus_versehen_in_der_hoelle.html |titel=Hoppla, wir haben die Hölle angebohrt! |autor=Danny Kringiel |werk=[[Spiegel Online]] |datum=2011-04-26 |zugriff=2011-04-26}}
</ref>
<ref name="UHMG2004">

[https://www.uralmash.ru/en/about/history/the-unbreakable-record/ ''The Unbreakable Record.''] Auszug aus einem Artikel in ''United Heavy Machinery Gazette'' [Объединенной машиностроительной газете] (Nr.28, 2004) auf der Webpräsenz von Uralmasch, englische Version</ref>
<ref name="uvarova_et_al_2011">
Yulia A. Uvarova, T. Kurtis Kyser, Elena Sokolova, Vadim I. Kazansky, Konstantin V. Lobanov: ''Significance of stable-isotope variations in crustal rocks from the Kola Superdeep Borehole and their surface analogues.'' Precambrian Research. Bd.&nbsp;189, Nr.&nbsp;1–2, 2011, S.&nbsp;104–113, [[doi:10.1016/j.precamres.2011.05.005]] (alternativer Volltext: [https://www.semanticscholar.org/paper/b41bc3799d36e28b9b13f75aa6d8a7aaa2a254e0 SemanticScholar])
</ref>
<ref name="vetrin_et_al_2002">
V. R. Vetrin, O. M. Turkina, J. Ludden: ''Petrology and geochemistry of rocks from the basement of the Pechenga paleorift.'' Russian Journal of Earth Sciences. Bd.&nbsp;4, Nr.&nbsp;2, S.&nbsp;121–151, [[doi:10.2205/2002ES000085]], Fig. 2.
</ref>
<ref name="vidal1984">
H. Vidal: ''The Kola super-deep borehole SG-3.'' 1984 (siehe [[#Literatur|Literatur]])
</ref>
<ref name="vidal1985">
H. Vidal: ''Kola-SG-3, die tiefste Bohrung der Welt.'' 1985 (siehe [[#Literatur|Literatur]])
</ref>
</references>
</references>


Zeile 77: Zeile 144:
[[Kategorie:Technischer Rekord]]
[[Kategorie:Technischer Rekord]]
[[Kategorie:Moderne Sage]]
[[Kategorie:Moderne Sage]]

{{Coordinate |NS=69/23/46/N |EW=30/36/31/E |type=landmark |region=RU}}

Version vom 20. Januar 2019, 16:40 Uhr

Kola-Bohrung (Europa)
Kola-Bohrung (Europa)
Gebäude des Bohrplatzes unter dem Nordlicht und stilisierte technische Skizze der Bohrung mit Verrohrung, Bohr­gestänge, Turbine(n), Reduzier­getriebe und Meißel (für Details siehe Text) als sowjetisches Briefmarken-Motiv, 1987

Die Kola-Bohrung (Кольская сверхглубокая скважина; Kolʹskaja swerchglubokaja skwashina), auch Kola SG-3 genannt, ist eine von 1970 bis 1989 zu wissenschaftlichen Zwecken durchgeführte ultratiefe geologische Bohrung auf der russischen Halbinsel Kola, etwa zehn Kilometer südwestlich der Kleinstadt Sapoljarny. Sie erreichte 12.262 Meter Teufe, ist seit 1979 die tiefste Bohrung der Welt und besaß bis 2008 auch das längste Bohrloch. Sie ist zudem die einzige übertiefe Bohrung in einen stabilen Kraton bzw. Kontinentalschild.[1] Die Kola-Bohrung war die erste von insgesamt 11 geplanten übertiefen Bohrungen eines ambitionierten staatlichen Forschungsprogramms der Sowjetunion.[2][3] Mit den Arbeiten an der zweiten dieser Bohrungen, die jedoch nur eine Teufe von 8200 m erreichte, wurde ebenfalls Anfang der 1970er Jahre in Saatly in den Ölfeldern des Kura-Beckens (Aserbaidschan) begonnen.

Regionale Geologie

Die Halbinsel Kola gehört zum Baltischen Schild, dem größten Ausbiss des präkambrischen Grundgebirges des europäischen Kratons (Baltica). Der Baltische Schild ist geprägt durch Kristallingesteine, das heißt intensiv verfaltete und meist höhergradig metamorphe Gesteine (überwiegend verschiedene Gneise) und unmetamorphe magmatische Gesteine (überwiegend Granitoide). Der Nordosten des Baltischen Schildes einschließlich der Kola-Halbinsel ist dessen ältester Teil („archaischer Kern“), mit Gesteinsaltern bis zu 3,5 Milliarden Jahren. Annähernd parallel zu den Küsten von Barentssee und Weißem Meer zieht sich, NW-SE streichend, die sogenannte Kola-Provinz längs durch das Landesinnere der Kola-Halbinsel. Die Kola-Provinz ist sehr komplex aufgebaut, wird als Teil eines archaisch-paläoproterozoischen Orogens interpretiert und enthält neben verschiedenen Granitoid-Gneiskomplexen auch sogenannte Grünsteingürtel.[4] Die Bohrstelle von Kola SG-3 liegt innerhalb der Kola-Provinz im Ausbiss des sogenannten Petschenga-Komplexes (auch Petschenga-Grünsteingürtel genannt), einer paläoproterozoischen, niedrig- bis mittelgradig metamorphen Abfolge aus vulkanischen, vulkanosedimentären sowie verschiedenen sedimentären Gesteinen, die als orogenetisch überprägte Füllung eines Grabenbruchs (Petschenga-Varsuga-Rift)[5][6] oder Backarc-Beckens[7] interpretiert wird.

Ziele

Der entlegene Standort nahe Sapoljarny wurde unter anderem wegen der sulfidischen Kupfer-Nickel-Lagerstätte vom Sudbury-Typ ausgewählt, die unweit der Bohrstelle seit Ende der 1940er Jahre abgebaut wird.[3][8] Durch die Bohrung sollte diese Lagerstätte in die Tiefe verfolgt und Erkenntnisse über ihre Entstehung gewonnen werden. Ursprüngliche Zielteufe für die Bohrung waren 15.000 m. Weitere Zielstellungen bzw. Erwartungen waren

  • der Aufschluss bzw. die Beprobung von Bereichen der Erdkruste, in denen seismische Diskontinuitätsflächen registriert wurden, insbesondere die sogenannte Conrad-Diskontinuität, die Grenzfläche zwischen der oberen (bzw. mittleren) und unteren Erdkruste,
  • die Erkundung der geothermischen Verhältnisse und potenzieller Vorkommen von Wässern und Gasen in größerer Krustentiefe sowie
  • die Überprüfung der Praxistauglichkeit der speziell für diese Rekordbohrung entwickelten Bohr- und Messtechnik und Gewinnung neuer Erkenntnisse für eine Weiterentwicklung derselben[3]

Technische Details und Chronologie

Bohrturm der Uralmasch-15000 im Jahr 2007, die übrigen Gebäude der Bohrstation sind von Hügeln verdeckt
Verfallenes Hauptgebäude ohne den bereits abgerissenen Bohrturm im Jahr 2012
Der versiegelte Bohrlochkopf der Kola-Bohrung (2012)

Die Planungen und Vorbereitungen für die Bohrung erfolgten ab den frühen 1960er Jahren. Am 24. Mai 1970 begann der Bohrbetrieb unter Einsatz der auch für herkömmliche Erdölbohrungen genutzten Bohranlage Uralmasch-4E. Anfang 1975[9] wurden die Arbeiten bei Erreichen einer Teufe von 7263 m unterbrochen, die Bohranlage abgebaut und im Laufe eines Jahres durch die eigens entwickelte, 68 m hohe Uralmasch-15000 ersetzt, die speziell für die Zielteufe von 15.000 m konzipiert war.[3] Die Bohrtürme wurden wegen der ungünstigen Witterung in der Tundra der Kola-Halbinsel jeweils voll verkleidet und heizbar konstruiert.[3][10] In angeschlossenen und umstehenden Gebäuden waren Steuer- und Messtechnik, Werkstätten, Material- und Bohrkernlager sowie Büros und Schlafquartiere für die Mitglieder des Bohrteams untergebracht.

Das eingesetzte Bohrgestänge bestand im obersten Teil (bis 2000 m) aus Stahl, darunter aus einer hochfesten Aluminiumlegierung, sodass das Gewicht des gesamten Gestänges auch im Bereich über 10.000 m Teufe die 400 Tonnen Hubkraft der Bohranlage nicht überstieg (einschließlich des durch Anliegen des Gestänges an der Bohrlochwand erzeugten Reibungswiderstands). Die Aluminiumlegierung war bis rund 250 °C temperaturstabil. Das zur Gewinnung von Kernproben oder bei verschleißbedingtem Austausch des Bohrmeißels nötige Ziehen des gesamten Gestänges (englisch round trip) erfolgte bei der Uralmasch-15000 vollautomatisch[11] und erforderte bei 12 km Teufe nur 18 Stunden.[2][3] Effektiv gebohrt wurde zwischen der 10.000- und 11.500-m-Marke dennoch nur in 3,1 % der Zeit (d. h. im Schnitt 45 min/d), im Vergleich zu 27,1 % auf den ersten 2000 m (6,5 h/d).[12] Statt des konventionellen Rotary-Verfahrens wurde mittels des Turbinen-Verfahrens gebohrt. Dabei sitzt oberhalb des Bohrmeißels (mindestens) eine Turbine, die durch die mit hohem Druck* eingepresste Bohrspülung angetrieben wird und ihrerseits den Meißel antreibt. Dadurch wirken keine Torsionskräfte auf das Gestänge, das infolgedessen wesentlich weniger anfällig für Brüche ist und aus weniger festem, aber dafür leichterem Material bestehen kann. Das Gestänge in der Kola-Bohrung rotierte trotzdem mit wenigen Umdrehungen pro Minute, um einem Verklemmen im Bohrloch vorzubeugen. Ein Planetengetriebe mit hohem Drehmoment reduzierte die Umdrehungsgeschwindigkeit des Meißels – verwendet wurden stets Rollenmeißel mit Hartmetallwarzen ohne Diamant – auf maximal 150 Umdrehungen pro Minute, um den Verschleiß des Materials zu verlangsamen. Die Telemetrie für Umdrehungsgeschwindigkeit, Drehmoment, Meißeldruck auf die Bohrlochsohle usw. erfolgte innovativ mittels einer weitgehend hitzeunempfindlichen Hydraulik-Leitung, in der die Informationen in Form von Druckimpulsen von den Instrumenten an der Bohrlochsohle an die Messwarte geliefert wurden.[2][3] Die Neigung des Bohrlochs gegenüber der Lotrechten liegt im Mittel bei 10 Grad, die Sohle in 12 km Tiefe weicht rund 750 m** zur Seite ab.[2][3] Ursprünglich sollte eine möglichst geringe Strecke des Bohrloches verrohrt werden, um Kosten zu sparen und um möglichst viel „offenes Bohrloch“ (engl. open-hole) für wissenschaftliche Messungen zur Verfügung zu haben.[3] Das Standrohr hat einen Durchmesser von 426 mm und ist rund 40 m lang. Von dort aus wurde zunächst unverrohrt bis in 5300 m Teufe mit 215 mm Meißeldurchmesser gebohrt. Dann musste wegen Ausbrüchen aus der Bohrungswand bei 1800 m im Bereich einer stark wasserführenden Formation die Bohrung bis in 2000 m Teufe weiter aufgebohrt und eine Verrohrung mit 342 mm*** Durchmesser einzementiert werden. In diese Verrohrung wurde zum Schutz derselben zunächst ein austauschbarer Rohrstrang mit 245 mm Durchmesser eingezogen.[3] Bis zum Jahr 1990 wurde der innere Rohrstrang als permanente Verrohrung bis in 8770 m Teufe verlängert, wobei neu entwickelte Zementmischungen eingesetzt wurden, die bei Temperaturen von weit über 100 °C abbinden können.[13] Von den ersten 11.500 m Bohrstrecke wurden 9325,2 m gekernt[14] (Kerndurchmesser 60 mm[3]). Bis 4600 m Teufe lief dies relativ unproblematisch, mit einem Kerngewinn von 53 %. Darunter jedoch begann das Gestein infolge der Druckentlastung in Scheiben zu zerplatzen (engl. disking), die sich im Kernrohr verkeilten. Dadurch reduzierte sich der Kerngewinn um mehr als die Hälfte. Ab Beginn des Einsatzes der Uralmasch-15000 bei rund 7300 m konnte infolge der Verwendung eines Doppelkernrohres mit nicht-mitrotierendem Innenrohr der Kerngewinn zunächst wieder auf 40 % gesteigert werden, fiel aber unterhalb 9000 m wieder auf 29 % ab.[15] Insgesamt wurden 3700,1 m Bohrkern gewonnen (40 %).[14]

Am 6. Juni 1979 wurde die Teufenmarke von 9.584 Meter erreicht, und damit die bisherige Rekordbohrung Bertha Rogers in Oklahoma, USA, um 1 m übertroffen. Aber bereits lange vorher war Kola die tiefste Bohrung, die bis dahin je außerhalb eines Sedimentbeckens bzw. vollständig in Kristallingestein niedergebracht wurde. 1980 erreichte das Bohrloch eine Tiefe von 10.700 m.[16] Für August 1982 wurde eine Teufe von 11.515 m angegeben.[11] Am 27. Dezember 1983 erreichte die Bohrung die Marke von 12.000 m[17] und am 10. August 1984 betrug die Teufe 12.046 m.[2][3]

Bis 1984 war die Kola-Bohrung eine Einzelbohrung. Dann verkantete sich am 27. September nach Erreichen der Teufenmarke von 12.066 m das Gestänge beim Ziehen desselben im Bohrloch und riss bei dem Versuch, es wieder zu lösen, in ca. 7000 m Teufe ab, sodass ca. 5000 m Bohrstrang nebst Turbine, Reduziergetriebe und Meißel unwiederbringlich im Bohrloch verblieben.[18] Im Folgenden wurden in mehreren Neuversuchen Teilbohrungen erstellt, die ab ca. 7000 m Teufe von der Hauptbohrung abzweigen. Drei Teilbohrungen drangen bis unterhalb der Marke von 11.600 m vor, und eine dieser drei erreichte schließlich 1989 mit 12.262 m die Endteufe.[19] Dabei sah sich die Bohrmannschaft immer wieder mit zunehmender Tiefe zunehmenden technischen Schwierigkeiten gegenüber. Problematisch waren nicht zuletzt die unerwartet hohen Temperaturen von 180 bis über 200 °C im Teufenbereich unterhalb von 11.000 m, die die Technik an die Grenze ihrer Leistungsfähigkeit brachten. Nachdem noch im Juli 1992 bekannt gegeben wurde, dass man wenigstens die Marke von 13.000 m schaffen will,[20] wurden die Bohrarbeiten im gleichen Jahr endgültig eingestellt. Die Anlage wurde vorerst für seismische und diverse andere wissenschaftliche Messungen und Experimente weiter genutzt.[21]

2008 vermeldete ITAR-TASS, dass die Demontage der Station bereits im Gange sei.[22] Der Bohrturm war bis 2012 komplett abgerissen. Die übrigen Gebäude wurden stehen gelassen und dem Verfall überlassen. 2014 war einer Meldung von ITAR-TASS zu entnehmen, dass sich das Objekt seinerzeit im Besitz einer privaten „Kola-Bohrungs-Gesellschaft“ befand, die sich ihrerseits in der Abwicklung befand.[23]

* 
im Bereich von mehreren 10 MPa (mehrere 100 atm), die Pumpanlage der Uralmasch-15000 konnte einen Injektionsdruck von 35 bis 40 MPa (ca. 350 bis 400 atm) erzeugen[24]
** 
Jewgeni Koslowski gibt in seinem Aufsatz in Scientific American als größte horizontale Abweichung 840 m bei 10.500 m Teufe an, danach gehe sie wieder zurück.[25] Helmut Vidal (1985) berichtet von 560 m Abweichung in 11.000 m Teufe.[3]
*** 
Andere Quellen sprechen von 325 mm Durchmesser[26]
 
Katja Schulze spricht allerdings im Zusammenhang mit Fluidpegelmessungen im Kola-Bohrloch von einem unverrohrten Abschnitt zwischen 8280 und 8580 m im Jahr 1996.[27]
 
Ein Artikel im Hausblatt von Uralmasch gibt an, es seien insgesamt 12 Teilbohrungen gewesen[18]

Wissenschaftliche Ergebnisse

1984 wurden 31 internationale Wissenschaftler eingeladen, sich das Projekt vor Ort anzuschauen, darunter auch der westdeutsche Geologe und Wegbereiter des Kontinentalen Tiefbohrprogramms der Bundesrepublik Deutschland (KTB) Helmut Vidal.

Das Proterozoikum reichte bis zu einer Tiefe von 6842 m. Darin lassen sich vier Phasen unterscheiden:[28]

In 1500 bis 1800 m finden sich auch in den ultrabasischen Intrusionen Kupfer- und Nickel-haltige sulfidische Erze vom Sudbury-Typ, die anderswo auf der Kola-Halbinsel im Tagebau abgebaut wurden.

Das Archaikum von 6842 bis 12000 m besteht aus einem Gneis-Granit Komplex, wobei der Gneis stark metamorph geprägt war (bis zur Granulitisierung). Zu rund zwei Dritteln fanden sich hier rhythmisch gebettete Folgen von Biotit- und Zweiglimmer-Plagioklas-Gneisen,[29] die bei der Metamorphose vor 2,7 bis 2,8 Milliarden Jahren Temperaturen von 750 bis 900 °C erfuhren (und Drücke von 500 bis 110 Mega-Pascal). Erwartet war bei der Conrad-Diskontinuität bei rund 7000 m eigentlich eine basaltische Schicht statt des Gneis-Granit-Komplexes. In einer Tiefe von 4500 bis 9000 m fand sich eine Inversionszone mit niedrigerer Ausbreitungsgeschwindigkeit seismischer Wellen, aber ebenfalls ohne Übergang zu Basalten bei der Diskontinuität bei 9000 m. Die Kola-Bohrung war die erste Bohrung, die diese Diskontinuität erreichte.[30]

Zwischen 4500 und 11000 m gibt es Hinweise auf hydrothermale Erzbildung (es finden sich Zonen zertrümmerter und mit Calciten, Quarzen und Sulfiderzen zementierter Gesteine). Entgegen den Erwartungen wurden in Tiefen von über 4500 m tektonisch stark beanspruchte Gesteine mit relativ hoher Permeabilität und Zirkulation von stark mineralhaltigen Flüssigkeiten (Brom, Jod, einige Schwermetalle) gefunden. Sie enthielten auch Gase, darunter Methan und andere Kohlenwasserstoffe. Das Kohlendioxid war nach der Isotopendatierung teilweise archaischen Ursprungs (aus dem Mantel), teilweise proterozoisch und biogen. Es fanden sich in den rund zwei Milliarden Jahre alten metamorphen Gesteinen (hervorgegangen aus Sandsteinen und Konglomeraten) Mikrofossilien.

Der Temperaturgradient war vorher an der Oberfläche zu 1 °C pro 100 m bestimmt worden. In 3000 m Tiefe fand sich ein Gradient von 2,5 °C pro 100 m. In 12000 m Tiefe wurde eine Temperatur von 205 °C erreicht, was auch über den Erwartungen lag.

Messungen des Flüssigkeitspegels im Bohrloch (durchgeführt ab 1996) lassen Rückschlüsse auf mechanische Wechselwirkungen zwischen den Gesteinen der Erdkruste und den Flüssigkeiten in deren Porenraum, unter anderem bedingt durch Erdgezeiten, zu.[27]

Die meisten der über 45.000 Gesteinsproben wurden noch nicht untersucht (Stand 2010).[31]

Legendenbildung

1989 gerieten Gerüchte über merkwürdige Begebenheiten während der Bohrarbeiten in Umlauf. Daraus entstand die Legende, wonach die Hölle angebohrt worden sei, da man mit in das Bohrloch hinabgelassenen Mikrofonen Geräusche aufgenommen hätte, die sich als „menschliche Schreie, aus Tausenden gequälten Kehlen“ herausgestellt hätten. Diese Geschichte wurde später von einem religionskritischen norwegischen Lehrer noch weiter ausgeschmückt und in seiner Version der religiösen US-amerikanischen Fernsehsenderfamilie Trinity Broadcasting Network (TBN) zugespielt, die sie, trotz bestehender Zweifel an ihrer Authentizität, an einen texanischen Fernsehprediger weitergab, der sie schließlich in den gesamten USA verbreitete. Von da an verselbstständigte sie sich und wurde in jüngster Zeit vor allem über das Internet weiterverbreitet.[21]

Rekord

Die Kola-Bohrung wurde in der gebohrten Länge erst im Jahre 2008 durch eine Tiefseebohrung im Al-Shaheen-Ölfeld in Katar übertroffen. Allerdings erreicht dieses Bohrloch nur eine Tiefe von 1500 Metern unter dem Meeresboden, da der größte Teil dieser Bohrung (10.902 Meter) in die Horizontale ging.[32][33]

Im Jahr 2011 wurde im Sachalin I-Projekt dieser Rekord noch übertroffen. Das Bohrloch Odoptu OP-11 erreichte eine Länge von 12.345 m und dabei eine seitliche Ausdehnung von 11.475 m.[34]

Siehe auch

Literatur

  • J. W. Clarke, R.C. McDowell, J.R. Matzko, P.P. Hearn, D.J. Milton, D.J. Percious, D.B. Vitaliano, Gregory Ulmishek: The Kola Superdeep Drill Hole by Ye. A. Kozlovskiy (1984): A detailed summary. Open-File Report 86-517. United States Geological Survey, Wahington, D.C. 1986, doi:10.3133/ofr86517 (englische Langzusammenfassung des russischen, vom damaligen sowjetischen Geologieminister Jewgeni Koslowski [Евгений Козловский] herausgegebenen Sammelbandes Кольская сверхглубокая. Nedra-Verlag, Moskau 1984, geokniga.org, 1987 beim Springer-Verlag in vollständiger englischer Übersetzung erschienen unter dem Titel The Superdeep Well of the Kola Peninsula, ISBN 978-3-642-71139-8)
  • Yevgeny A. Kozlovsky: Kola super-deep: interim results and prospects. Episodes. Bd. 5, Nr. 4, 1982, S. 9–11 (PDF 500 kB)
  • Helmut Vidal: Kola-SG-3, die tiefste Bohrung der Welt. Geowissenschaften in unserer Zeit. Bd. 3, Nr. 2, 1985, S. 52–57, doi:10.2312/geowissenschaften.1985.3.52.
  • Helmut Vidal: The Kola super-deep borehole SG-3 – first look at the deepest hole of the world. GeoJournal. Bd. 9, Nr. 4, 1984, S. 431–432, doi:10.1007/BF00171607

Weblinks

Commons: Kola-Bohrung – Sammlung von Bildern, Videos und Audiodateien

Einzelnachweise

  1. Yulia A. Uvarova, T. Kurtis Kyser, Elena Sokolova, Vadim I. Kazansky, Konstantin V. Lobanov: Significance of stable-isotope variations in crustal rocks from the Kola Superdeep Borehole and their surface analogues. Precambrian Research. Bd. 189, Nr. 1–2, 2011, S. 104–113, doi:10.1016/j.precamres.2011.05.005 (alternativer Volltext: SemanticScholar)
  2. a b c d e H. Vidal: The Kola super-deep borehole SG-3. 1984 (siehe Literatur)
  3. a b c d e f g h i j k l m H. Vidal: Kola-SG-3, die tiefste Bohrung der Welt. 1985 (siehe Literatur)
  4. A. I. Slabunov, S. B. Lobach-Zhuchenko, E. V. Bibikova, P. Sorjonen-Ward, V. V. Balagansky, O. I. Volodichev, A. A. Shchipansky, S. A. Svetov, V. P. Chekulaev, N. A. Arestova, V. S. Stepanov: The Archaean nucleus of the Fennoscandian (Baltic) Shield. S. 627–644 in: D. G. Gee, R. A. Stephenson (Hrsg.): European Lithosphere Dynamics. Geological Society, London, Memoirs 32. 2006, doi:10.1144/GSL.MEM.2006.032.01.37
  5. Viktor A. Melezhik, Eero J. Hanski: Paleotectonic and palaeogeographic evolution of Fennoscandia in the Early Palaeoproterozoic. S.111–178 in: Victor Melezhik, Anthony R. Prave, Anthony E. Fallick, Lee R. Kump, Harald Strauss, Aivo Lepland, Eero J. Hanski (Hrsg.): Reading the Archive of Earth’s Oxygenation. Volume 1: The Palaeoproterozoic of Fennoscandia as Context for the Fennoscandian Arctic Russia - Drilling Early Earth Project. Springer, 2013, ISBN 978-3-642-29681-9, S. 114
  6. Anthony J. Naldrett: Magmatic Sulfide Deposits. Springer, 2004, ISBN 978-3-642-06099-1, S. 279 ff. (Kap. 5: Deposits of the Pechenga area, Russia)
  7. Evgenii V. Sharkov, Valery F. Smolkin: The early Proterozoic Pechenga-Varzuga Belt: a case of Precambrian back-arc spreading. Precambrian Research. Bd. 82, Nr. 1–2, 1997, S. 133–151, doi:10.1016/S0301-9268(96)00041-1
  8. aktueller Betreiber der hiesigen Nickelerzbergwerke ist MMC Norilsk Nickel (Nornickel) bzw. dessen regionale Tochter Kola MMC, siehe Nornickel Annual Report 2016. Moskau 2017 (PDF 16 MB, S. 8, 46)
  9. USSR and Eastern Europe Scientific Abstracts: Geophysics, Astronomy and Space. Nr. 384. JPRS Report 68212. U.S. Joint Publications Research Service, Arlington (VA) 1976 (Online), S. 22 (englischer Abstract eines Artikels von A. Asan-Nuri und M. Woroshbitow in der sowjetischen Zeitschrift Nauka i shisn [Наука и жизнь] Nr. 3/1976, S.34-40)
  10. Ur-Turm. Bild 3 in der Fotostrecke zum Spiegel-Online-Artikel Hoppla, wir haben die Hölle angebohrt! von Danny Kringiel vom 26. April 2011
  11. a b Y. A. Kozlovsky: Kola super-deep: interim results and prospects. 1982 (siehe Literatur)
  12. J. W. Clarke: The Kola Superdeep Drill Hole by Ye. A. Kozlovskiy. 1986 (siehe Literatur), S. 211
  13. Yevgeny A. Kozlovsky: The USSR integrated program of continental crust investigations and studies of the earths deep structure unter the “Globus” Project. S. 90–103 in: Karl Fuchs, Yevgeny A. Kozlovsky, Anatoly I. Krivtsov, Mark D. Zoback (Hrsg.): Super-Deep Continental Drilling and Deep Geophysical Sounding. Springer-Verlag, 1990, ISBN 978-3-642-73457-1, S. 96 f.
  14. a b J. W. Clarke: The Kola Superdeep Drill Hole by Ye. A. Kozlovskiy. 1986 (siehe Literatur), S. 214
  15. James S. Dahlem: Bit Design for Crystalline Rock. S. 235-261 in: Anders Bodén, K. Gösta Eriksson (Hrsg.): Deep Drilling in Crystalline Bedrock: Volume 2: Review of Deep Drilling Projects, Technology, Sciences and Prospects for the Future. Springer-Verlag, 1988, ISBN 978-3-642-73457-1, S. 250 ff.
  16. J. W. Clarke: The Kola Superdeep Drill Hole by Ye. A. Kozlovskiy. 1986 (siehe Literatur), S. 4
  17. Bild 16 in der Fotostrecke zum Spiegel-Online-Artikel Hoppla, wir haben die Hölle angebohrt! von Danny Kringiel vom 26. April 2011
  18. a b The Unbreakable Record. Auszug aus einem Artikel in United Heavy Machinery Gazette [Объединенной машиностроительной газете] (Nr.28, 2004) auf der Webpräsenz von Uralmasch, englische Version
  19. V. R. Vetrin, O. M. Turkina, J. Ludden: Petrology and geochemistry of rocks from the basement of the Pechenga paleorift. Russian Journal of Earth Sciences. Bd. 4, Nr. 2, S. 121–151, doi:10.2205/2002ES000085, Fig. 2.
  20. Russia won’t drill superdeep Kola peninsula hole to 15,000 m target. Oil & Gas Journal, 12. Juli 1992
  21. a b Danny Kringiel: Hoppla, wir haben die Hölle angebohrt! In: Spiegel Online. 26. April 2011, abgerufen am 26. April 2011.
  22. Kola Superdeep Borehole Will Be Destroyed. Russia-IC, 3. Oktober 2008
  23. Прокуратура: процедура банкротства научной скважины под Мурманском незаконно затянута. ITAR-TASS, 10. Juni 2014 (Russisch)
  24. J. W. Clarke: The Kola Superdeep Drill Hole by Ye. A. Kozlovskiy. 1986 (siehe Literatur), S. 203
  25. Yevgeny A. Kozlovsky: The world’s deepest well. Scientific American. Bd. 251, Nr. 6, 1984, S. 98–107, doi:10.1038/scientificamerican1284-98
  26. Yuri A. Fetko: Wellhead equipment. S. 504–506 in: Yevgeny A. Kozlovsky (Hrsg.): The Superdeep Well of the Kola Peninsula. Springer-Verlag, 1987, ISBN 978-3-642-71139-8
  27. a b Katja Schulze: Messung von Fluidpegelschwankungen in der Kola-Bohrung – Einleitung und Zielsetzungen. (Memento vom 20. Januar 2013 im Internet Archive) Webpräsenz des ehemaligen Instituts für Geodynamik und Geophysik der Rheinischen Friedrich-Wilhelms-Universität Bonn, 2001
  28. Nach Helmut Vidal, The Kola Super-deep Borehole SG-3 — First Look at the Deepest Hole of the World, GeoJournal, Band 9, 1984, Heft 4
  29. Zwei Glimmer: Biotit und Muskovit
  30. Kozlovsky, The world`s deepest well, Scientific American, Dezember 1984, S. 98
  31. Matthias Cassel: Ein Traum von einem Loch. In GEO 7/2010, S. 128–136.
  32. Transocean GSF Rig 127 Drills Deepest Extended-Reach Well. Abgerufen am 26. April 2011.
  33. Continuous improvements lead to Maersk Oil Qatar’s longest horizontal well in the world. Abgerufen am 5. Juni 2011.
  34. Sakhalin-1 Project Drills World’s Longest Extended-Reach Well