Lichtstrom

aus Wikipedia, der freien Enzyklopädie
Wechseln zu: Navigation, Suche
Physikalische Größe
Name Lichtstrom
Formelzeichen der Größe \Phi_\mathrm{v},F\
Größen- und
Einheitensystem
Einheit Dimension
SI Lumen (lm) J

Der Lichtstrom (englisch luminous flux) \Phi_\mathrm{v} ist die photometrische Entsprechung zur Strahlungsleistung \Phi_\mathrm{e}. Er wird in der Einheit Lumen (lm) angegeben und berücksichtigt die wellenlängenabhängige Empfindlichkeit des menschlichen Auges. Die Integration der Lichtstärke über eine Fläche, auf die das Licht senkrecht einfällt, ergibt den einfallenden Lichtstrom. Die Integration des Lichtstroms über die Zeit ergibt die Lichtmenge.

Lichtstromermittlung mit Hilfe einer Ulbrichtschen Kugel (Kugelphotometer)[Bearbeiten]

Die gängige, jedoch relative Messung mit Hilfe einer Ulbrichtschen Kugel führt zu einem vergleichsweise schnellen Ergebnis, welches im Millisekunden-/Sekundenbereich vorliegt. Unter Beachtung der Vorbereitungszeiten, wie kontrolliertes Altern (48 h für Halogenlampen) oder thermisches Stabilisieren (2 h für LED-Leuchten und -Lampen) der Lichtquelle wird der Zeitvorteil jedoch reduziert. Ein an der Ulbrichtkugel angeschlossenes Photometer/Spektrometer erlaubt das sofortige Ablesen des Lichtstroms. Präzise Messungen sind unter zwei Voraussetzungen durchführbar. Die (relativ) messende Kugel muss durch eine geeignete Lichtquelle identischer räumlicher Abstrahlung kalibriert worden sein, da die Lichtdurchmischung bei gängiger Photometerfarbe (Innenauskleidung der Kugel) nicht ausreichend ist. Eine Erhöhung des Reflexionsgrades zu Werten von größer 90 % wird durch die CIE nicht mehr empfohlen, da die Langzeitstabilität durch unumgängliches Einstauben der unteren Kugelhälfte nicht gewährleistet werden kann. Des Weiteren muss die Kugel entweder mit einer bekannten Lichtquelle identischer Spektralverteilung kalibriert werden oder das Gesamtsystem "Kugel mit montiertem Photometerkopf" muss eine spektrale Empfindlichkeit ähnlich zur Hellempfindlichkeitsfunktion des (menschlichen) Auges haben. Dieser Anspruch ist jedoch nur für Photometer (schnell auslesbar) mit Partialfilterung sowie Spektrometer (deutlich langsamer auslesbar) mit integrierter Streulichtmatrix-Korrektur erfüllbar. Zusammenfassend lässt sich festhalten, dass die Kugel hervorragende Messergebnisse liefert, wenn "gleich gegen gleich" und somit relativ gemessen wird. Weichen die räumliche oder spektrale Ausstrahlung oder die Bauform der Kalibrierlichtquelle vom Messobjekt ab, so ist die Messunsicherheit erheblich vergrößert.

Lichtstromermittlung aus der Lichtstärkeverteilung (Goniophotometer)[Bearbeiten]

Die weitaus genauere, weil absolute Messung des Lichtstromes wird mit Hilfe eines Beleuchtungsstärkemesskopfes, montiert an einem Goniometer durchgeführt. Das Goniometer bewegt den Photometerkopf (eigentlich Beleuchtungsstärkemesskopf) auf einer virtuellen Kugelfläche um das Messobjekt. Je nach Verteilung der winkelabhängigen Lichtstärke der Lichtquelle liegt die Messdauer im Bereich von Minuten/Stunden. Wichtig ist hierbei, dass die zu vermessende Lichtquelle über die Messdauer stabil arbeitet. Die vom Goniometer gefahrenen Bahnen liegen historisch begründet auf Loxodromen (Spiralbahnen) oder bilden Großkreise/Kleinkreise nach. Ist die Lichtstärkeverteilung (LVK) ansatzweise bekannt, kann per CNC jedes denkbare Raster abgetastet werden und somit der zeitliche Messaufwand erheblich reduziert werden. Liegt nach Beendigung der Messwertaufnahme eine sinnvolle räumliche Verteilung der Messwerte vor, so ist mit Hilfe von numerischen Methoden möglich, den Lichtstrom aus der Lichtstärkeverteilung zu errechnen. Ebenso wie bei der Messung am Kugelphotometer ist die spektrale Anpassung des Messkopfes wichtig, nach DIN 5032 Teil 7 ergibt sich ein Klasse L Messkopf ausschließlich bei einem Gesamtfehler kleiner 1,5 %. Der Einsatz von Beleuchtungsstärkemessköpfen mit Partialfilterung ist notwendig. Weiterhin ist auf ein hinreichend enges Messraster zu achten.

Berechnung aus dem spektralen Fluss[Bearbeiten]

Zur Bewertung mit der Hellempfindlichkeit des menschlichen Auges wird der spektrale Fluss \frac{\mathrm{d}}{\mathrm{d}\lambda}\Phi_\mathrm{e}(\lambda) punktweise (pro Wellenlänge \lambda) mit der Empfindlichkeitskurve K_\mathrm{m} V(\lambda) multipliziert. Darin ist K_\mathrm{m} das photometrische Strahlungsäquivalent. Das Integral über die Wellenlänge ergibt schließlich den Lichtstrom

\Phi_\mathrm{v} = K_\mathrm m \int_{0}^{\infty} V(\lambda)\ \frac{\mathrm{d}}{\mathrm{d}\lambda}\Phi_\mathrm{e}(\lambda)\ \mathrm{d}\lambda\ .
Übersicht über photometrische Größen und Einheiten
Bezeichnung Formelzeichen Definition Einheitenname Einheitenumformung Dimension
Lichtstrom
(luminous flux, luminous power)
\textstyle \mathit{\Phi_\mathrm{v}}\,, F\,, P \textstyle \mathit{\Phi_\mathrm{v}} = K_\mathrm{m}\int_{380\,\mathrm{nm}}^{780\,\mathrm{nm}}\frac{\partial\mathit{\Phi_\mathrm{e}}(\lambda)}{\partial \lambda}\cdot V(\lambda)\,\mathrm{d}\lambda Lumen (lm) \textstyle \mathrm{1\, lm = 1\, sr \cdot cd} \mathsf{J} \,
Beleuchtungsstärke
(illuminance)
\textstyle E_\mathrm{v} \, \textstyle E_\mathrm{v}=\frac{\partial \mathit{\Phi_\mathrm{v}}}{\partial A} Lux (lx), früher auch Nox (nx), Phot (ph) \textstyle \mathrm{1\, lx = 1\,\frac{lm}{m^2} = 1\,\frac{sr \cdot cd}{m^2}} \mathsf{L^{-2} \cdot J}
Spezifische Lichtausstrahlung
(luminous emittance)
\textstyle M_\mathrm{v} \, \textstyle M_\mathrm{v}=\frac{\partial \mathit{\Phi_\mathrm{v}}}{\partial A} Lux (lx) \textstyle \mathrm{1\, lx = 1\,\frac{lm}{m^2} = 1\,\frac{sr \cdot cd}{m^2}} \mathsf{L^{-2} \cdot J}
Leuchtdichte
(luminance)
\textstyle L_\mathrm{v} \, \textstyle L_\mathrm{v}=\frac{\partial^2 \mathit{\Phi_\mathrm{v}}}{\partial \Omega \cdot \partial A_1 \cdot \cos \varepsilon_1} keine eigene Einheit, manchmal Nit genannt, früher auch in Stilb (sb), Apostilb (asb), Lambert (la), Blondel \textstyle \mathrm{1\,\frac{cd}{m^2} = 1\,\frac{lm}{sr \cdot m^2}} \mathsf{L^{-2} \cdot J}
Lichtstärke
(luminous intensity)
\textstyle I_\mathrm{v} \, \textstyle I_\mathrm{v}=\frac{\partial\mathit{\Phi_\mathrm{v}}}{\partial\Omega} Candela (cd) (SI-Basiseinheit),
früher auch Hefnerkerze (HK), Internationale Kerze (IK), Neue Kerze (NK)
\textstyle \mathrm{1\, cd = 1\, \frac{lm}{sr}} \mathsf{J} \,
Lichtmenge
(luminous energy)
\textstyle Q_\mathrm{v} \, \textstyle Q_\mathrm{v}= \int_{0}^{T} \mathit{\Phi_\mathrm{v}}(t) \mathrm{d}t Lumensekunde (lm s), Talbot, Lumberg \textstyle \mathrm{1\, lm \cdot s = 1\, sr \cdot cd \cdot s} \mathsf{T \cdot J}
Belichtung
(luminous exposure)
\textstyle H_\mathrm{v} \, \textstyle H_\mathrm{v}= \int_{0}^{T} E_\mathrm{v}(t) \mathrm{d}t Luxsekunde (lx s) \textstyle \mathrm{1\, lx \cdot s = 1\,\frac{lm \cdot s}{m^2} = 1\,\frac{sr \cdot cd \cdot s}{m^2}} \mathsf{L^{-2} \cdot T \cdot J}
Lichtausbeute
(luminous efficacy)
\textstyle \eta\,, \rho\, \textstyle \eta=\frac{\mathit{\Phi_\mathrm{v}}}{P} Lumen / Watt \textstyle \mathrm{1\,\frac{lm}{W} = 1\,\frac{sr \cdot cd \cdot s}{J} = 1\, \frac{sr \cdot cd \cdot s^2}{kg \cdot m^2}} \mathsf{M^{-1} \cdot L^{-2} \cdot T{^3} \cdot J}
Raumwinkel
(solid angle)
\textstyle \Omega \, \textstyle \Omega = \frac{S}{r^2} Steradiant (sr) \textstyle \mathrm{1\, sr = \frac{\left[ Fl\ddot{a}che \right]}{\left[ Radius^2 \right]} = 1\,\frac{m^2}{m^2}} \mathsf{1} \, (Eins)

Literatur[Bearbeiten]

  • Hans R. Ris: Beleuchtungstechnik für Praktiker. 2. Auflage, VDE-Verlag GmbH, Berlin-Offenbach 1997, ISBN 3-8007-2163-5.
  • Günter Springer: Fachkunde Elektrotechnik. 18. Auflage, Verlag Europa-Lehrmittel, Wuppertal 1989, ISBN 3-8085-3018-9.
  • Wilhelm Gerster: Moderne Beleuchtungssysteme für drinnen und draussen.Compact Verlag, München 1997, ISBN 3-8174-2395-0.
  • Horst Stöcker: Taschenbuch der Physik. 4. Auflage, Verlag Harry Deutsch, Frankfurt am Main 2000, ISBN 3-8171-1628-4.

Weblinks[Bearbeiten]