Elektroantrieb (Fahrrad)

aus Wikipedia, der freien Enzyklopädie
Wechseln zu: Navigation, Suche

Unter Elektroantrieb eines Fahrrades werden die wesentlichen Bauteile Elektromotor, Traktionsbatterie (Akku) und Steuereinheit sowie ihr Zusammenwirken verstanden. In Europa und Japan wird der Elektroantrieb am häufigsten im sogenannten Pedelec verwendet, wobei er den Radfahrer beim Pedalieren lediglich unterstützt und das Fahrrad nicht vollständig selbst antreibt.

Allgemeines[Bearbeiten | Quelltext bearbeiten]

Der Elektroantrieb ist bei allen Typen von Elektrofahrrädern im Grundprinzip gleich. Unterschiedlich ist lediglich die Steuerungstechnik als Folge der unterschiedlichen verkehrsrechtlichen Behandlung. Beim Pedelec sind die gesetzlichen Beschränkungen am stärksten. Der Elektroantrieb darf nur wirken, wenn pedaliert wird. Außerdem sind die Leistung des Motors sowie die Fahrgeschwindigkeit reglementiert. Das Treten der Pedale und die Fahrgeschwindigkeit sind mittels Sensoren zu erfassen.

Motoren[Bearbeiten | Quelltext bearbeiten]

Es werden inzwischen fast ausschließlich Permanentmagnet-erregte Gleichstrommotoren verwendet. Das hat den Vorteil, auf Schleifkontakte verzichten zu können. Die Erregermagnete befinden sich auf dem Rotor. Das Drehfeld wird im Stator erzeugt. Die Aufgabe der früher zur elektrischen Erzeugung eines magnetischen Drehfelds nötigen Stromwende-Schleifkontakte erfüllt heute üblicherweise ein elektronischer Kommutator (EC) im sogenannten bürstenlosen oder EC-Motor. Das Verhalten eines solchen Motors ist wie das eines Gleichstrommotors mit im Nebenschluss erzeugtem und konstant gehaltenem Magnetfeld.

In Nabenmotoren ist oft ein ins Langsame übersetzendes Getriebe eingebaut, dieses kann ein Umlaufrädergetriebe sein.

Antriebskonzepte[Bearbeiten | Quelltext bearbeiten]

Die Entwicklung der sogenannten Pedelecs schreitet schnell voran. Während in früheren Jahren der Nabenmotor stärker verbreitet war, werden heute (2016) sehr viele Räder mit Mittelmotor gebaut. Andere Konzepte (Reibrolle, in die Kette eingreifendes Ritzel etc.) spielen nahezu keine Rolle mehr. Prinzipiell und vollständig aufgezählt gibt es folgende Möglichkeiten:

Ansatzpunkte des Elektroantriebs[Bearbeiten | Quelltext bearbeiten]

Verbreitet sind Konzepte bei denen die Kraftübertragung auf das Hinterrad realisiert wird. Seltener ist das Konzept des Zweirad mit Frontantrieb.

Im Laufrad:

  • Nabenmotor, sowohl hinten als auch vorn (häufig),

Am Laufrad (meistens hinten):

Auf die Fahrradkette:

  • über in die Kette eingreifendes Ritzel (Mittelmotor, häufig),[3]

Auf die Tretkurbelwelle:

  • Tretkurbelwelle mit Motor/Getriebe in gemeinsamen Gehäuse an geändertem Fahrradrahmen (häufig)[4]
  • Motor vor/unter Tretkurbellager,[5]
  • Motor/Getriebe auf Tretkurbelwelle seitlich des Tretlagergegäuses[6][7]

Motor (und Akku) auf einem Anhänger (Schubanhänger, selten).

Antrieb mit Nabenmotor[Bearbeiten | Quelltext bearbeiten]

Nabenmotor mit eingebautem Getriebe im Vorderrad

Ein Fahrrad-Nabenmotor hat einen relativ großen Durchmesser, weil die relative Geschwindigkeit zwischen den Statorpolen (feststehender Teil) und den Magnetpolen des Rotors (Außenläufer – umlaufender Teil, treibt über die Speichen die Felge an) eines Elektromotors einen minimalen Wert nicht unterschreiten kann,[8] um eine erforderliche Leistung abzugeben. Beim Nabenmotor mit eingebautem (Umlaufräder-)Getriebe zur Übersetzung ins Langsame läuft der Stator entsprechend schneller, er kann kleiner sein. Wegen seines geringeren Gewichts und Massenträgheitsmoments wird dieser beim Vorderradantrieb bevorzugt. Die Lenkung wird fast nicht erschwert, weil auch die Kreiselmomente kleiner sind.

Der Motor arbeitet i.d.R. über einen Freilauf auf die Nabe, damit er (und das Getriebe) bei reinem Pedalbetrieb nicht mitgedreht werden muss. Fehlt der eigene Freilauf für den Motor, machen sich auch nach dem Abschalten des Motors die aufgebauten Magnetfelder noch ca. 500-1000 Meter bremsend bemerkbar.

Ein Nabenmotor am Hinterrad hat besseren Bodenkontakt, da dieses Rad das meiste Gewicht trägt, man muss aber auf eine Nabenschaltung verzichten.[9] Ein Motor im Vorderrad bewirkt durch die hohen Kräfte von Antrieb, Lenken und Bremsen bei geringerem Bodendruck eine erhöhte Rutsch- und Unfallgefahr.

Ein wesentlicher Nachteil des Nabenmotors im Vergleich mit dem Mittelmotor, der über Kette und Gangschaltung das Laufrad antreibt, ist das feste Verhältnis zwischen seiner Umdrehungszahl und der Raddrehzahl. Es gibt keine mechanische Anpassung an die optimale Motordrehzahl. Bei kleiner Fahrgeschwindigkeit (z. B. an Steigungen) ist der Wirkungsgrad klein, und der erhöhte Motorstrom vergrößert die Erwärmung. Weil teilweise mit schlechtem Wirkungsgrad gefahren werden muss, ist die Reichweite bei gleicher Akkukapazität kleiner als beim Fahren mit Mittelmotor.

Pedelec mit getriebelosem Hinterrad-Nabenmotor von BionX

Das beim Mittelmotor-Konzept bestehende feste Verhältnis zwischen Motor- und Tretkurbel-Drehzahl erleichtert die Anpassung der Motorleistung an die Tretleistung des Fahrers. Bei Nabenmotoren ist für diese Anpassung ein besonderer Aufwand bei der elektrischen Steuerung erforderlich.[10]

Ein Nabenmotor macht das nachträgliche Umrüsten auf diesen Zusatzantrieb relativ einfach, da keine Umbauten an Rahmen und Gabel erforderlich sind. Die Stromzufuhr erfolgt von der Seite durch die hohlgebohrte Achse hindurch. Außer dem Einbau eines neuen Laufrades mit Motor kommt auch der Austausch der Nabe im bisherigen Laufrad unter Benutzung nun kürzerer Speichen infrage.

Antrieb auf das Laufrad[Bearbeiten | Quelltext bearbeiten]

Bereits 1982 wurde von HEIDEMANN in Einbeck ein Nachrüstbausatz mit einem auf den Reifen wirkenden Radrollenmotor vorgestellt. Dieses schon früher beim Velosolex – ein herkömmliches Mofa mit Verbrennungsmotor – erfolgreich benutzte Antriebs-Prinzip findet aktuell beim Elektrofahrrad in Nachrüstsätzen der GP-Motion GmbH, sowie der go-e GmbH am Hinterrad Verwendung.

Die beiden nur etwa wie eine Fahrraddynamo großen Motoren des VELOSPEEDERs wirken mit ihren Antriebsrollen auf die Felge des Hinterrads.[11]

Beim etwa 1990 von Michael Kutter entwickelten DOLPHIN wurden die Drehzahlen von Pedal- und Motorantrieb im Umlaufrädergetriebe in der Nabe summiert. Die Fertigung wurde 2014 eingestellt.

Antrieb auf die Fahrradkette oder die Tretkurbelwelle[Bearbeiten | Quelltext bearbeiten]

Pedelec FLYER, Mittelmotor von PANASONIC, Fahrradrahmen an Motorgehäuse angepasst
Gemeinsames Gehäuse für Mittelmotor (links),
2stufiges Stirnradgetriebe (rechts)
und Tretkurbelwelle (oben).
Fahrradrahmen angepasst
BAFANG-Motor, vor dem Tretlagergehäuse platziert

Der Antrieb über ein Ritzel auf die Kette wurde durch eine von PANASONIC hergestellte Antriebseinheit gefördert.[3] Der Fahrradrahmen wird dazu in spezieller Form hergestellt, um anstelle des Tretlagergehäuses ein spezielles Gehäuse mit schnelllaufendem Motor und ins langsame übersetzendem Getriebe anbauen zu können (Abbildung, links). Die Tretkurbelwelle ist an der Motor-Unterstützung nicht beteiligt. Auf ihr ist ein von Panasonic entwickelter Sensor zum Messen des Pedalier-Drehmomentes angebracht.[12] Das Motor-Ritzel greift dabei in den unten rücklaufende Bereich der Fahrradkette ein.

Die naheliegende, von BOSCH vorgenommene Weiterentwicklung war jene, die Motorleistung auf die im Gehäuse enthaltene Tretkurbelwelle zu übertragen und auf den Eingriff in die Fahrradkette zu verzichten. Die Sonderkonstruktion des Fahrradrahmens im Bereich des Tretlagers blieb weiter erforderlich (Abbildung, rechts).

Ein vor oder unter dem Tretlagergehäuse des unveränderten Standard-Fahrradrahmens angebrachter Motor wurde schon früher als Teil eines Nachrüstsatzes angeboten.[13] Inzwischen greifen mehrere Hersteller auf diese Lösung zurück. Der Motor wird ans Tretlagergehäuse angebaut. Eine neue Tretkurbelwelle mit Drehmoment-Sensor ist Teil des Anbausatzes. Die Drehübertragung vom Motor auf die Tretkurbelwelle ermöglicht gleichzeitig eine Übersetzung ins Langsame. Das dafür nötige große Rad eines Zahn- oder Riementriebs wird in der Regel unauffällig zwischen dem Kettenrad und dem Rahmen platziert (zusätzlich verdeckt vom rechten Blech-Steg, der Motor und Tretkurbel-Hülse verbindet).[5]

Ein seitlich des Tretkurbelgehäuses koaxial mit der Tretkurbelwelle angebrachter Motor nutzt leeren Platz zwischen den Pedalarmen aus, der aber zu schmal für ein integriertes Getriebe ist. Der Motordurchmesser muss relativ groß sein.[6][7]

Seit etwa 2010 verwendet der an der Entwicklung des ursprünglichen FLYERs[14] beteiligte Philippe Kohlbrenner im SPEEDPED eine weitere, im Prinzip aber gleiche Antriebsvariante. Dieses Fahrrad hat eine Nabenschaltung. Der Motor ist seitlich rechts am Hinterbau montiert und treibt über einen Zahnriemen parallel zur Pedalkette (alternativ auch ein Zahnriemen) das Hinterrad an. Die beiden Zahnritzel sind nebeneinander auf der Antriebswelle des Nabenschaltgetriebes befestigt.[2]

Die Traktionsbatterie[Bearbeiten | Quelltext bearbeiten]

entnehmbarer Pedelec-Akkupack aus Lithium-Ionen-Akkumulatorzellen im Ladegerät

Die Traktionsbatterie, oft ein entnehmbarer Akkupack (umgangssprachlich oft nur: „der Akku“) ist eine Zusammenschaltung mehrerer Akkumulatorzellen. Sie ist der Speicher der Antriebsenergie und damit das der Reichweite Grenzen setzende Bauteil (bezogen auf Fahrten mit Motorunterstützung).

Die im Laufe der Jahre verwendeten Akkupack-Typen (Bleigel-, Nickel-Cadmium- (NiCd), Nickel-Metallhydrid- (NiMH) und Lithium-Ionen-Akkus) weisen in dieser Reihenfolge eine steigende Energiedichte auf.[15] Sie steigt von Typ zu Typ auf den etwa doppelten Wert. Auch die von modernen Lithium-Ionen-Akkumulatoren gespeicherte Energiemenge (0,12–0,2 kWh/kg) ist aber noch erheblich kleiner als der Energievorrat von Benzin (etwa 10 kWh/kg). Bleigel-Akkus werden aufgrund ihrer geringen Energiedichte kaum mehr verwendet. Der Vertrieb von NiCd-Akkus wurde 2009 in Deutschland unter Umsetzung einer EU-Richtlinie bis auf wenige Ausnahmen verboten.

Die Ladezeiten der Akkus betragen je nach Typ und Ladetechnik unter einer bis 16 Stunden, typisch sind etwa 2 bis 9 Stunden.

Aktuell werden die besonders leichten Li-Ion-Akkus von den meisten Herstellern eingesetzt. Sie können einige Hundert Male aufgeladen werden (vollständige Ladezyklen gezählt). Auch können bei ihnen bei Kurzschluss und Überhitzung heftige chemische Reaktionen ausgelöst werden. Diese Gefahren werden durch modernes Batteriemanagement aber nahezu ausgeschlossen. Li-Ionen-Akkus liefern bei geringen Temperaturen deutlich weniger Leistung und vertragen meist keinen Frost.

Hersteller, die ihre Pedelecs mit NiCd-Akkus bestückten, lieferten meist ein Netzteil mit, welches den NiCd-Akku vor dem eigentlichen Ladevorgang vollständig entlädt, um den Memory-Effekt zu verringern. NiMH-Akkus haben einen wesentlich geringeren Memory-Effekt. Bei Lithium-Ionen-Akkus fehlt dieser ganz.

In naher Zukunft werden Lithium-Polymer-Akkus mit nochmals höherer Energiedichte erhältlich sein. Es gibt auch erste praxistaugliche Versuchsmodelle, bei denen der Akkumulator durch eine Brennstoffzelle und einen Wasserstofftank ersetzt wurde. Diese Konstruktion bietet den Vorteil, dass Ladezeiten und Akkuverschleiß entfallen und auf eine längere Tour zusätzliche Tanks mitgenommen werden können.[15]

Alternativ könnten auch Lithium-Eisen-Phosphat-Akkumulatoren wie z.B. im Modell der Saxonette Beast 250 verbaut werden, die deutlich langlebiger sind als die aktuell bevorzugt eingesetzten Lithium-Ionen-Akkumulatoren. Ihr Einsatz könnte die durch Akku-Verschleiß verursachten, laufenden Kosten senken. Im deutschen Raum sind sie außer bei der Firma Sachs Bikes jedoch noch nicht verfügbar.

Motorsteuerung[Bearbeiten | Quelltext bearbeiten]

Die Motorsteuerung (der dritte Teil des elektrischen Zusatzantriebs beim Elektrofahrrad neben Motor und Akku) erfüllt drei verschiedene Aufgaben:

  1. Betrieb des Motors (elektronischer Kommutator in den bürstenlosen Motoren) Sicherung des Motors und Akkus vor Überhitzung, Abschalten bei entladenem Akku,
  2. benutzerfreundliche Antriebshilfe anbieten, was beim Pedelec-Prinzip heißt: Man hat nichts weiter als bisher zu tun und doch wird einem das Gefühl vermittelt, „als hätte man auf einmal die durchtrainierten Beinmuskeln eines Rennradlers“.
  3. gesetzliche Beschränkungen einhalten, diese können sein:
- Antriebshilfe beim Pedelec nur, wenn der Fahrer die Tretkurbeln bewegt,
- verhindern, dass die Motorunterstützung oberhalb einer erlaubten Fahrgeschwindigkeit wirkt,
- verhindern, dass oberhalb einer erlaubten Geschwindigkeit der Elektroantrieb alleiniger Antrieb sein kann (Anfahr- oder Hilfe beim Schieben des Fahrrads).
Drehimpuls-Sensor an der Tretkurbelwelle
Drehimpuls-Sensor am Laufrad (Hinterrad)

Sensoren[Bearbeiten | Quelltext bearbeiten]

Drehzahl-Sensor: Aus der Zahl der Impulse pro Zeiteinheit ergibt sich die Drehzahl. Gemessen wird an der Tretkurbelwelle, am Laufrad (über den Laufraddurchmesser ergibt sich die Fahrgeschwindigkeit), im Motor. Das üblicherweise verwendete Messprinzip ist der Halleffekt.

Drehmoment-Sensor: Gemessen wird an der Kette (selten, Kraftmessung an den Umlenklagern) oder an der Tretlagerwelle (Messprinzip: inverse Magnetostriktion[16]).

Einhalten der gesetzlichen Beschränkungen[Bearbeiten | Quelltext bearbeiten]

Antriebshilfe nur, wenn Fahrer Tretkurbeln bewegt: Die Pedalierdrehzahl wird mit einem Drehsensor erfasst, der entweder an die Tretkurbelwelle anzubauen ist (Nachrüsten mit Bausatz) oder in kompakten Mittelmotoren integriert ist (Messung an der Tretkurbelwelle). Der Motor wird eingeschaltet, wenn eine minimale Drehzahl erreicht ist.
Antrieb nur unterhalb erlaubter Fahrgeschwindigkeiten: Die Fahrgeschwindigkeit wird mit einem Drehsensor erfasst, der sich am Laufrad, im Nabenmotor oder im mit konstanter Übersetzung auf das Laufrad wirkenden Motor befindet. Der Motor wird beim Erreichen der erlaubten Anfahr-/Schiebe-Geschwindigkeit, wenn nicht pedaliert wird, oder beim Erreichen der unterstützten maximalen Fahrgeschwindigkeit (Pedelec: 25 km/h; schnelles Pelec: 45 km/h) ausgeschaltet.

Geschwindigkeitssteuerung:
Der Fahrer hat die Wahl, eine Fahrgeschwindigkeit aus mehreren vorgegeben Stufen (Sollwerten) einzustellen. Die Motorautomatik stellt den gewählten Wert durch Vergleich mit der mittels Drehsensor festgestellten Laufrad-Drehzahl her. Der Fahrer muss einen tieferen Sollwert einstellen, wenn die Grenzleistung des Motors bei „schwerer Fahrt“ (bergauf) nur noch bei kleinerer Drehzahl erbracht wird (er wählt unter solchen Umständen auch einen langsameren Getriebegang, um seine gewohnte Trittfrequenz beizubehalten). Die Motorautomatik stellt nicht sicher, dass die erforderliche Fußkraft (prinzipiell gemildert durch die Motorhilfe) gleich bleibt. Die passende, aus Erfahrung zu findende Geschwindigkeitsstufe ist einzustellen, was umso besser gelingt, je mehr Stufen vorhanden sind. Diese Art der Steuerung ist wenig benutzerfreundlich und hat sich folglich nicht durchsetzen können.

Drehmoment- bzw. Kraftsteuerung:
Damit auch beim Pedelec-Fahren „möglichst immer gleiche Fußkraft“ besteht, muss der Motor immer ein gleiches Drehmoment (Fußkraft mal Länge der Pedalarme) beisteuern. Voraussetzung ist das im Vergleich zur Drehzahlmessung technisch relativ aufwändige Messen der Fußkraft bzw. des Drehmoments an der Tretkurbelwelle. Ein technisch und wirtschaftlich günstiger Drehmomentsensor wurde erst von PANASONIC als integriertes Bauteil eines Mittelmotors auf den Markt gebracht.[3] Damit wird das Drehmoment eines Mittelmotors so gesteuert, dass es in jedem Moment proportional zur Fußkraft ist. Durch diese doppelte Proportionalität – die andere ist die beim Mittelmotor-Konzept von vorn herein vorhandene zwischen Motordrehzahl und Pedalierfrequenz – ist mehr erreicht als die Trittfrequenz und die Fußkraft des Fahrers möglichst konstant zu halten. Sie ist ein zusätzlicher Gewinn für die Benutzerfreundlichkeit.

Steuerung mithilfe von zwei Drehzahl-Sensoren
Bei der großen Zahl der mit Nabenmotoren ausgestatteten Pedelecs ist das Drehzahlverhältnis zwischen Pedalieren und Motor wegen der sich dazwischen befindenden Gangschaltung nicht konstant. Somit lässt sich auch kein konstantes Drehmomentverhältnis zwischen Motorbeitrag und Pedalieren einstellen. Das Drehzahlverhältnis zwischen Laufrad und damit zwischen Nabenmotor und Tretkurbel ist aber nur vom eingestellten Getriebegang abhängig. Es ergibt sich aus den mit zwei Drehimpuls-Sensoren gemessenen Drehzahlwerten des Motors und des Pedalierens. Davon abhängig kann das Motordrehmoment so gesteuert werden, dass es auf die Tretkurbel-Drehzahl umgerechnet für jeden Getriebegang den gleichen konstanten Wert hat.[10][17] Auf diese Weise ist mithilfe von einfachen Drehzahl-Sensoren unter Verzicht auf einen aufwändigen Drehmoment-Sensor erreicht, dass Trittfrequenz und Fußkraft des Fahrers möglichst immer gleich sind. Der zusätzliche, bei der Drehmomentsteuerung erreichte Vorteil infolge der in jedem Zeitpunkt bestehenden Proportionalitäten zwischen den Größen Motordrehmoment/Fußkraft bzw. Motordrehzahl/Pedalierfrequenz besteht aber nicht.

Leistungsstufen:
Das Verhältnis zwischen Eigenleistung des Fahrers und Zusatzleistung des Motors kann oft vom Fahrer eingestellt werden. Er kann auf diese Weise entscheiden, ob er den Akku sparsam belasten und somit weit fahren will, oder eine größere Unterstützung auf Kosten einer kleineren Reichweite haben möchte. Das Einstellen kann auch stufenlos mithilfe eines “Gasgriffs” erfolgen.

Anfahrhilfe:
Die Anfahrhilfe erlaubt bei Pedelecs eine Motorunterstützung auf Knopfdruck oder Drehen des Gasgriffs auch ohne Pedalieren. Sie dient dem leichteren Anfahren aus dem Stand und als Schiebehilfe dem eigenständigen „Fahren“ des Fahrrades. Diese Art der Motorunterstützung ist in der Regel auf die gesetzlich erlaubte Maximalgeschwindigkeit von 6 km/h begrenzt. Die Schiebehilfe bietet den Vorteil, dass man das Fahrrad neben sich mit Motorunterstützung rollen lassen kann, ohne dass man pedalieren oder selbst schieben muss (z. B., wenn man eine schwere Last befördert oder damit man das Rad an einer Steigung eigenständig hochlaufen lassen kann). In jedem Fall erlaubt es ein schnelleres (und körperlich kontrollierteres) Anfahren aus dem Stand an auf „Grün“ umschaltenden Ampeln.

Literatur[Bearbeiten | Quelltext bearbeiten]

  • Christian Smolik, Michael Bollschweiler, Verena Ziese: Das Elektrorad: Typen, Technik, Trends. BVA, Bielefeld 2010, ISBN 978-3-87073-435-0.
  • Teja und Eberhard Müller: E-Bike-Technik: Funktion und Physik der Elektrofahrräder. Books on Demand GmbH, Norderstedt 2011, ISBN 978-3-8423-6194-2.

Weblinks[Bearbeiten | Quelltext bearbeiten]

  • S. Wetzel: Planetengetriebe am Fahrrad: 4. Planetengetriebe in elektrischen Nabenmotoren [16]
  • S. Wetzel: Motor für Elektrofahrrad [17]

Einzelnachweise[Bearbeiten | Quelltext bearbeiten]

  1. DOLPHIN: Der am Sattelrohr befestigte Motor treibt zusammen mit dem Kettenritzel über eine Drehzahl-Summiergetriebe das Hinterrad an. [1]
  2. a b SPEEDPED: Das Kettenritzel und das vom Motor angetriebene Zahnriemenrad wirken gemeinsam auf die Eingangswelle der Nabenschaltung. [2]
  3. a b c PANASONIC: mittels Ritzel in Kette eingreifender Mittelmotor [3]
  4. BOSCH: Die Tretkurbel-Welle befindet sich im Gehäuse (Motor-Getriebe-Einheit, Sonderanfertigung des Fahrradrahmens erforderlich).[4] (zweites Bild)
  5. a b BAFANG: Ins Langsame übersetzendes Riemengetriebe zwischen Fahrradrahmen und Kettenblatt. [5] (erstes oder zweites Bild, Vergrößern möglich)
  6. a b ACRON: links zwischen Pedalarm und Fahrradrahmen montierter Motor (symmetrisch zum rechts befindlichen Kettenblatt) [6]
  7. a b AEG: rechts außerhalb des Kettenblatts montierter Motor [7] (insbesondere das letzte der Vorausbilder)
  8. Die Umdrehungszahl eines 28-Zoll-Rades ist bei einer Geschwindigkeit von 20 km/h nur etwa 2½/s. Elektromotoren haben in der Regel eine um Größenordnungen höhere Drehzahl.
  9. In einem Nabenmotor ohne Getriebe gibt es prinzipiell den erforderlichen Platz für eine Schaltung, der aber wegen des technischen Aufwandes selten genutzt wird (Beispiel: Sparc von SRAM, Nabenmotor mit eingebauter 5-Gang-Schaltung)
  10. a b Dan Popa: AFFE™-Steuerung für Pedelecs [8]
  11. VELOSPEEDER: Reibrad-Antriebe [9]
  12. PANASONIC: Drehmoment-Messung an der Tretkurbelwelle [10] (drittes Bild)
  13. BOOSTY-Antrieb [11]
  14. FLYER Classic, Mitte der 1990er Jahre [12]
  15. Alles über Akkus von Pedelecs und E-Bikes. In: UrbanBiking.
  16. NCTE-Firmeninformation: Wie funktionieren die NCTE-Sensoren? [13]
  17. S. Wetzel: Eine besondere Steuerung eines zusätzlichen Elektroantriebs [14]