Ganzton

aus Wikipedia, der freien Enzyklopädie
Wechseln zu: Navigation, Suche
Diatonische Intervalle
Prime
Sekunde
Terz
Quarte
Quinte
Sexte
Septime
Oktave
None
Dezime
Undezime
Duodezime
Tredezime
Halbton/Ganzton
Besondere Intervalle
Mikrointervall
Komma
Diësis
Limma
Apotome
Ditonus
Tritonus
Wolfsquinte
Naturseptime
Maßeinheiten
Cent
Millioktave
Oktave
Savart

Der Ganzton ist im allgemein-praktischen musikalischen Sprachgebrauch ein Synonym für das Intervall der großen Sekunde. Dies ergibt sich daraus, dass diatonische Tonleitern nur Ganz- und Halbtöne als Schritte benutzen (dabei entspricht ein Halbton der kleinen Sekunde).

In der pythagoreischen Stimmung ergibt sich der Ganzton mit der Frequenzproportion 9:8 als Differenz der reinen Quinte mit der Proportion 3:2 und der reinen Quarte mit der Proportion 4:3.

In der Renaissance kam durch die Einführung der reinen Stimmung die Differenzierung zwischen dem großen Ganzton (9:8) und dem kleinen Ganzton (10:9) hinzu (reine große Terz (5:4) = großer Ganzton + kleiner Ganzton).

Die Differenz zwischen großem und kleinem Ganzton, das syntonische Komma, wird in den üblichen temperierten Stimmungen eliminiert, so dass der Ganzton ein eindeutiges Intervall ist, das der Definition Ganzton = Quinte - Quarte genügt.

Intervall Proportion Näherung in Cent
(großer) Ganzton (in C-Dur: C-D, F-G und A-H) 9 : 8 204 Cent
kleiner Ganzton (in C-Dur: D-E und G-A) 10 : 9 182 Cent
Halbton (in C-Dur:E-F und H-C) 16 : 15 111 Cent
Ganzton (gleichschwebend) 200 Cent
Halbton (gleichschwebend) 100 Cent

Historische Entwicklung[Bearbeiten | Quelltext bearbeiten]

Der Begriff „Ganzton“ geht zurück auf den Ton des Aristoxenos; er benutzte ihn als Maßintervall, bildete den Halbton, Drittelton, Viertelton und allgemein den n-tel-Ton und stellte die Konsonanzen als Vielfache des Tons dar: Quarte = 2½ Ton, Quinte = 3½ Ton, Oktave = 6 Ton. Diese Größengleichungen gelten auch im gleichmäßig zwölfstufig temperierten Tonsystem, das heute in der westlichen Musik vorherrscht. Schon Euklid übernahm die aristoxenische Terminologie, wodurch der Begriff "Ganzton" mehrdeutig wurde.

In der antiken Tonsystemtheorie tauchen außer den diatonischen Tetrachorden von Philolaos/Euklid und Aristoxenos auch noch allerlei andere diatonische Tetrachorde auf, bei denen manche moderne Musiktheoretiker auch von Ganztönen sprechen. Darunter sind Tetrachorde von Didymos, der bereits die Intervalle der Proportionen 9:8 und 10:9 kombinierte, also den großen und den kleinen Ganzton.

Seit dem 19. Jahrhundert und im musikalischen Impressionismus wird die Ganztonleiter als eine der möglichen distanziellen (gleichstufigen bzw. periodisch-alternierenden) Oktavteilungen zunehmend häufig verwendet.

Die westliche mehrstimmige Musik benutzte bis ins 20. Jahrhundert als kleinstes Intervall den Halbton mit seinen Varianten. Kleinere Intervalle wie Drittel-, Viertel-, Sechstel-, Achtel- und Zwölfteltöne, die bereits in der antiken Musiktheorie bekannt gewesen waren, wurden im 20. Jahrhundert von Komponisten wie Alois Hába wieder aufgegriffen.

In Orient sind Intervalle in der Größenordnung von Vierteltönen in der Musikpraxis gebräuchlich.

Hörbeispiele[Bearbeiten | Quelltext bearbeiten]

  • Ganzton aufwärts Audio-Datei / Hörbeispiel C-D?/i
  • Ganzton abwärts Audio-Datei / Hörbeispiel C-B?/i