Pockenimpfstoff

aus Wikipedia, der freien Enzyklopädie
Wechseln zu: Navigation, Suche
Bifurkationsnadel bei der Pockenimpfung

Ein Pockenimpfstoff ist ein Impfstoff gegen das Pockenvirus.

Geschichte[Bearbeiten | Quelltext bearbeiten]

Vergleich der Einstichstellen bei der Vaccination und der Variolation

Pockenimpfstoffe sind die ältesten bekannten Impfstoffe. Seit vermutlich etwa 1000 v. Chr. wurden in Indien Variolationen durchgeführt.[1] Die erste gesicherte Dokumentation über Pockenimpfungen stammt aus dem Jahr 1549 vom chinesischen Arzt Wan Quan (1499–1582) in seinem Werk Douzhen xinfa (痘疹心法).[2] Bei dieser Impfung wurde gemahlener Pockenschorf in die Nase der Impflinge geblasen. Die daraus resultierende Immunität senkte die Letalität einer Pockenvirusinfektion von 20 bis 30 % auf unter zwei Prozent. Bis ins 18. Jahrhundert wurden Impfungen zuerst mit Pockenviren (früher auch Variola major) als Lebendimpfstoff durchgeführt, was als Variolation bezeichnet wurde. Bereits 1767 führte der Mediziner Franz Heinrich Meinolf Wilhelm (1725–1794) am Würzburger Juliusspital die Pockenimpfung durch.[3] Ab Ende des 18. Jahrhunderts wurde von Edward Jenner der Wirksamkeitsnachweis einer Pockenimpfung mit dem Vacciniavirus (früher auch Variolae Vaccinae) erbracht,[4] die auch seltener zu einer Erkrankung führte.[5] Daraus leitet sich eine der heutigen Bezeichnungen für Impfung ab, die Vakzination, die Jenners Bekannter Richard Dunning im Jahr 1800 prägte.[6]

Das Vacciniavirus wurde ursprünglich für ein Kuhpockenvirus gehalten (lat. vacca - die Kuh). Inzwischen ist bekannt, dass das Vacciniavirus näher mit den Pferdepocken als mit den Kuhpocken verwandt ist.[7][8] Im Frühjahr 1800 unternahm Dunning eine Studienreise nach London zu Edward Jenner, um unter dessen Anleitung die von ihm 1796 entwickelte Pockenschutzimpfung zu erlernen. Auf seiner Rückreise führte er in Dover und mehreren französischen Städten Schutzimpfungen durch. Anlässlich seines Aufenthaltes in Paris wurde er eingeladen, am Institut National de Paris Vorträge über die neue Art der Vorsorge zu halten. Neben mehreren hochrangigen Offizieren war unter anderem auch Napoleon Bonaparte anwesend, der sich über den militärischen Nutzen von Impfungen erkundigte. Gerhard Reumont, der Kurarzt Kaiserin Joséphines, führte am 17. April 1801 in Aachen und im Département de la Roer die Pockenschutzimpfung ein. Am 26. August 1807 wurde in Bayern als weltweit erstem Land eine Impfpflicht eingeführt. Bereits 1812 wurden im Rur-Département mehr als 10.000 Kinder jährlich geimpft und Reumont wurde von Napoleon Bonaparte für seine Verdienste um die Bekämpfung der Pocken öffentlich geehrt.[9]

Im 20. Jahrhundert wurde die Attenuierung von Viren durch Passagieren in Zellkulturen entdeckt,[10] die zur Herstellung von Pockenvirus-Impfstämmen mit geringeren Nebenwirkungen eingesetzt wurde, z. B. das NYCBH (USA), EM-63 (UdSSR), Tempel des Himmels (China), das Modified-Vaccinia-Ankara-Virus (Deutschland) und ACAM2000.[11][12][13] Ab den 1960er Jahren wurden Pockenimpfstoffe mit einer von Benjamin Rubin entwickelten Bifurkationsnadel (Nadel mit geteilter Spitze) verabreicht, wodurch die notwendige Dosis des Impfstoffes auf ein Viertel verringert wurde.[14] In Westdeutschland endete 1976 die Impfpflicht für Pockenimpfstoffe, die in Deutschland seit dem Impfgesetz von 1874 gegolten hatte.[15] Die weltweite Verwendung von Pockenimpfstoffen mündete unter der Koordination durch Donald Henderson im Jahr 1980 in der Eradikation der Pocken.[7][16] Pockenviren werden seitdem noch in den Centers of Disease Control and Prevention in Atlanta und im staatlichen Forschungszentrum für Virologie und Biotechnologie „Vektor“ in Kolzowo gelagert.[16]

Seit 1992 werden attenuierte Pockenviren vor allem im Zuge des Impfstoffdesigns als virale Impfvektoren gegen andere Erkrankungen eingesetzt, z. B. das Modified-Vaccinia-Ankara-Virus.[17][18] Die Verwendung als Impfvektor gegen andere Krankheiten wurde 1992 in der Arbeitsgruppe von Bernard Moss entwickelt.[19]

Immunologie[Bearbeiten | Quelltext bearbeiten]

Die Verletzung der Haut mit der Bifurkationsnadel führt zu einer zusätzlichen Aktivierung der angeborenen Immunantwort.[20] Verschiedene Zytokine werden induziert.[21] Für die Vermehrung der T-Zellen sind bei einer Pockenimpfung weder Interferone des Typs I noch Interleukin-12 notwendig.[22] Bei der Impfreaktion werden neutralisierende Antikörper gebildet, die vor einer Infektion mit humanen Pockenviren schützen.[23] Innerhalb von ein bis zwei Wochen weisen 95 % der Geimpften neutralisierende Antikörper mit einem Titer von eins zu über zehn auf.[24] Ein Titer über Werten zwischen eins zu zwanzig und eins zu 32 (je nach Quelle) wird mit einer Immunität assoziiert.[25] Zytotoxische T-Zellen sind an der Entfernung der Viren beteiligt.[24] Der Impfschutz durch eine Pockenimpfung nimmt nach etwa drei bis fünf Jahren ab, nach 20 Jahren ist der Impfschutz vernachlässigbar gering.[24] Bei mehrfach Geimpften kann eine Impfwirkung über dreißig Jahre anhalten.[24]

Impfstämme[Bearbeiten | Quelltext bearbeiten]

  • Lister/Elstree (GB)
  • Dryvax (USA)
  • EM63 (GUS)
  • ACAM2000 (USA)
  • Modified-Vaccinia-Ankara-Virus (D)
  • LC16m8 (Japan)
  • CV-1 (USA)
  • Western Reserve
  • Copenhagen (Dänemark)
  • Connaught Laboratories (Canada)

Nebenwirkungen[Bearbeiten | Quelltext bearbeiten]

Impfstelle nach einigen Tagen

Unerwünschte Arzneimittelwirkungen umfassen bei Impfungen mit dem Impfstamm NYCBH Rötung und Schwellung am Impfort, Myocarditis und/oder Pericarditis (1:2.000), Ischämie (1:4.000) sowie generalisierte Vacciniavirusinfektionen (1:20.000).[26][27]

Beim weltweit meistverwendeten Impfstamm Lister/Elstree[11] können Schmerzen an der Einstichstelle (71 %), davon in 25 % mittel oder stark sowie erhöhte Temperatur über 37,7 °C (16 %) auftreten.[28] Weitere beobachtete Effekte sind Jucken (72 %), Rötung (27 %), ein geschwollener Achsellymphknoten (38 %), Grippe-ähnliche Symptome (40 %) und Kopfschmerzen (23 %).[28] Bei Impflingen, die bereits zuvor eine Pockenimpfung erhalten hatten, sind die grippeähnlichen Symptome und die Rötung weniger ausgeprägt.[28]

Herstellung[Bearbeiten | Quelltext bearbeiten]

Die Herstellung erfolgte ab der Mitte des 20. Jahrhunderts in infizierten Tieren, embryonierten Hühnereiern oder Zellkulturen mit anschließender Virusisolierung. Ab Ende des 19. Jahrhunderts wurde erstmals durch Sydney Arthur Monckton Copeman Glycerol als Konservierungsmittel hinzugegeben.[29] In den 1940er Jahren wurde von Leslie Collier Phenol als weiteres Konservierungsmittel und 5 % Pepton für eine erhöhte Haltbarkeit der Pockenviren bei der Gefriertrocknung hinzugesetzt.[30] Dadurch war für den gefriergetrockneten Impfstoff keine Kühlkette mehr erforderlich. Im Jahr 1988 verwendeten 39 Hersteller von Pockenimpfstoffen infizierte Kälber, zwölf Hersteller Schafe und sechs Hersteller Wasserbüffel, während je drei Hersteller Hühnereier oder Zellkulturen verwendeten.[31]

Literatur[Bearbeiten | Quelltext bearbeiten]

  • S. R. Walsh, R. Dolin: Vaccinia viruses: vaccines against smallpox and vectors against infectious diseases and tumors. In: Expert review of vaccines. Band 10, Nummer 8, August 2011, S. 1221–1240, doi:10.1586/erv.11.79. PMID 21854314, PMC 3223417 (freier Volltext).
  • D. M. Knipe, Peter M. Howley, D. E. Griffin, (Hrsg.): Fields Virology. 5. Auflage. Lippincott Williams & Wilkins, Philadelphia 2007, ISBN 978-0-7817-6060-7.

Weblinks[Bearbeiten | Quelltext bearbeiten]

 Commons: Pockenimpfstoff – Sammlung von Bildern

Einzelnachweise[Bearbeiten | Quelltext bearbeiten]

  1. K. Bourzac, D. Bernoulli: Smallpox: Historical Review of a Potential Bioterrorist Tool. In: Journal of Young Investigators. Band 6, Ausgabe 3, 2002.
  2. Joseph Needham: Science and Civilization in China. Volume 6: Biology and Biological Technology. Teil 6: Medicine. Cambridge University Press, Cambridge 1999, S. 134.
  3. Martin Sperling: Spezialisierung in der Medizin im Spiegel der Würzburger Geschichte. In: Würzburger medizinhistorische Mitteilungen. Band 3, 1985, S. 153–184, hier: S. 157.
  4. D. Baxby: Edward Jenner’s Inquiry; a bicentenary analysis. In: Vaccine. Band 17, Nummer 4, Januar 1999, S. 301–307. PMID 9987167.
  5. N. Barquet, P. Domingo: Smallpox: the triumph over the most terrible of the ministers of death. In: Annals of Internal Medicine. Band 127, 1997, S. 635–642.
  6. I. Bailey: Edward Jenner (1749–1823): naturalist, scientist, country doctor, benefactor to mankind. In: Journal of Medical Biography. Band 4, Nummer 2, Mai 1996, S. 63–70. PMID 11616266.
  7. a b K. A. Smith: Smallpox: can we still learn from the journey to eradication? In: The Indian journal of medical research. Band 137, Nummer 5, Mai 2013, S. 895–899. PMID 23760373, PMC 3734679 (freier Volltext)
  8. Livia Schrick, Simon H. Tausch, P. Wojciech Dabrowski, Clarissa R. Damaso, José Esparza: An Early American Smallpox Vaccine Based on Horsepox. In: New England Journal of Medicine. Band 377, Nr. 15, 11. Oktober 2017, S. 1491–1492, doi:10.1056/nejmc1707600 (nejm.org [abgerufen am 13. Oktober 2017]).
  9. T. F. Kraus: Auf dem Weg in die Moderne. Bonne ville d’Aix-la-chapelle. Aachen in französischer Zeit – 1792/93, 1794–1814. Handbuch-Katalog zur Ausstellung im „Krönungssaal“ des Aachener Rathauses vom 14. Januar bis zum 5. März 1995. Verlag des Aachener Geschichtsvereins, Aachen 1994, ISBN 3-9802705-1-3, S. 254.
  10. M. Theiler, H. H. Smith: The effect of prolonged cultivation in vitro upon the pathogenicity of Yellow Fever Virus. In: J Exp Med. Band 65, Nr. 6, 1937, S. 767–786. PMID 19870633; PMC 2133530 (freier Volltext).
  11. a b S. R. Rosenthal, M. Merchlinsky, C. Kleppinger, K. L. Goldenthal: Developing new smallpox vaccines. In: Emerging Infectious Diseases. Band 7, Nummer 6, Nov-Dez 2001, S. 920–926, doi:10.3201/eid0706.010602. PMID 11747717, PMC 2631916 (freier Volltext).
  12. E. L. Lousberg, K. R. Diener, M. P. Brown, J. D. Hayball: Innate immune recognition of poxviral vaccine vectors. In: Expert review of vaccines. Band 10, Nummer 10, Oktober 2011, S. 1435–1449, doi:10.1586/erv.11.121. PMID 21988308.
  13. J. W. Golden, J. W. Hooper: The strategic use of novel smallpox vaccines in the post-eradication world. In: Expert review of vaccines. Band 10, Nummer 7, Juli 2011, S. 1021–1035, doi:10.1586/erv.11.46. PMID 21806397.
  14. B. A. Rubin: A note on the development of the bifurcated needle for smallpox vaccination. In: WHO Chronicle. Band 34, Nummer 5, Mai 1980, S. 180–181. PMID 7376638.
  15. Eva-Maria Henig, Fritz Krafft: Pockenimpfstoffe in Deutschland. In: Pharmazeutische Zeitung. Ausgabe 38, 1999.
  16. a b T. W. Langefeld, J. Engel, T. Menges, G. Hempelmann: [Small pox–infection, therapy and anaesthesiological management (part 1)]. In: Anästhesiologie, Intensivmedizin, Notfallmedizin, Schmerztherapie: AINS. Band 38, Nummer 7, Juli 2003, S. 445–455, doi:10.1055/s-2003-40069. PMID 12822115.
  17. P. H. Verardi, A. Titong, C. J. Hagen: A vaccinia virus renaissance: new vaccine and immunotherapeutic uses after smallpox eradication. In: Human vaccines & immunotherapeutics. Band 8, Nummer 7, Juli 2012, S. 961–970, doi:10.4161/hv.21080. PMID 22777090, PMC 3495727 (freier Volltext).
  18. P. F. McKay, A. V. Cope, J. F. Mann, S. Joseph, M. Esteban, R. Tatoud, D. Carter, S. G. Reed, J. Weber, R. J. Shattock: Glucopyranosyl lipid A adjuvant significantly enhances HIV specific T and B cell responses elicited by a DNA-MVA-protein vaccine regimen. In: PLOS ONE. Band 9, Nummer 1, 2014, S. e84707, doi:10.1371/journal.pone.0084707. PMID 24465426. PMC 3900398 (freier Volltext).
  19. G. Sutter, B. Moss: Nonreplicating vaccinia vector efficiently expresses recombinant genes. In: Proceedings of the National Academy of Sciences of the United States of America. Band 89, Nummer 22, November 1992, S. 10847–10851. PMID 1438287, PMC 50439 (freier Volltext).
  20. A. D. Rice, M. M. Adams, S. F. Lindsey, D. M. Swetnam, B. R. Manning, A. J. Smith, A. M. Burrage, G. Wallace, A. L. MacNeill, R. W. Moyer: Protective properties of vaccinia virus-based vaccines: skin scarification promotes a nonspecific immune response that protects against orthopoxvirus disease. In: Journal of virology. Band 88, Nummer 14, Juli 2014, S. 7753–7763, doi:10.1128/JVI.00185-14. PMID 24760885, PMC 4097768 (freier Volltext).
  21. W. L. Simon, H. M. Salk, I. G. Ovsyannikova, R. B. Kennedy, G. A. Poland: Cytokine production associated with smallpox vaccine responses. In: Immunotherapy. Band 6, Nummer 10, 2014, S. 1097–1112, doi:10.2217/imt.14.72. PMID 25428648, PMC 4263415 (freier Volltext).
  22. N. D. Pennock, L. Gapin, R. M. Kedl: IL-27 is required for shaping the magnitude, affinity distribution, and memory of T cells responding to subunit immunization. In: Proceedings of the National Academy of Sciences of the United States of America. Band 111, Nummer 46, November 2014, S. 16472–16477, doi:10.1073/pnas.1407393111. PMID 25267651, PMC 4246334 (freier Volltext).
  23. I. G. Ovsyannikova, V. S. Pankratz, H. M. Salk, R. B. Kennedy, G. A. Poland: HLA alleles associated with the adaptive immune response to smallpox vaccine: a replication study. In: Human genetics. Band 133, Nummer 9, September 2014, S. 1083–1092, doi:10.1007/s00439-014-1449-x. PMID 24880604, PMC 4127812 (freier Volltext).
  24. a b c d CDC: Smallpox Vaccination and Adverse Events Training Module. Abgerufen am 19. Mai 2015.
  25. I. J. Amanna, M. K. Slifka: Contributions of humoral and cellular immunity to vaccine-induced protection in humans. In: Virology. Band 411, Heft 2, 2011, S. 206–215. doi:10.1016/j.virol.2010.12.016. PMID 21216425. PMC 3238379 (freier Volltext).
  26. C. G. Casey, J. K. Iskander, M. H. Roper, E. E. Mast, X. J. Wen, T. J. Török, L. E. Chapman, D. L. Swerdlow, J. Morgan, J. D. Heffelfinger, C. Vitek, S. E. Reef, L. M. Hasbrouck, I. Damon, L. Neff, C. Vellozzi, M. McCauley, R. A. Strikas, G. Mootrey: Adverse events associated with smallpox vaccination in the United States, January-October 2003. In: JAMA. Band 294, Nummer 21, Dezember 2005, S. 2734–2743, doi:10.1001/jama.294.21.2734. PMID 16333009.
  27. G. A. Poland, J. D. Grabenstein, J. M. Neff: The US smallpox vaccination program: a review of a large modern era smallpox vaccination implementation program. In: Vaccine. Band 23, Nummer 17–18, März 2005, S. 2078–2081, doi:10.1016/j.vaccine.2005.01.012. PMID 15755574.
  28. a b c C. Auckland, A. Cowlishaw, D. Morgan, E. Miller: Reactions to small pox vaccine in naïve and previously-vaccinated individuals. In: Vaccine. Band 23, Nummer 32, Juli 2005, S. 4185–4187, doi:10.1016/j.vaccine.2004.10.052. PMID 15916840.
  29. S. M. Copeman: The MILROY LECTURES on the NATURAL HISTORY of VACCINIA: Delivered at the Royal College of Physicians. In: British Medical Journal. Band 1, Nummer 1951, Mai 1898, S. 1312–1318. PMID 20757828, PMC 2411485 (freier Volltext).
  30. L. H. Collier: The development of a stable smallpox vaccine. In: The Journal of Hygiene. Band 53, Nummer 1, März 1955, S. 76–101. PMID 14367805, PMC 2217800 (freier Volltext).
  31. Frank Fenner: Smallpox and its eradication. World Health Organization, Genf 1988, ISBN 92-4156110-6.
Gesundheitshinweis Dieser Artikel behandelt ein Gesundheitsthema. Er dient nicht der Selbstdiagnose und ersetzt keine Arztdiagnose. Bitte hierzu diesen Hinweis zu Gesundheitsthemen beachten!