„DNA-Methylierung“ – Versionsunterschied

aus Wikipedia, der freien Enzyklopädie
Zur Navigation springen Zur Suche springen
[gesichtete Version][gesichtete Version]
Inhalt gelöscht Inhalt hinzugefügt
Zeile 164: Zeile 164:


Die Verteilung der CpG-Dinukleotide innerhalb des menschlichen [[Genom|Genoms]] und die gezielte, selektive Methylierung der Cytosine ist ein zentraler Punkt beim Verständnis der Epigenetik des Menschen und der Entstehung von Krankheiten. <ref>G. D. Ginder, D. C. Williams: ''Readers of DNA methylation, the MBD family as potential therapeutic targets.'' In: ''Pharmacology & therapeutics.'' [elektronische Veröffentlichung vor dem Druck] November 2017, {{DOI|10.1016/j.pharmthera.2017.11.002}}, PMID 29128342 (Review).</ref><ref>P. D. Fransquet, P. Lacaze, R. Saffery, J. McNeil, R. Woods, J. Ryan: ''Blood DNA methylation as a potential biomarker of dementia: A systematic review.'' In: ''Alzheimer's & dementia : the journal of the Alzheimer's Association.'' [elektronische Veröffentlichung vor dem Druck] November 2017, {{DOI|10.1016/j.jalz.2017.10.002}}, PMID 29127806 (Review).</ref>
Die Verteilung der CpG-Dinukleotide innerhalb des menschlichen [[Genom|Genoms]] und die gezielte, selektive Methylierung der Cytosine ist ein zentraler Punkt beim Verständnis der Epigenetik des Menschen und der Entstehung von Krankheiten. <ref>G. D. Ginder, D. C. Williams: ''Readers of DNA methylation, the MBD family as potential therapeutic targets.'' In: ''Pharmacology & therapeutics.'' [elektronische Veröffentlichung vor dem Druck] November 2017, {{DOI|10.1016/j.pharmthera.2017.11.002}}, PMID 29128342 (Review).</ref><ref>P. D. Fransquet, P. Lacaze, R. Saffery, J. McNeil, R. Woods, J. Ryan: ''Blood DNA methylation as a potential biomarker of dementia: A systematic review.'' In: ''Alzheimer's & dementia : the journal of the Alzheimer's Association.'' [elektronische Veröffentlichung vor dem Druck] November 2017, {{DOI|10.1016/j.jalz.2017.10.002}}, PMID 29127806 (Review).</ref>

==== Bei Pflanzen ====

Deutliche Fortschritte wurden beim Verständnis der DNA-Methylierung in der Modellpflanze [[Arabidopsis thaliana]] erzielt. Die DNA-Methylierung in Pflanzen unterscheidet sich von der von Säugetieren: Während DNA-Methylierung in Säugetieren hauptsächlich am Cytosinnukleotid in einer [[CpG-Stelle]] auftritt, kann das Cytosin in Pflanzen an CpG-, CpHpG- und CpHpH-Stellen methyliert werden, wobei H ein beliebiges Nukleotid, aber kein Guanin darstellt. Insgesamt ist die Arabidopsis-DNA hoch methyliert. Durch [[Massenspektrometrie]]-Analysen wurde der Anteil modifizierender Cytosine auf 14 % geschätzt. <ref name="Capuano_F_etal2014_PMID24640988"> F. Capuano, M. Mülleder, R. Kok, H. J. Blom, M. Ralser: ''Cytosine DNA methylation is found in Drosophila melanogaster but absent in Saccharomyces cerevisiae, Schizosaccharomyces pombe, and other yeast species.'' In: ''Analytical chemistry.'' Band 86, Nummer 8, April 2014, S.&nbsp;3697–3702, {{DOI|10.1021/ac500447w}}, PMID 24640988, {{PMC|4006885}}. </ref>
Die wichtigsten Arabidopsis-DNA-Methyltransferase-Enzyme, die Methylgruppen auf DNA übertragen und kovalent daran binden, sind DRM2, MET1 und CMT3. Sowohl die DRM2- als auch die MET1-Proteine teilen eine signifikante Homologie zu den Säugetier-Methyltransferasen DNMT3 bzw. DNMT1, wohingegen das CMT3-Protein einzigartig für das Pflanzenreich ist. Es gibt derzeit zwei Klassen von DNA-Methyltransferasen: 1) die De-Novo-Klasse-Enzyme, bzw. Enzyme, die neue Methylierungs-Markierungen auf der DNA erzeugen und 2) eine "Wartungsklasse" von Enzymen, die die Methylierungs-Markierungen auf dem Elternstrang der DNA erkennen und nach der DNA-Replikation eine neue Methylierung an die Tochterstränge übertragen. DRM2 ist das einzige Enzym, das bisher als De-novo-DNA-Methyltransferase betrachtet wird. Es wurde auch gezeigt, dass DRM2 zusammen mit MET1 und CMT3 an der Aufrechterhaltung von Methylierungs-Markierungen durch die DNA-Replikation beteiligt ist. <ref name="Cao_X_Jacobsen_SE_2002_PMID12151602">X. Cao, S. E. Jacobsen: ''Locus-specific control of asymmetric and CpNpG methylation by the DRM and CMT3 methyltransferase genes.'' In: ''Proceedings of the National Academy of Sciences of the United States of America.'' Band 99 Suppl 4, Dezember 2002, S.&nbsp;16491–16498, {{DOI|10.1073/pnas.162371599}}, PMID 12151602, {{PMC|139913}}.</ref>
Es werden weitere DNA-Methyltransferasen in Pflanzen exprimiert, die aber keine bekannte Funktion aufweisen (siehe Chromatin-Datenbank, [http://chromdb.org/ chromdb.org]).
Es ist nicht klar, wie die Zelle die Orte der de novo DNA-Methylierung bestimmt, aber es gibt Hinweise darauf, dass an vielen (wenn auch nicht allen) Stellen RNA-dirigierte DNA-Methylierung (RdDM) beteiligt ist. In RdDM werden spezifische RNA-Transkripte aus einer genomischen DNA-Matrize hergestellt, und diese RNA bildet sekundäre Strukturen, die doppelsträngige RNA-Moleküle genannt werden. <ref name="Aufsatz_W_etal2002_PMID12169664" >W. Aufsatz, M. F. Mette, J. van der Winden, A. J. Matzke, M. Matzke: ''RNA-directed DNA methylation in Arabidopsis.'' In: ''Proceedings of the National Academy of Sciences of the United States of America.'' Band 99 Suppl 4, Dezember 2002, S.&nbsp;16499–16506, {{DOI|10.1073/pnas.162371499}}, PMID 12169664, {{PMC|139914}}.</ref>
Die doppelsträngigen RNAs leiten die De-novo-DNA-Methylierungen der ursprünglichen genomischen Region, die eben diese RNA produziert hat; und zwar entweder über die kleinen interferierenden RNAs (siRNAs) oder über microRNAs (miRNAs). <ref name="Aufsatz_W_etal2002_PMID12169664" />
Es wird angenommen, dass diese Art von Mechanismus bei der zellulären Abwehr gegen RNA-Viren und / oder -Transposons wichtig ist, die beide häufig eine doppelsträngige RNA bilden, die für das Wirtsgenom mutagen sein kann. Es wird angenommen, dass diese RNA-Viren und / oder -Transposons durch einen noch wenig verstandenen Mechanismus mithilfe von Methylierung der entsprechenden Orte im Genom abgeschaltet werden und somit nicht länger in der Zelle aktiv sind, wodurch das Genom vor mutagener Wirkung geschützt wäre.

==== Bei Insekten ====

Funktionelle DNA-Methylierung wurde in Honigbienen entdeckt. <ref name="Wang_Y_etal2006_ PMID17068262" >Y. Wang, M. Jorda, P. L. Jones, R. Maleszka, X. Ling, H. M. Robertson, C. A. Mizzen, M. A. Peinado, G. E. Robinson: ''Functional CpG methylation system in a social insect.'' In: ''Science.'' Band 314, Nummer 5799, Oktober 2006, S.&nbsp;645–647, {{DOI|10.1126/science.1135213}}, PMID 17068262.</ref><ref name="Wang_Y_Li-Byarlay_H_2015" >Y. Wang, H. Li-Byarlay "Physiological and Molecular Mechanisms of Nutrition in Honey Bees" In: "Advances in Insect Physiology" Band 49, Kapitel 2, August 2015, S. 25–85, {{DOI:10.1016/bs.aiip.2015.06.002}}.</ref>
Die DNA-Methylierungs-Markierungen befinden sich hauptsächlich innerhalb von Genen. Die gegenwärtige Meinung besagt, dass die DNA-Methylierung bei der Genregulation und dem alternativen Spleißen wirkt. <ref name="Li-Byarlay_etal_PMID23852726" >H. Li-Byarlay, Y. Li, H. Stroud, S. Feng, T. C. Newman, M. Kaneda, K. K. Hou, K. C. Worley, C. G. Elsik, S. A. Wickline, S. E. Jacobsen, J. Ma, G. E. Robinson: ''RNA interference knockdown of DNA methyl-transferase 3 affects gene alternative splicing in the honey bee.'' In: ''Proceedings of the National Academy of Sciences of the United States of America.'' Band 110, Nummer 31, Juli 2013, S.&nbsp;12750–12755, {{DOI|10.1073/pnas.1310735110}}, PMID 23852726, {{PMC|3732956}}.</ref>
DNA-Methylierungsniveaus in Drosophila melanogaster sind fast nicht nachweisbar. <ref name="Smith_SS_Thomas_CA_1981_PMID6266924" >S. S. Smith, C. A. Thomas: ''The two-dimensional restriction analysis of Drosophila DNAs: males and females.'' In: ''Gene.'' Band 13, Nummer 4, Mai 1981, S.&nbsp;395–408, PMID 6266924.</ref>
Sensitive Methoden, die auf Drosophila-DNA angewendet wurden, schätzen Anteile im Bereich von 0,1-0,3% des gesamten Cytosins. <ref name="Lyko_F_etal2000_PMID11117732" >F. Lyko, B. H. Ramsahoye, R. Jaenisch: ''DNA methylation in Drosophila melanogaster.'' In: ''Nature.'' Band 408, Nummer 6812, November 2000, S.&nbsp;538–540, {{DOI|10.1038/35046205}}, PMID 11117732.</ref>
Dieser niedrige Methylierungsgrad <ref name="Takayama_S_etal2014_ PMID24558263" >S. Takayama, J. Dhahbi, A. Roberts, G. Mao, S. J. Heo, L. Pachter, D. I. Martin, D. Boffelli: ''Genome methylation in D. melanogaster is found at specific short motifs and is independent of DNMT2 activity.'' In: ''Genome research.'' Band 24, Nummer 5, Mai 2014, S.&nbsp;821–830, {{DOI|10.1101/gr.162412.113}}, PMID 24558263, {{PMC|4009611}}.</ref>
scheint in genomischen Sequenzmustern zu liegen, die sich von den beim Menschen beobachteten Mustern oder anderen Tier- oder Pflanzenarten stark unterscheiden. Die genomische Methylierung in D. melanogaster wurde an spezifischen kurzen Motiven gefunden (konzentriert in spezifischen 5-Basen-Sequenzmotiven, die CA- und CT-reich sind, aber an Guanin abgereichert sind) und ist unabhängig von der DNMT2-Aktivität. Darüber hinaus haben hochsensitive Massenspektrometrie-Ansätze <ref name="Zhang_G_PMID25936838" >G. Zhang, H. Huang, D. Liu, Y. Cheng, X. Liu, W. Zhang, R. Yin, D. Zhang, P. Zhang, J. Liu, C. Li, B. Liu, Y. Luo, Y. Zhu, N. Zhang, S. He, C. He, H. Wang, D. Chen: ''N6-methyladenine DNA modification in Drosophila.'' In: ''Cell.'' Band 161, Nummer 4, Mai 2015, S.&nbsp;893–906, {{DOI|10.1016/j.cell.2015.04.018}}, PMID 25936838.</ref>
nun gezeigt, dass in den frühesten Stadien der Drosophila-Embryogenese niedrige (0,07%), aber signifikante Adenin-Methylierungswerte vorliegen.

==== Bei Pilzen ====

Viele Pilze haben niedrige Werte (0,1 bis 0,5%) an Cytosin-Methylierung, während andere Pilze bis zu 5% des Genoms methyliert haben. <ref name="Antequera_F_etal1984_ PMID6330093" >F. Antequera, M. Tamame, J. R. Villanueva, T. Santos: ''DNA methylation in the fungi.'' In: ''The Journal of biological chemistry.'' Band 259, Nummer 13, Juli 1984, S.&nbsp;8033–8036, PMID 6330093.</ref>
Dieser Wert scheint sowohl zwischen den Arten als auch zwischen Isolaten derselben Spezies zu variieren. <ref name="Binz_T_etal1998">Thomas Binz, Nisha D'Mello, Paul A. Horgen: ''A Comparison of DNA Methylation Levels in Selected Isolates of Higher Fungi.'' In: ''Mycologia.'' 90, 1998, S.&nbsp;785, {{DOI|10.2307/3761319}}.</ref>
Es gibt auch Hinweise darauf, dass die DNA-Methylierung an der zustandspezifischen Kontrolle der Genexpression in Pilzen beteiligt sein könnte. Allerdings wurde bei einer Nachweisgrenze von 250 Attomolen mittels ultra-hochempfindlicher Massenspektrometrie die DNA-Methylierung in einzelzelligen Hefearten wie Saccharomyces cerevisiae oder Schizosaccharomyces pombe nicht bestätigt, was darauf hinweist, dass Hefen diese DNA-Modifikation nicht besitzen. <ref name="Capuano_F_etal2014_PMID24640988" />
Obwohl Bierhefe (Saccharomyces), Spalthefe (Schizosaccharomyces) und Aspergillus flavus <ref name="Si-Yang_etal2012_ PMID22276181">S. Y. Liu, J. Q. Lin, H. L. Wu, C. C. Wang, S. J. Huang, Y. F. Luo, J. H. Sun, J. X. Zhou, S. J. Yan, J. G. He, J. Wang, Z. M. He: ''Bisulfite sequencing reveals that Aspergillus flavus holds a hollow in DNA methylation.'' In: ''PloS one.'' Band 7, Nummer 1, 2012, S.&nbsp;e30349, {{DOI|10.1371/journal.pone.0030349}}, PMID 22276181, {{PMC|3262820}}.</ref>
keine nachweisbare DNA-Methylierung aufweisen, hat das Modell des filamentösen Pilzes Neurospora crassa ein gut charakterisiertes Methylierungssystem. <ref name="Selker_EU_etal2003_PMID12712205" >E. U. Selker, N. A. Tountas, S. H. Cross, B. S. Margolin, J. G. Murphy, A. P. Bird, M. Freitag: ''The methylated component of the Neurospora crassa genome.'' In: ''Nature.'' Band 422, Nummer 6934, April 2003, S.&nbsp;893–897, {{DOI|10.1038/nature01564}}, PMID 12712205.</ref>
Einige Gene kontrollieren die Methylierung in Neurospora: Eine Mutation der DNA-Methyltransferase (dim-2) eliminiert die gesamte DNA-Methylierung, beeinträchtigt aber weder das Wachstum noch die sexuelle Fortpflanzung. Obgleich das Neurospora-Genom sehr wenig "repeated DNA" (= Sequenzwiederholungen) aufweist, tritt die Hälfte der Methylierung in solcher DNA auf, die auch Transposonrelikte und Zentromer-DNA einschließt. Die Möglichkeit, wichtige Phänomene in einem DNA-Methylase-defizienten genetischen Hintergrund zu evaluieren, macht Neurospora zu einem wichtigen System für die Untersuchung der DNA-Methylierung.

==== Bei niederen Eukaryoten ====

Die "niederen zellkernhaltigen Organismen" sind keine phyllogenetische Gruppe, also keine Gruppe, in der einheitliche Verwandschaftsverhältnisse herrschen. Daher ist auch eine Einheitlichkeit hinsichtlich der DNA-Methylierung wenig zu erwarten.
Eine DNA-Methylierung ist in Dictyostelium discoidium <ref name="Smith_SS_Ratner_DI_1991_PMID1713034" >S. S. Smith, D. I. Ratner: ''Lack of 5-methylcytosine in Dictyostelium discoideum DNA.'' In: ''The Biochemical journal.'' Band 277 ( Pt 1), Juli 1991, S.&nbsp;273–275, PMID 1713034, {{PMC|1151219}}.</ref>
beispielsweise nahezu nicht vorhanden, da sie mit nur etwa 0,006% der Cytosine auftritt. <ref name="Steenwyk_JL_etal2017" >J.L. Steenwyk, St-Denis, J., Dresch, J., Larochelle, D., Drewell, R.A. (2017). "Whole genome bisulfite sequencing reveals a sparse, but robust pattern of DNA methylation in the Dictyostelium discoideum genome". bioRxiv 166033. {{doi|10.1101/166033}}.</ref>
Im Gegensatz dazu ist die DNA-Methylierung in Physarum polycephalum <ref name="Reily_JG_etal1980_PMID 6250882">J. G. Reilly, R. Braun, C. A. Thomas: ''Methjylation in Physarum DNA.'' In: ''FEBS letters.'' Band 116, Nummer 2, Juli 1980, S.&nbsp;181–184, PMID 6250882.</ref>
weit verbreitet, wo 5-Methylcytosin bis zu 8% des gesamten Cytosins ausmacht <ref name="Evans_JH_Evans_TE_1970_PMID5530731" >H. H. Evans, T. E. Evans: ''Methylation of the deoxyribonucleic acid of Physarum polycephalum at various periods during the mitotic cycle.'' In: ''The Journal of biological chemistry.'' Band 245, Nummer 23, Dezember 1970, S.&nbsp;6436–6441, PMID 5530731.</ref>


==== Bei Säugetieren ====
==== Bei Säugetieren ====

Version vom 17. November 2017, 18:37 Uhr

Bei der DNA-Methylierung handelt es sich um eine chemische Abänderung an Grundbausteinen der Erbsubstanz einer Zelle.[1] Diese Abänderung (Modifikation) wird durch die Übertragung von Methylgruppen durch Enzyme (DNA-Methyltransferasen) auf Nukleobasen an bestimmten Stellen der DNA bewirkt. Da das Grundgerüst der jeweiligen Nukleobase dabei erhalten bleibt, ist die DNA-Methylierung keine genetische Mutation, sondern eine Modifikation.

DNA-Methylierungen kommen in sehr vielen verschiedenen – möglicherweise in allen – Lebewesen vor und haben verschiedene biologische Funktionen. Die Abfolge der DNA-Methylierung kann sich an dem entsprechenden Muster der Mutterzelle orientieren und ist dann Teil des epigenetischen Codes einer Zelle.[2] DNA-Methylierung ist die wichtigste epigenetische Veränderung.[3]

Vorkommen

Organismengruppen

Die DNA-Methylierung ist in Organismen aus allen drei Domänen zu finden. Als Domäne wird hier die oberste Kategorie zur Einteilung der Lebewesen nach Carl R. Woese verwendet. DNA-Methylierungen finden sich also in Bakterien [4], Archaeen [5] und Eukaryoten [1].

Nukleobasen

Bisher (2016) wurden zwei Nukleobasen gefunden, an denen eine natürliche, enzymatische DNA-Methylierung stattfindet: Adenin und Cytosin. Die veränderten Basen sind N6-Methyladenin [6], 5-Methylcytosin [7] und N4-Methylcytosin [8] .

 Grundformen   
    Adenin, A       Cytosin, C  
 
 Veränderte Nukleobasen   
    N6-Methyladenin, 6mA       5-Methylcytosin, 5mC     N4-Methylcytosin, 4mC  
Alle Methylierungen in einem Prokaryoten.
In manchen prokaryotischen Organismen sind alle drei bisher bekannten DNA-Methylierungs-Typen vertreten (N4-Methylcytosin: m4C, 5-Methylcytosin: m5C und N6-Methyladenin: m6A). Hier sind sechs Beispiele dargestellt, von denen zwei der Domäne Archaea und vier der Domäne Bacteria angehören. Die Angaben stammen aus Blow et al.(2016). [5]
In der linken Spalte stehen die Artnamen der Organismen, rechts daneben stehen Beispiele für methylierte DNA-Motive.
Die vollständigen Namen der Archaeen- bzw. Bakterienstämme lauten nach NCBI-Taxonomie:
"Methanocaldococcus jannaschii DSM 2661", "Methanocorpusculum labreanum Z", "Clostridium perfringens ATCC 13127", "Geopsychrobacter electrodiphilus DSM 16401", "Rhodopseudomonas palustris CGA009" und "Salmonella enterica subsp. enterica serovar Paratyphi A str. ATCC 9150".

Alle drei Varianten lassen sich in beiden Prokaryoten-Domänen, den Bakterien und den Archaeen finden.[8] In Eukaryoten ist häufig 5-Methylcytosin vorhanden, das dann an CpG-Stellen auftritt. Allerdings kommt auch N6-Methyladenin vor und wurde zuerst in einigen einzelligen Eukaryoten gefunden. Das betrifft z. B. die Grünalge Chlamydomonas reinhardii und das Wimperntierchen Tetrahymena pyriformis.[9] Das Vorhandensein von N6-Methyladenin in der DNA der Mitochondrien von Säugetieren und den Chromosomen wurde nahezu ausgeschlossen.[10] Neuere Untersuchungen zeigen, dass N6-Methyladenin als modifizierte Base der DNA bei Eukaryoten eine größere Rolle spielt, als zuvor angenommen. Beim Fadenwurm Caenorhabditis elegans [11] und bei der Fruchtfliege Drosophila melanogaster [12] [13] ist beispielsweise N6-Methyladenin vorhanden, 5-Methylcytosin jedoch nicht oder kaum.

Luo et al. (2015) stellen das Vorkommen von N6-Methyladenin und von 5-Methylcytosin bei Eukaryoten gegenüber.[14] Das folgende Schema zeigt das Vorkommen von N6-Methyladenin (6mA, rot), von 5-Methylcytosin (5mC, blau) oder von beiden Nukleobasen (6mA+5mC, grün) in der DNA vom jeweiligen Modellorganismus und ist an eine Abbildung aus Luo et al. (2015) angelehnt.[14]

Vorlage:Clade 6mA / 5mC / 6mA+5mC

* Das Genom von D. melanogaster enthält ein geringes Niveau an 5mC (~0,03% aller Cytosine) [13]

Die Knoten im Schema repräsentieren die phylogenetischen Verhältnisse (Verwandtschaftsbeziehungen). Die Linienlängen sind hier willkürlich und geben den evolutionären Abstand nicht wieder.

Einordnung als epigenetische Modifikation

Die Eukaryoten haben einen Zellkern mit echten Chromosomen. Sie haben Histone, die zusammen mit DNA das Chromatin bilden. Die DNA-Methylierungen befinden sich in enger Wechselwirkung mit den Histon-Modifikationen und der Chromatin-Struktur (z. B. der Packungsdichte der Chromosomen). Das Zusammenwirken von DNA-Methylierungsmustern, Histon-Modifikationen und Chromatin-Struktur ist zentraler Bestandteil der Epigenetik. Die beiden anderen Domänen, die Bakterien und Archaeen sind Prokaryoten. Das heißt, sie besitzen keinen Zellkern und keine echten Chromosomen. Prokaryoten besitzen ein Zellkernäquivalent, das zwar DNA-Methylierungsmuster, aber keine Histone aufweist.

Die Epigenetik ist ein dynamischer Wissenschaftszweig, der auf teilweise vererbbare Phänomene bei Lebewesen mit Zellkern fokussiert ist (Eukaryoten), die nicht direkt an die DNA-Sequenz gekoppelt sind. Je nachdem, wie streng Epigenetik definiert wird, können die Methylierungen von DNA den epigenetischen Zuständen in Zellen (den Epigenomen) zugeordnet werden.

Ein wesentlicher Fakt, der dazu Anlass gibt, auch die DNA-Methylierungen bei Bakterien als epigenetische Veränderungen aufzufassen, ist die Entdeckung der Vererbung von Methylierungszuständen der DNA. Diese Vererbung wurde zuerst bei einem pathogenen Escherichia coli-Bakterium, das Nierenbeckenentzündungen verursachen kann, gefunden.[4]

In Kombination mit vielen weiteren Befunden bei Bakterien, die mit der Epigenetik bei Eukaryoten Übereinstimmungen zeigen, wird von bakterieller Epigenetik gesprochen. [15] [16] [17] [18]

Allerdings gibt es wesentliche Unterschiede zwischen Bakterien und Eukaryoten (Zellkern und Histone, siehe oben). Der Begriff der bakteriellen Epigenetik wird häufig zurückhaltend eingesetzt. Bei Forde et al. (2015) wird beispielsweise der Ausdruck Methylom (für die Gesamtheit der DNA-Methylierung eines Genoms) verwendet, ohne das Methylom als Teil eines Epigenoms zu bezeichnen.[19] Bei Ee et al. (2016) wird ebenfalls der Begriff des Methyloms bevorzugt, wenngleich die Analyse der Basen-Modifikationen einmal als epigenomische Analyse bezeichnet wird.[20]

Bisher war vor allem von Organismen mit Zellkern (Domäne Eukaryota) die Rede und den „echten“ Bakterien (Domäne Bacteria). Die Organismen der dritten Domäne, die Archaeen (Archaea, „altertümliche Bakterien“), werden zunehmend Gegenstand der Forschung, da moderne Sequenzierungs- und Analysemethoden die vergleichende Bestimmung von Methylomen erlauben. Blow et al. (2016) konnten die Methylome von 230 Prokaryoten (Organismen ohne Zellkern) analysieren, neben 217 Bakterien (Bacteria) auch 13 Archaeen. DNA-Methylierungen wurden in 93 % der sequenzierten Organismen gefunden. Die Autoren untersuchten deren DNA-Methylierungs-Muster unter verschiedenen Aspekten und sprechen in der Zusammenschau ihrer Ergebnisse von einer „epigenomischen Landschaft der Prokaryoten“ – hinsichtlich der unterschiedlichen Bindungsspezifitäten von Methyltransferasen, Restriktionsendonuklease-Methyltransferase-Systeme, „verwaisten“ Methyltransferasen [ohne Reastriktionsendonuklease als Partner] und genregulatorische Aktivitäten.[5] Dabei fiel auf, dass DNA-Methylierung ohne zugeordnete Restriktions-Systeme bei Prokaryoten weit verbreitet ist. Die Methylierungsmuster sind zudem evolutionär konserviert, was darauf hindeutet, dass die Methylierung bei der Genom-Regulation eine Rolle spielt.[5]

DNA-Methylierung bei Bakterien

N6-Methyl-Adenin

Besonders bei Bakterien hat die Adenin-Methylierung eine wichtige Rolle bei der Fehlerkorrektur der frisch replizierten DNA.[21][22] Innerhalb von GATC-Tetrameren wird das Adenin an der 6-Aminogruppe methyliert (vgl. Bild rechts). Manchmal paart ein Thymin anstelle eines Cytosins mit einem Guanin und wird bei der DNA-Verdopplung irrtümlich eingebaut. Diese und andere Fehlpaarungen können von einem Komplex gefunden werden, der den DNA-Strang absucht und eine Fehlerkorrektur (proof-reading) einleitet. Hierbei wird der fehlerhafte Abschnitt im replizierten DNA-Strang herausgeschnitten, der noch keine methylierten Adenine aufweist. Das ausgeschnittene Stück wird schließlich neu synthetisiert. Ist das proof-reading abgeschlossen, werden die Adenine im neuen Strang methyliert.

Bei Prokaryoten sind DNA-Methylierungen ohne zugeordnete Restriktions-Systeme weit verbreitet. Die Methylierungsmuster sind zudem konserviert, d. h. evolutionär kaum verändert. Das deutet darauf hin, dass die Methylierungen bei der Genom-Regulation eine Rolle spielen.[5]

DNA-Methylierung bei Archaeen

Über die DNA-Methylierung bei Archaeen ist weniger bekannt als bei den Bakterien und Eukaryoten. Die technologischen Fortschritte der Gegenwart (2016) machen diese Gruppe zunehmend der umfassenderen Erforschung zugänglich. Nach den bisherigen Ergebnissen dürfte die Methylierung im Prinzip ähnlich umgesetzt werden und ähnliche Aufgaben haben wie bei den Bakterien.[5]

DNA-Methylierung bei Eukaryoten

Bei den Organismen mit echtem Zellkern, den Eukaryoten, ist die Methylierung von zwei verschiedene Nukleobasen bekannt: Adenin und Cytosin.

Es gibt Eukaryoten, bei denen lediglich

  • die Methylierung von Adenin zu N6-Methyladenin eine Rolle spielt (z. B. der Pinselschimmel Penicillum, der Fadenwurm Caenorhabditis elegans und die Fruchtfliege Drosophila), solche bei denen
  • die Methylierung von Cytosin zu 5-Methylcytosin im Vordergrund steht (z. B. die Pflanze Arabidopsis, der Schimmelpilz Neurospora und der Mensch) und solche, bei denen
  • sowohl Adenin als auch Cytosin für die DNA-Methylierung genutzt werden (z. B. bei der Grünalge Chlamydomonas).

Das wird u. a. bei Luo et al. (2015) gezeigt.[14]

Wenn Cytosin für die Methylierung der DNA genutzt wird, so handelt es sich in vielen Fällen um die Umwandlung von Cytosin zu 5-Methylcytosin innerhalb von CG-Sequenz-Motiven. Die CG-Methylierung spielt bei der Promotor-Inaktivierung, der Chromatin-Kondensierung, dem genomischen Imprinting und der X-Chromosom-Inaktivierung eine wichtige Rolle (z. B. bei der Acker-Schmalwand [23]).

Bei Wirbeltieren sind zumeist CpG-Dinukleotide die CG-Sequenz-Motive, die der DNA-Methylierung unterliegen. Das trifft z. B. für den Menschen und andere Säugetiere zu. CpG-Inseln sind Regionen im Genom, an denen die CpG-Dinukleotide mit besonderer Häufung vorkommen.[24]

Die Verteilung der CpG-Dinukleotide innerhalb des menschlichen Genoms und die gezielte, selektive Methylierung der Cytosine ist ein zentraler Punkt beim Verständnis der Epigenetik des Menschen und der Entstehung von Krankheiten. [25][26]

Bei Pflanzen

Deutliche Fortschritte wurden beim Verständnis der DNA-Methylierung in der Modellpflanze Arabidopsis thaliana erzielt. Die DNA-Methylierung in Pflanzen unterscheidet sich von der von Säugetieren: Während DNA-Methylierung in Säugetieren hauptsächlich am Cytosinnukleotid in einer CpG-Stelle auftritt, kann das Cytosin in Pflanzen an CpG-, CpHpG- und CpHpH-Stellen methyliert werden, wobei H ein beliebiges Nukleotid, aber kein Guanin darstellt. Insgesamt ist die Arabidopsis-DNA hoch methyliert. Durch Massenspektrometrie-Analysen wurde der Anteil modifizierender Cytosine auf 14 % geschätzt. [27] Die wichtigsten Arabidopsis-DNA-Methyltransferase-Enzyme, die Methylgruppen auf DNA übertragen und kovalent daran binden, sind DRM2, MET1 und CMT3. Sowohl die DRM2- als auch die MET1-Proteine teilen eine signifikante Homologie zu den Säugetier-Methyltransferasen DNMT3 bzw. DNMT1, wohingegen das CMT3-Protein einzigartig für das Pflanzenreich ist. Es gibt derzeit zwei Klassen von DNA-Methyltransferasen: 1) die De-Novo-Klasse-Enzyme, bzw. Enzyme, die neue Methylierungs-Markierungen auf der DNA erzeugen und 2) eine "Wartungsklasse" von Enzymen, die die Methylierungs-Markierungen auf dem Elternstrang der DNA erkennen und nach der DNA-Replikation eine neue Methylierung an die Tochterstränge übertragen. DRM2 ist das einzige Enzym, das bisher als De-novo-DNA-Methyltransferase betrachtet wird. Es wurde auch gezeigt, dass DRM2 zusammen mit MET1 und CMT3 an der Aufrechterhaltung von Methylierungs-Markierungen durch die DNA-Replikation beteiligt ist. [28] Es werden weitere DNA-Methyltransferasen in Pflanzen exprimiert, die aber keine bekannte Funktion aufweisen (siehe Chromatin-Datenbank, chromdb.org). Es ist nicht klar, wie die Zelle die Orte der de novo DNA-Methylierung bestimmt, aber es gibt Hinweise darauf, dass an vielen (wenn auch nicht allen) Stellen RNA-dirigierte DNA-Methylierung (RdDM) beteiligt ist. In RdDM werden spezifische RNA-Transkripte aus einer genomischen DNA-Matrize hergestellt, und diese RNA bildet sekundäre Strukturen, die doppelsträngige RNA-Moleküle genannt werden. [29] Die doppelsträngigen RNAs leiten die De-novo-DNA-Methylierungen der ursprünglichen genomischen Region, die eben diese RNA produziert hat; und zwar entweder über die kleinen interferierenden RNAs (siRNAs) oder über microRNAs (miRNAs). [29] Es wird angenommen, dass diese Art von Mechanismus bei der zellulären Abwehr gegen RNA-Viren und / oder -Transposons wichtig ist, die beide häufig eine doppelsträngige RNA bilden, die für das Wirtsgenom mutagen sein kann. Es wird angenommen, dass diese RNA-Viren und / oder -Transposons durch einen noch wenig verstandenen Mechanismus mithilfe von Methylierung der entsprechenden Orte im Genom abgeschaltet werden und somit nicht länger in der Zelle aktiv sind, wodurch das Genom vor mutagener Wirkung geschützt wäre.

Bei Insekten

Funktionelle DNA-Methylierung wurde in Honigbienen entdeckt. [30][31] Die DNA-Methylierungs-Markierungen befinden sich hauptsächlich innerhalb von Genen. Die gegenwärtige Meinung besagt, dass die DNA-Methylierung bei der Genregulation und dem alternativen Spleißen wirkt. [32] DNA-Methylierungsniveaus in Drosophila melanogaster sind fast nicht nachweisbar. [33] Sensitive Methoden, die auf Drosophila-DNA angewendet wurden, schätzen Anteile im Bereich von 0,1-0,3% des gesamten Cytosins. [34] Dieser niedrige Methylierungsgrad [35] scheint in genomischen Sequenzmustern zu liegen, die sich von den beim Menschen beobachteten Mustern oder anderen Tier- oder Pflanzenarten stark unterscheiden. Die genomische Methylierung in D. melanogaster wurde an spezifischen kurzen Motiven gefunden (konzentriert in spezifischen 5-Basen-Sequenzmotiven, die CA- und CT-reich sind, aber an Guanin abgereichert sind) und ist unabhängig von der DNMT2-Aktivität. Darüber hinaus haben hochsensitive Massenspektrometrie-Ansätze [36] nun gezeigt, dass in den frühesten Stadien der Drosophila-Embryogenese niedrige (0,07%), aber signifikante Adenin-Methylierungswerte vorliegen.

Bei Pilzen

Viele Pilze haben niedrige Werte (0,1 bis 0,5%) an Cytosin-Methylierung, während andere Pilze bis zu 5% des Genoms methyliert haben. [37] Dieser Wert scheint sowohl zwischen den Arten als auch zwischen Isolaten derselben Spezies zu variieren. [38] Es gibt auch Hinweise darauf, dass die DNA-Methylierung an der zustandspezifischen Kontrolle der Genexpression in Pilzen beteiligt sein könnte. Allerdings wurde bei einer Nachweisgrenze von 250 Attomolen mittels ultra-hochempfindlicher Massenspektrometrie die DNA-Methylierung in einzelzelligen Hefearten wie Saccharomyces cerevisiae oder Schizosaccharomyces pombe nicht bestätigt, was darauf hinweist, dass Hefen diese DNA-Modifikation nicht besitzen. [27] Obwohl Bierhefe (Saccharomyces), Spalthefe (Schizosaccharomyces) und Aspergillus flavus [39] keine nachweisbare DNA-Methylierung aufweisen, hat das Modell des filamentösen Pilzes Neurospora crassa ein gut charakterisiertes Methylierungssystem. [40] Einige Gene kontrollieren die Methylierung in Neurospora: Eine Mutation der DNA-Methyltransferase (dim-2) eliminiert die gesamte DNA-Methylierung, beeinträchtigt aber weder das Wachstum noch die sexuelle Fortpflanzung. Obgleich das Neurospora-Genom sehr wenig "repeated DNA" (= Sequenzwiederholungen) aufweist, tritt die Hälfte der Methylierung in solcher DNA auf, die auch Transposonrelikte und Zentromer-DNA einschließt. Die Möglichkeit, wichtige Phänomene in einem DNA-Methylase-defizienten genetischen Hintergrund zu evaluieren, macht Neurospora zu einem wichtigen System für die Untersuchung der DNA-Methylierung.

Bei niederen Eukaryoten

Die "niederen zellkernhaltigen Organismen" sind keine phyllogenetische Gruppe, also keine Gruppe, in der einheitliche Verwandschaftsverhältnisse herrschen. Daher ist auch eine Einheitlichkeit hinsichtlich der DNA-Methylierung wenig zu erwarten. Eine DNA-Methylierung ist in Dictyostelium discoidium [41] beispielsweise nahezu nicht vorhanden, da sie mit nur etwa 0,006% der Cytosine auftritt. [42] Im Gegensatz dazu ist die DNA-Methylierung in Physarum polycephalum [43] weit verbreitet, wo 5-Methylcytosin bis zu 8% des gesamten Cytosins ausmacht [44]

Bei Säugetieren

Epigenetische Veränderungen an CpG-Dinukleotiden
Folgen der Desaminierung: Die Nukleobase Cytosin kann durch die DNA-Methyltransferasen methyliert werden (1). Wird Cytosin desaminiert, entsteht Uracil (2). Dieses kann vom DNA-Reparatur-Apparat als DNA-fremd erkannt und ausgetauscht werden (3). Wird 5-Methylcytosin desaminiert, entsteht 5-Methyluracil = Thymin (4), eine übliche andere DNA-Base, womit eine Punktmutation durch C→T-Transition auftritt (5).
Im DNA-Doppelstrang entsteht damit eine Thymin-Guanin-Fehlpaarung. Wird diese durch Tausch von Thymin (bzw. Desoxythymidin) gegen Cytosin (bzw. Desoxycytidin) behoben, so ist der Ausgangszustand wiederhergestellt; ein Tausch von Guanin (bzw. Desoxyguanosin) gegen Adenin (bzw. Desoxyadenosin) hingegen behebt wohl die Fehlpaarung, fixiert aber die Mutation. Ohne Austausch gehen aus der nächsten Replikation eine DNA ohne und eine DNA mit Mutation hervor.

Die wichtigste epigenetische Veränderung ist die Methylierung von Cytosin als Nukleobase der DNA.[45] Dabei werden überhaupt nur solche Cytosine methyliert, die innerhalb von C-G-Dinukleotiden (auch CpG-Dinukleotide oder CpG-Stellen genannt) angetroffen werden. Andere Cytosine werden durch die bekannten menschlichen DNA-Methyltransferasen (DNMT) nicht verändert.[46]

Während der DNA-Verdopplung vor jeder Zellteilung gibt es den alten DNA-Strang, an dem bestimmte Cytosine methyliert sind, während der neugebildete DNA-Strang noch nicht methyliert ist. Das Enzym DNMT3 methyliert jedes Cytosin in einem halbmethylierten CG/CG-Paar. Eine solche CG-Methylierung führt dazu, dass Methyl-CG-erkennende Proteine an diese meCG-Paare binden können. Diese Bindung führt zur Anlagerung weiterer Proteine und zur Verdichtung der Nukleosomen (siehe weiter unten). Dadurch ist die DNA an solchen meCG-Paaren für die RNA-Polymerase nicht ablesbar und das darunterliegende Gen ist inaktiv.

Methylierte Cytosine sind anfällig für Desaminierung, dabei verliert das Cytosin die Aminogruppe an Position 4 des Ringes. Ein desaminiertes, nichtmethyliertes Cytosin ist ein Uracil. Dieses ist keine der vier normalen DNA-Basen Adenin, Cytosin, Guanin oder Thymin. Daher wird ein Uracil in der DNA als Fehler erkannt und ausgetauscht. Wird aber ein 5-Methylcytosin desaminiert, entsteht damit 5-Methyluracil, mit anderem Namen Thymin, das ein übliche DNA-Base ist. In einem DNA-Doppelstrang kann der übliche DNA-Reparaturapparat nicht erkennen, ob das Thymin oder aber das gegenüberliegende Guanin falsch eingebaut ist. Daher ist die Desaminierung eines Methylcytosins in ein Thymin problematisch. Bleibt die Umwandlung erhalten und hat sie in einer Keimzelle stattgefunden, so kann sie auch vererbt werden (als C→T-Punktmutation).

Wenn man auszählt, wie häufig Zweierpaare benachbarter Nukleobasen in den Nukleotiden einer Nukleinsäure insgesamt vorkommen, stellt man fest, dass fast alle Paare etwa gleich häufig sind. Nur Paare von Cytosin und Guanin (CG bzw. GC) kommen wesentlich seltener vor. Als ein Grund dafür wird angenommen, dass methyliertes Cytosin, an dem eine Desaminierung stattfand, nicht repariert wurde, und die Häufigkeit von C daher geringer ist.

Die erhalten gebliebenen CG-Dinukleotide treten gehäuft vor allem in den Genbereichen auf, die für die Steuerung von Genen zuständig sind, den Promotoren. Ein Teile der Promotoren haben eine hohe Dichte an CG-Dinucleotiden, man spricht von einer CpG-Insel (Cytosin phosphat Guanin – Insel). Würden hier CG- in TG-Paare umgewandelt, könnten Zellfunktionen verändert werden oder verloren gehen. Wenn eine solche Veränderung die Existenz der Zelle bzw. des Embryos gefährdet, findet Selektion gegen die Veränderung statt und die Veränderung wird nicht vererbt. CpG-Inseln sind in gesunden Zellen generell unmethyliert, in Promotoren mit niedriger CG Dichte besteht ein qualitativer Zusammenhang zwischen Methylierung und der Aktivität des zugehörigen Gen. Ist ein Promoter methyliert so ist das kontrollierte Gen meist inaktiv.[47]

Cytosin-Methylierungen können durch eine Bisulfit-Sequenzierung bestimmt werden.

DNA-Methyltransferasen (DNMT)

Bislang sind drei menschliche DNA-Methyltransferasen bekannt: DNMT1, DNMT3a und DNMT3b (DNMT2 methyliert RNA). Für die Erhaltungs-Methylierung (Maintenance-Methylierung) bei der Zellteilung ist DNMT1 zuständig. DNMT3a und DNMT3b methylieren die CG-Dimere, die aufgrund von Zelldifferenzierungen neu methyliert werden (de-novo-Methylierung). Mutationen im DNMT3b-Gen auf Chromosom 20 führen zum Immunschwäche/zentromere Instabilität/Gesichtsausdrucks-Anomalie-Syndrom (ICF). An methylierte DNA kann sich das Methyl-bindende Protein (MeCP) anlagern. Dieses wiederum ist Keim für weitere Proteinanlagerungen, die schließlich auch zur Modifizierung von Histonen führen. Kondensiertes Histon in Zusammenarbeit mit dem durch MeCP ausgelösten Proteinkomplex führt zur Inaktivierung eines Chromosomenabschnittes.

DNA-Demethylase

Auch das Methyl-abspaltende Enzym DNA-Demethylase wurde identifiziert.[48] Es war als Methyl-CpG-Domäne-bindendes Protein 2 (MBD2) schon früher beschrieben worden. Damit ist die Methylierung von DNA keine Einbahnstraße, sondern der Methylierungszustand kann zellfunktionsabhängig geregelt werden. Eine solche Situation nennt man plastisch.

Biologische Funktionen von DNA-Methylierungen

Da die DNA-Methylierung die Nutzung der DNA gestaltet, ohne die Abfolge der Grundbausteine (DNA-Sequenz) zu verändern, ist sie Gegenstand der Epigenetik. Bisher sind im Wesentlichen folgende Bedeutungen der Methylierung von Nukleobasen innerhalb doppelsträngiger DNA bekannt:

Bei Prokaryoten

  • Schutz vor fremder DNA: Unterscheidung zelleigener DNA von solcher, die von außen in die Zelle gelangt ist.
  • Fehlerkorrektur bei der DNA-Synthese: Unterscheidung des ursprünglichen (methylierten) DNA-Strangs vom neusynthetisierten Strang, in welchem die Nukleobasen noch nicht methyliert sind.

Bei Eukaryoten

  • Nutzung der DNA als Informationsträger: Markierung von aktiven und inaktiven Bereichen der DNA, unter anderem abhängig vom Lebensalter.[49][50][51][52]

DNA-Methylierung und Schutz vor fremder DNA

DNA ist weit verbreitet. Zellen unterschiedlicher Arten können in unmittelbarer Nachbarschaft existieren. Sowohl bei der Nahrungsaufnahme einer Zelle (z. B. Phagozytose) wie auch bei parasexuellen und sexuellen Prozessen kommt es zur Aufnahme der DNA von einer (lebenden oder toten) Zelle in eine andere Zelle. Darüber hinaus sind viele Zellen in der Lage, unter bestimmten Umständen Fremd-DNA leicht aufnehmen zu können (Zellkompetenz).

Da eine lebende Zelle ihre Integrität nur erhalten kann, wenn die genetische Information sinnvoll ist, sollte sie in der Lage sein, fremde DNA zu erkennen und zu eliminieren. Dies wird häufig durch ein System aus zwei Enzymgruppen gewährleistet: Die DNA-Methyltransferasen und die Restriktionsendonukleasen.

Die Methyltransferasen erkennen eine (meist kurze) DNA-Sequenz und hängen eine Methylgruppe an eine definierte Nukleobase. Dadurch entsteht ein sogenanntes Methylierungsmuster. Daneben erkennen die Restriktionsenzyme jeweils eine (meist kurze) DNA-Sequenz und trennen die DNA an definierten Stellen zwischen Phosphat und Desoxyribose bei bestimmten vorhandenen oder abwesenden Methylierungen. Viele Restriktionsenzyme sind methylierungssensitiv. Das heißt, sie zerschneiden die DNA nur, wenn an bestimmten Stellen Methylierungen vorliegen oder wenn an bestimmten Stellen keine Methylierungen vorhanden sind.

Das System aus Methyltransferasen und Restriktionsenzymen ist in einer lebenden Zelle so abgestimmt, dass die eigene DNA nicht zerschnitten wird. Fremde DNA, die von außen in die betrachtete Zelle gelangt, hat jedoch in den allermeisten Fällen ein anderes Methylierungsmuster. Daher wird sie mit hoher Wahrscheinlichkeit von den Restriktionsenzymen sowie anderen Nukleasen verdaut. In seltenen Fällen wird fremde DNA nicht oder nur zum Teil verdaut und dauerhaft in die zelleigene DNA integriert. Eine Integration fremder DNA wird auch als horizontaler Gentransfer bezeichnet und ist ein Motor der Evolution.

Nachfolgend wird ein einfaches System aus Methyltransferase und Restriktionsenzym als Beispiel erläutert.

Beispiel für DNA-Methylierung und DNA-Restriktion

Das Zusammenwirken von DNA-Methylierung und DNA-Restriktion (Spaltung von DNA) soll anhand der Enzyme DpnM (DNA-Methyltransferase) und DpnII (Restriktionsenzym) beschrieben werden. Die Enzyme stammen aus dem Bakterium Diplococcus pneumoniae. Die Methyltransferase DpnM sorgt dafür, dass die palindromische Sequenz GATC im Adenosin methyliert wird:

   m
--GATC--
--CTAG--
    m

Dadurch kann „frische DNA“ die gerade neu entstanden ist, von der alten DNA, die als Vorlage gedient hat, unterschieden werden:

   m
--GATC--
--CTAG--

Das ist für die korrekte Reparatur von Fehlern während der DNA-Replikation wichtig. Der sogenannte hemimethylierte Zustand (eine Seite ist methyliert, die andere nicht) wird nachfolgend durch die Methyltransferasen – wie z. B. DpnM – durch Methylierung aufgehoben. Sollte DNA einer anderen Art in die D. pneumoniae-Zelle gelangen, so ist diese DNA in der Sequenz GATC meist nicht methyliert:

--GATC--
--CTAG--

Diese doppelsträngige DNA wird mit großer Wahrscheinlichkeit vom Restriktionsenzym DpnII zerschnitten. Neben anderen Prozessen führt das dazu, dass fremde DNA eher als Nahrung und weniger als Erbsubstanz dient. Dieses ist außerdem ein Mechanismus, mit dem sich Bakterien vor Bakteriophagen schützen – indem sie die eingebrachte DNA in kleine Stücke schneiden.

DNA-Methylierung und Fehlerkorrektur bei der DNA-Neusynthese

Die identische Verdopplung der Desoxyribonukleinsäure (DNA-Replikation) ist eine wesentliche Voraussetzung für die Zellteilung und damit für die Vermehrung. Die DNA-Replikation wird dadurch gewährleistet, dass Enzyme (die DNA-abhängigen DNA-Polymerasen) den bereits vorhandenen alten Strang „lesen“ und dabei den neuen Strang „schreiben“. Dabei können Fehler auftreten. Die Fehlerstellen können durch die DNA-Reparatursysteme einer Zelle erkannt werden, da dort keine komplementäre Basenpaarung vorliegt. Allerdings bliebe unklar, welche der beiden Möglichkeiten die richtige sei, wenn sich alter und neuer DNA-Strang nicht unterschieden. Da der alte Strang jedoch methyliert ist, der neue aber noch nicht, ist eine Unterscheidung möglich. Die DNA-Reparatursysteme von Bakterien können diesen hemimehylierten ("halbmethylierten") Zustand zur postreplikativen Fehlerkorrektur nutzen.

Bei Eukaryoten werden die Reparaturenzyme z. B. durch das Ringklemmenprotein (PCNA - Proliferating-Cell-Nuclear-Antigen) rekrutiert, welches die Stränge während der Replikation auseinander hält. Es gibt allerdings weitere Reparatur-Mechanismen. In den Zellen des Menschen wie auch anderer Säugetiere ist eine kurze Folge aus zwei Grundbausteinen (Nukleosiden) die Grundlage für eine DNA-Methylierung: das CpG-Dinukleotid (Desoxycytidin – Phosphorsäure – Desoxyguanosin). In der Aufeinanderfolge der beiden Nukleobasen Cytosin–Guanin wird das Cytosin methyliert. Bis auf einige Bereiche passiert dies fast in der gesamten menschlichen Erbsubstanz. Auch hier ist (wie bei den Bakterien) ein hemimethylierter Zustand für die postreplikative Reparatur entscheidend:

1. Vor der DNA-Replikation sind im betrachteten Beispielabschnitt die CpG-Dinukleotide in beiden Strängen am Cytosin methyliert:

               m               m
   ...pApApCpTpCpGpTpGpCpApApApCpGpGpTpT ...
       | | | | | | | | | | | | | | | | |
   ... TpTpGpApGpCpApCpGpTpTpTpGpCpCpApAp...
                 m               m

2. Während der DNA-Replikation kommt es zum Fehler: Statt eines Thymidintriphosphat-Moleküls wird ein Cytidintriphosphat verwendet. Dadurch wird an der entsprechenden Stelle die komplementäre Basenpaarung aufgehoben:

            m               m
...pApApCpTpCpGpTpGpCpApApApCpGpGpTpT ...
              | | | |   | | | | | | |
              CpApCpGpCpTpTpGpCpCpApAp...

3. Nach Abschluss der DNA-Replikation im Beispielabschnitt liegt der DNA-Doppelstrang hemimethyliert vor. Das heißt, der alte Strang ist methyliert, der neue nicht. Ein Protein-Komplex bindet an die halbseitig methylierten CpG-Stellen (Hemi-mCpG-Np95-Dnmt1) und ermöglicht ein nachträgliche, neustrang-spezifische Reparatur bis in einen Bereich hinein, in welchem der DNA-Doppelstrang bereits beginnt, sich mit den Histonen zum Chromatin zu assemblieren. [53]

            m               m
...pApApCpTpCpGpTpGpCpApApApCpGpGpTpT ...
    | | | | | | | | |   | | | | | | |
... TpTpGpApGpCpApCpGpCpTpTpGpCpCpApAp...

4. Die Stelle der Fehlpaarung wird erkannt. Von den beiden Möglichkeiten Adenosinmonophosphat und Cytidinmonophosphat wird das Cytidinmonophosphat ausgeschnitten, das im nichtmethylierten Strang liegt. Tymidintriphosphat wird verwendet, um die Lücke zu schließen:

             m               m
...pApApCpTpCpGpTpGpCpApApApCpGpGpTpT ...
    | | | | | | | | |   | | | | | | |
... TpTpGpApGpCpApCpGp  TpTpGpCpCpApAp...
                   pppT

5. Der reparierte DNA-Doppelstrang liegt im hemimethylierten Zustand vor:

            m               m
...pApApCpTpCpGpTpGpCpApApApCpGpGpTpT ...
    | | | | | | | | | | | | | | | | |
... TpTpGpApGpCpApCpGpTpTpTpGpCpCpApAp...

6. Durch die Übertragung von Methylgruppen auf die Nukleobase Cytosin in den CpG-Dinukleotiden wird der Grundzustand wiederhergestellt:

            m               m
...pApApCpTpCpGpTpGpCpApApApCpGpGpTpT ...
    | | | | | | | | | | | | | | | | |
... TpTpGpApGpCpApCpGpTpTpTpGpCpCpApAp...
              m               m

DNA-Methylierung und die Nutzung der DNA als Informationsträger

DNA-Methylierungen sind Markierungen, die es der lebenden Zelle gestatten, Bereiche innerhalb der DNA für verschiedene Prozesse selektiv zu nutzen. Die Markierung von DNA kann ähnlich wie Textformatierungen in einem Buch betrachtet werden: Wenn in einem Lexikon ein Stichwort hervorgehoben dargestellt ist, hat es für den Leser eine andere Bedeutung als dasselbe Wort im Fließtext. Es existieren mehrere (sich überschneidende) Möglichkeiten, wie DNA-Methylierungen die Art der Interpretation von Information variieren, welche in der Bausteinabfolge der DNA gespeichert ist.

DNA-Methylierung und Genregulation

In einem Bereich vor einem Gen (stromaufwärts, upstream) sind häufig Stellen vorhanden, die sich hinsichtlich ihres Methylierungsmusters von der Umgebung unterscheiden. Dabei kann in vielen Fällen der Methylierungsgrad in unterschiedlichen Situationen variieren. Dadurch wird eine selektive Lesehäufigkeit des dahinterliegenden Gens möglich, was man als Genregulation oder differenzielle Genexpression bezeichnet. Beispiele für solche Bereiche, die selektiv methyliert sein können, sind CpG-Inseln.

DNA-Methylierung und Imprinting (genomische Prägung)

Die genomische Prägung ist ein Spezialfall einer differenziellen Genexpression, welche in der Regel durch DNA-Methylierung gesteuert wird. Durch unterschiedliche DNA-Methylierungsmuster in den männlichen und weiblichen Keimzellen können väterliche und mütterliche Allele unterschieden werden. Bei Genen, die dem Imprinting unterliegen, wird nur das mütterliche oder väterliche Allel genutzt. Dadurch ist eine geschlechtsspezifische Ausprägung von phänotypischen Merkmalen möglich.

Medizinische Bedeutung

Da fehlerhafte DNA-Methylierungen auf Zellebene reduzierte oder erhöhte Genaktivität bedingen, und diese Aktivitätsveränderungen meist stabil an Tochterzellen vererbt werden, sind sie auf Organismenebene häufig auch Ursache für Krankheiten. So weisen z. B. Tumorzellen oft Methylierungsmuster auf, die von denjenigen gesunder Gewebe signifikant abweichen. Ein Tumor kann dabei sowohl als Folge zu starker Methylierung (Hypomethylierung-Hypermethylierung) von upstream DNA-Bereichen entstehen, als auch bei verringertem Methylierungsgrad.[54] Der regulatorische Bereich vor jedem Gen (Promotorbereich) besteht aus verschiedenen typischen DNA-Sequenzen, die spezielle Bindungsstellen für unterschiedliche Enzyme darstellen. Meistens blockiert eine hypermethylierte upstream DNA den Zugang transkriptionsaktiver Faktoren und Enzyme, wodurch die Genaktivität des nachfolgenden Gens supprimiert wird.

Die DNA-Bereiche, die für die Methylierung von besonderer Bedeutung sind, heißen CpG-Inseln. Ihr GC-Gehalt beträgt etwa 60 % (Gesamtgenom: ca. 40 %), und in diesen Abschnitten liegt das Dinukleotid Cytosin-Guanin (5'-CpG-3') im Vergleich zum restlichen Genom mit zehn- bis zwanzigmal erhöhter Frequenz vor. CpG-Inseln dienen in der humangenetischen Forschung oft der Zuordnung von Genen zu genetischen Erkrankungen. Die Gene und die durch DNA-Methylierung gesteuerten Bereiche vor dem jeweiligen Gen können für die Diagnose von vererbbaren Erkrankungen mit molekulargenetischen Methoden eingesetzt werden.

Eine Therapie von Erkrankungen durch eine gezielte Beeinflussung der DNA-Methylierung ist bisher und auf absehbare Zeit nicht möglich – u. a. auch deshalb, weil zu wenig über das ‚richtige‘ Methylierungsmuster gesunder Gewebe bekannt ist. Derzeit gibt es nur experimentelle In vitro-Ansätze, durch sogenannte Zinkfingerproteine (spezielle Klasse von Proteinen, die um ein zentrales Zink-Ion DNA-bindende Domänen besitzen und mit Methylasen oder Demethylasen gekoppelt sein können), um so gezielt bestimmte Sequenzen modifizieren zu können.

Regulation der DNA-Methylierung in Tumoren

Die DNA-Methylierung in Tumorzellen unterscheidet sich von derjenigen in gesunden Zellen.

  • Die Analyse der DNA-Methylierung von Tumorzellen hat ergeben, dass in Tumorzellen häufig die Gene für sogenannte Tumorsuppressorproteine im Vergleich zu Normalzellen methyliert sind.
  • So ist in der akuten myeloischen Leukämie (AML) häufig die CG-Insel des P15-Proteins (auch CDKN2B oder ink4b genannt) methyliert.
  • P15 ist ein hemmender Regulator des Zellzyklus.
  • Nach Bildung von meCG in der CG-Insel von P15 wird dessen Transkription und die Biosynthese des P15-Proteins eingestellt.
  • Beim Zellzyklus-Regulator P53 ist in 50 % aller menschlichen Tumoren das P53-Gen hypermethyliert und damit inaktiviert.[45]
  • Da P53 das proof-reading kontrolliert, wird durch Ausschalten von P53 die Fehlerkontrolle aufgegeben und Mutationen können sich anhäufen, die zur Ausschaltung weiterer Tumorsuppressor-Gene oder zur Aktivierung zellwachstums-fördernder Proteine führen können.

Andererseits ist in Tumorzellen die globale DNA-Methylierung geringer als in Normalzellen. Das führt man darauf zurück, dass das in Normalzellen hochmethylierte Heterochromatin (vor allem die Zentromer-Region) in Tumorzellen geringer methyliert ist.

Seitdem man den Einfluss der Hypermethylierung auf das Tumorwachstum identifiziert hat, hat man nach Wegen gesucht, um durch Demethylierung die im Entstehen begriffenen bzw. auch schon existierende Tumore wieder der Zellzykluskontrolle zu unterwerfen:[55]

  • Cytosin-ähnliche Substanzen wie Azacytosin oder Aza-Desoxy-Cytosin werden in Patienten mit Akuter Myeloischer Leukämie infundiert.
  • Diese Stoffe werden in Zellen aufgenommen, deren DNA verdoppelt wird.
  • Azacytosin kann in der Zelle in Aza-Desoxy-Cytosin umgewandelt werden.
  • Aza-Desoxy-Cytosin wird anstelle von Cytosin in DNA eingebaut.
  • Die DNMT3, die die hemimethylierten CGs methylieren will, bindet an das Aza-Analog.
  • Der Austausch von Kohlenstoff gegen Stickstoff bewirkt, dass das Enzym bei dem enzymatischen Methyltransfer an der DNA hängenbleibt und keine weiteren Reaktionen durchführen kann.
  • Mit diesem Verfahren werden die DNMT3 inaktiviert und eliminiert. Eine Methylierung findet nicht mehr statt.
  • Nach der nächsten Zellteilung ist die DNA weniger methyliert. Wenn von dieser De-Methylierung z. B. das P53- oder das P15-Gen betroffen sind, findet wieder Zellzykluskontrolle statt.
  • Das Tumorwachstum ist damit unterbunden.

Es wurden klinische Studien veröffentlicht, in denen bei menschlichen Patienten ein hemmender Effekt von Aza-Desoxy-Cytosin auf Tumorentwicklung gezeigt werden konnte.[56] Die Forscher nennen ihr Verfahren Epigenetische Therapie.

Für die Behandlung des Myelo-Dysplastischen Syndroms, das sich häufig zu einer Akuten Myeloischen Leukämie entwickelt, wurde 5-Aza-2'-Desoxy-Cytosin unter dem Namen Dacogen von der FDA im Jahre 2006 als Medikament freigegeben.[57] Ein anderer Name für diese Substanz ist Decitabin.

Abgrenzung und Zusammenhang der Begriffe Methylierung, Modifikation, Mutation und Vererbung

Die Methylierung ist eine universelle chemische Abwandlung von Molekülen. Im Bereich anorganischer und organischer Chemie spricht man bei solchen Abwandlungen eher von Derivaten, im Bereich der biologischen Makromoleküle eher von Modifikationen. So können außer den Nukleobasen in der DNA auch Proteine durch Methyltransferasen methyliert werden. Der Begriff Modifikation wird in der Biologie mehrdeutig gebraucht. Zum einen betrifft er die bereits erwähnte Modifikation von Makromolekülen – vor allem DNA –, zum anderen die phänotypische Modifikation. Von (phänotypischer) Modifikation spricht man, wenn sich die Eigenschaften eines Lebewesens durch geänderte Umweltbedingungen ändern (geänderter Phänotyp), ohne dass die Erbsubstanz in der Abfolge ihrer Grundbausteine verändert wurde (unveränderter Genotyp). Somit sind die Modifikation von Makromolekülen und die phänotypische Modifikation verschieden. Allerdings haben beide Begriffe die Gemeinsamkeit, sich auf solche Veränderungen am Lebewesen zu beziehen, welche ohne grundsätzliche Änderung der Erbsubstanz vonstattengingen. Keine grundsätzliche Änderung heißt in diesem Fall, dass keine Änderung der Abfolge der Grundbausteine der Desoxyribonukleinsäure erfolgte. Die DNA-Modifikation und die phänotypische Modifikation sind daher keine Mutationen. DNA-Modifikationen können Mutationen nach sich ziehen. So steigt die Wahrscheinlichkeit, dass ein Cytosin zum Thymin umgewandelt wird (Punktmutation), wenn dieses Cytosin methyliert ist (siehe CpG-Inseln).

DNA-Modifikationen können auch phänotypische Modifikationen nach sich ziehen: Veränderte Umweltbedingungen führen über die Signaltransduktion zum veränderten Methylierungsmuster der DNA in bestimmten Bereichen (DNA-Modifikation); dadurch wird die Nutzung der Gene verändert (differenzielle Genexpression); das führt zu einer Änderung der Eigenschaften der Lebewesens (phänotypische Modifikation). Mutationen sind per Definition vererbbar. DNA-Modifikationen sind nicht oder nur im begrenzten Maße vererbbar. Die genomische Prägung ist ein Grenzfall. Hier kommt es durch DNA-Methylierung zu einer Unterscheidung väterlicher und mütterlicher Allele. Da nur ein Allel (eine Gen-Kopie) aktiv ist, kommt es zur Weitergabe der Ausprägung dieses Allels in die nächste Generation. Es handelt sich hierbei jedoch nicht um genetische Vererbung im engeren Sinne.

Literatur

  • A. Jowaed, I. Schmitt, O. Kaut, U. Wüllner: Methylation regulates alpha-synuclein expression and is decreased in Parkinson's disease patients' brains. In: J. Neurosci. 30. Jahrgang, Nr. 18, Mai 2010, S. 6355–6359, doi:10.1523/JNEUROSCI.6119-09.2010, PMID 20445061.

Einzelnachweise

  1. a b D. S. Shames, J. D. Minna, A. F. Gazdar: DNA methylation in health, disease, and cancer. In: Curr. Mol. Med. 7. Jahrgang, Nr. 1, Februar 2007, S. 85–102, PMID 17311535.
  2. S. Beck, V. K. Rakyan: The methylome: approaches for global DNA methylation profiling. In: Trends Genet. 24. Jahrgang, Nr. 5, Mai 2008, S. 231–237, doi:10.1016/j.tig.2008.01.006, PMID 18325624.
  3. L. Shen, R. A. Waterland: Methods of DNA methylation analysis. In: Curr Opin Clin Nutr Metab Care. 10. Jahrgang, Nr. 5, September 2007, S. 576–581, doi:10.1097/MCO.0b013e3282bf6f43, PMID 17693740.
  4. a b B. A. Braaten, X. Nou, L. S. Kaltenbach, D. A. Low: Methylation patterns in pap regulatory DNA control pyelonephritis-associated pili phase variation in E. coli. In: Cell. Band 76, Nummer 3, Februar 1994, S. 577–588, PMID 7906204.
  5. a b c d e f Matthew J. Blow, Tyson A. Clark, Chris G. Daum, Adam M. Deutschbauer, Alexey Fomenkov, Roxanne Fries, Jeff Froula, Dongwan D. Kang, Rex R. Malmstrom, Richard D. Morgan, Janos Posfai, Kanwar Singh, Axel Visel, Kelly Wetmore, Zhiying Zhao, Edward M. Rubin, Jonas Korlach, Len A. Pennacchio, and Richard J. Roberts. "The Epigenomic Landscape of Prokaryotes" PLoS Genet. 2016 Feb; 12(2): e1005854. doi:10.1371/journal.pgen.1005854. PMID 26870957. PMC 4752239 (freier Volltext).
  6. Dunn DB, Smith JD. The occurrence of 6-methylaminopurine in deoxyribonucleic acids. Biochem J. 1958 Apr;68(4):627-36. PMID 13522672. PMC 1200409 (freier Volltext).
  7. Vanyushin BF, Tkacheva SG, Belozersky AN. Rare bases in animal DNA. Nature. 1970;225:948–9. PMID 4391887.
  8. a b Melanie Ehrlich, Miguel A. Gama-Sosa, Laura H. Carreira, Lars G. Ljungdahl, Kenneth C. Kuo, Charles W. Gehrke: DNA methylation in thermophilic bacteria: N6-methylcytosine, 5-methylcytosine, and N6-methyladenine. In: Nucleic Acids Research. 13, 1985, S. 1399, . PMID 4000939. PMC 341080 (freier Volltext).
  9. Hattman S, Kenny C, Berger L, Pratt K. Comparative study of DNA methylation in three unicellular eucaryotes. J Bacteriol. 1978 Sep;135(3):1156-7. PMID 99431. PMC 222496 (freier Volltext).
  10. Ratel D, Ravanat J-L, Charles M-P, Platet N, Breuillaud L, Lunardi J, Berger F, Wion D. Undetectable levels of N6-methyl adenine in mouse DNA: Cloning and analysis of PRED28, a gene coding for a putative mammalian DNA adenine methyltransferase. FEBS Lett. 2006;580:3179–3184. PMID 16684535. doi:10.1016/j.febslet.2006.04.074.
  11. Greer EL, et al. DNA Methylation on N6-Adenine in C. elegans. Cell. 2015;161:868–78. PMID 25936839. doi:10.1016/j.cell.2015.04.005. PMC 4427530 (freier Volltext).
  12. Zhang G, et al. N6-methyladenine DNA modification in Drosophila. Cell. 2015;161:893–906. PMID 25936838. doi:10.1016/j.cell.2015.04.018.
  13. a b Capuano F, Mulleder M, Kok R, Blom HJ, Ralser M. Cytosine DNA Methylation Is Found in Drosophila melanogaster but Absent in Saccharomyces cerevisiae, Schizosaccharomyces pombe, and Other Yeast Species. Analytical Chemistry. 2014;86:3697–3702.doi:10.1021/ac500447w. PMID 24640988. PMC PMC4006885 (freier Volltext).
  14. a b c Guan-Zheng Luo, Mario Andres Blanco, Eric Lieberman Greer, Chuan He, Yang Shi: DNA N6-methyladenine: a new epigenetic mark in eukaryotes?. In: Nature Reviews Molecular Cell Biology. 16, 2015, S. 705, doi:10.1038/nrm4076. PMID 26507168. PMC PMC4763336 (freier Volltext).
  15. J. Casadesus, D. Low: Epigenetic gene regulation in the bacterial world. In: Microbiology and molecular biology reviews: MMBR. Band 70, Nummer 3, September 2006, S. 830–856, doi:10.1128/MMBR.00016-06, PMID 16959970, PMC 1594586 (freier Volltext).
  16. D. Wion, J. Casadesus: N6-methyl-adenine: an epigenetic signal for DNA-protein interactions. In: Nature reviews. Microbiology. Band 4, Nummer 3, März 2006, S. 183–192, doi:10.1038/nrmicro1350, PMID 16489347, PMC 2755769 (freier Volltext) (Review).
  17. Kumar R, Rao DN. Subcell Biochem. "Role of DNA methyltransferases in epigenetic regulation in bacteria" 2013;61:81-102. doi:10.1007/978-94-007-4525-4_4. PMID 23150247.
  18. Casadesus J, Low DA. "Programmed heterogeneity: epigenetic mechanisms in bacteria" J Biol Chem. 2013 May 17; 288(20):13929-35. doi:10.1074/jbc.R113.472274. PMID 23592777. PMC 3656251 (freier Volltext).
  19. B. M. Forde, M. D. Phan, J. A. Gawthorne, M. M. Ashcroft, M. Stanton-Cook, S. Sarkar, K. M. Peters, K. G. Chan, T. M. Chong, W. F. Yin, M. Upton, M. A. Schembri, S. A. Beatson: Lineage-Specific Methyltransferases Define the Methylome of the Globally Disseminated Escherichia coli ST131 Clone. In: mBio. Band 6, Nummer 6, November 2015, S. e01602–e01615, doi:10.1128/mBio.01602-15, PMID 26578678, PMC 4659465 (freier Volltext).
  20. Robson Ee, Yan-Lue Lim, Wai-Fong Yin, Wah-Seng See-Too, Richard J. Roberts, Kok-Gan Chan: Novel Methyltransferase Recognition Motif Identified in Chania multitudinisentens RB-25T gen. nov., sp. nov.. In: Frontiers in Microbiology. 7, 2016, doi:10.3389/fmicb.2016.01362.
  21. F. Barras, M. G. Marinus: The great GATC: DNA methylation in E. coli. In: Trends Genet. Bd. 5, 1989, Nr. 5, S. 139–143, PMID 2667217.
  22. M. G. Marinus, J. Casadesus: Roles of DNA adenine methylation in host-pathogen interactions: mismatch repair, transcriptional regulation, and more. In: FEMS Microbiol Rev. Bd. 33, 2009, Nr. 3, S. 488–503, PMID 19175412, doi:10.1111/j.1574-6976.2008.00159.x.
  23. O. Mathieu et al.: Methylation of a euchromatin-heterochromatin transition region in Arabidopsis thaliana chromosome 5 left arm. In: Chromosome Research. Bd. 10, 2002, Nr. 6, S. 455–466, PMID 12489828, doi:10.1023/A:1020936229771.
  24. M. Gardiner-Garden, M. Frommer: CpG islands in vertebrate genomes. In: Journal of molecular biology. Band 196, Nummer 2, Juli 1987, S. 261–282, PMID 3656447.
  25. G. D. Ginder, D. C. Williams: Readers of DNA methylation, the MBD family as potential therapeutic targets. In: Pharmacology & therapeutics. [elektronische Veröffentlichung vor dem Druck] November 2017, doi:10.1016/j.pharmthera.2017.11.002, PMID 29128342 (Review).
  26. P. D. Fransquet, P. Lacaze, R. Saffery, J. McNeil, R. Woods, J. Ryan: Blood DNA methylation as a potential biomarker of dementia: A systematic review. In: Alzheimer's & dementia : the journal of the Alzheimer's Association. [elektronische Veröffentlichung vor dem Druck] November 2017, doi:10.1016/j.jalz.2017.10.002, PMID 29127806 (Review).
  27. a b F. Capuano, M. Mülleder, R. Kok, H. J. Blom, M. Ralser: Cytosine DNA methylation is found in Drosophila melanogaster but absent in Saccharomyces cerevisiae, Schizosaccharomyces pombe, and other yeast species. In: Analytical chemistry. Band 86, Nummer 8, April 2014, S. 3697–3702, doi:10.1021/ac500447w, PMID 24640988, PMC 4006885 (freier Volltext).
  28. X. Cao, S. E. Jacobsen: Locus-specific control of asymmetric and CpNpG methylation by the DRM and CMT3 methyltransferase genes. In: Proceedings of the National Academy of Sciences of the United States of America. Band 99 Suppl 4, Dezember 2002, S. 16491–16498, doi:10.1073/pnas.162371599, PMID 12151602, PMC 139913 (freier Volltext).
  29. a b W. Aufsatz, M. F. Mette, J. van der Winden, A. J. Matzke, M. Matzke: RNA-directed DNA methylation in Arabidopsis. In: Proceedings of the National Academy of Sciences of the United States of America. Band 99 Suppl 4, Dezember 2002, S. 16499–16506, doi:10.1073/pnas.162371499, PMID 12169664, PMC 139914 (freier Volltext).
  30. Y. Wang, M. Jorda, P. L. Jones, R. Maleszka, X. Ling, H. M. Robertson, C. A. Mizzen, M. A. Peinado, G. E. Robinson: Functional CpG methylation system in a social insect. In: Science. Band 314, Nummer 5799, Oktober 2006, S. 645–647, doi:10.1126/science.1135213, PMID 17068262.
  31. Y. Wang, H. Li-Byarlay "Physiological and Molecular Mechanisms of Nutrition in Honey Bees" In: "Advances in Insect Physiology" Band 49, Kapitel 2, August 2015, S. 25–85, {{DOI:10.1016/bs.aiip.2015.06.002}}.
  32. H. Li-Byarlay, Y. Li, H. Stroud, S. Feng, T. C. Newman, M. Kaneda, K. K. Hou, K. C. Worley, C. G. Elsik, S. A. Wickline, S. E. Jacobsen, J. Ma, G. E. Robinson: RNA interference knockdown of DNA methyl-transferase 3 affects gene alternative splicing in the honey bee. In: Proceedings of the National Academy of Sciences of the United States of America. Band 110, Nummer 31, Juli 2013, S. 12750–12755, doi:10.1073/pnas.1310735110, PMID 23852726, PMC 3732956 (freier Volltext).
  33. S. S. Smith, C. A. Thomas: The two-dimensional restriction analysis of Drosophila DNAs: males and females. In: Gene. Band 13, Nummer 4, Mai 1981, S. 395–408, PMID 6266924.
  34. F. Lyko, B. H. Ramsahoye, R. Jaenisch: DNA methylation in Drosophila melanogaster. In: Nature. Band 408, Nummer 6812, November 2000, S. 538–540, doi:10.1038/35046205, PMID 11117732.
  35. S. Takayama, J. Dhahbi, A. Roberts, G. Mao, S. J. Heo, L. Pachter, D. I. Martin, D. Boffelli: Genome methylation in D. melanogaster is found at specific short motifs and is independent of DNMT2 activity. In: Genome research. Band 24, Nummer 5, Mai 2014, S. 821–830, doi:10.1101/gr.162412.113, PMID 24558263, PMC 4009611 (freier Volltext).
  36. G. Zhang, H. Huang, D. Liu, Y. Cheng, X. Liu, W. Zhang, R. Yin, D. Zhang, P. Zhang, J. Liu, C. Li, B. Liu, Y. Luo, Y. Zhu, N. Zhang, S. He, C. He, H. Wang, D. Chen: N6-methyladenine DNA modification in Drosophila. In: Cell. Band 161, Nummer 4, Mai 2015, S. 893–906, doi:10.1016/j.cell.2015.04.018, PMID 25936838.
  37. F. Antequera, M. Tamame, J. R. Villanueva, T. Santos: DNA methylation in the fungi. In: The Journal of biological chemistry. Band 259, Nummer 13, Juli 1984, S. 8033–8036, PMID 6330093.
  38. Thomas Binz, Nisha D'Mello, Paul A. Horgen: A Comparison of DNA Methylation Levels in Selected Isolates of Higher Fungi. In: Mycologia. 90, 1998, S. 785, doi:10.2307/3761319.
  39. S. Y. Liu, J. Q. Lin, H. L. Wu, C. C. Wang, S. J. Huang, Y. F. Luo, J. H. Sun, J. X. Zhou, S. J. Yan, J. G. He, J. Wang, Z. M. He: Bisulfite sequencing reveals that Aspergillus flavus holds a hollow in DNA methylation. In: PloS one. Band 7, Nummer 1, 2012, S. e30349, doi:10.1371/journal.pone.0030349, PMID 22276181, PMC 3262820 (freier Volltext).
  40. E. U. Selker, N. A. Tountas, S. H. Cross, B. S. Margolin, J. G. Murphy, A. P. Bird, M. Freitag: The methylated component of the Neurospora crassa genome. In: Nature. Band 422, Nummer 6934, April 2003, S. 893–897, doi:10.1038/nature01564, PMID 12712205.
  41. S. S. Smith, D. I. Ratner: Lack of 5-methylcytosine in Dictyostelium discoideum DNA. In: The Biochemical journal. Band 277 ( Pt 1), Juli 1991, S. 273–275, PMID 1713034, PMC 1151219 (freier Volltext).
  42. J.L. Steenwyk, St-Denis, J., Dresch, J., Larochelle, D., Drewell, R.A. (2017). "Whole genome bisulfite sequencing reveals a sparse, but robust pattern of DNA methylation in the Dictyostelium discoideum genome". bioRxiv 166033. doi:10.1101/166033.
  43. J. G. Reilly, R. Braun, C. A. Thomas: Methjylation in Physarum DNA. In: FEBS letters. Band 116, Nummer 2, Juli 1980, S. 181–184, PMID 6250882.
  44. H. H. Evans, T. E. Evans: Methylation of the deoxyribonucleic acid of Physarum polycephalum at various periods during the mitotic cycle. In: The Journal of biological chemistry. Band 245, Nummer 23, Dezember 1970, S. 6436–6441, PMID 5530731.
  45. a b A. Jeltsch: Beyond Watson and Crick: DNA methylation and molecular enzymology of DNA methyltransferases. In: ChemBioChem Bd. 3, 2002, Nr. 4, S. 274–293, PMID 11933228.
  46. A. Jeltsch: Molecular enzymology of mammalian DNA methyltransferases. In: Curr Top Microbiol Immunol. Bd. 301, 2006, S. 203–225, PMID 16570849.
  47. S. Seisenberger, J. R. Peat, T. A. Hore, F. Santos, W. Dean, W. Reik: Reprogramming DNA methylation in the mammalian life cycle: building and breaking epigenetic barriers. In: Philosophical transactions of the Royal Society of London. Series B, Biological sciences. Band 368, Nummer 1609, Januar 2013, S. 20110330, doi:10.1098/rstb.2011.0330. PMID 23166394. PMC 3539359 (freier Volltext).
  48. N. Cervoni et al.: DNA demethylase is a processive enzyme. In: J. Biol. Chem. Bd. 274, 1999, Nr. 13, S. 8363–8366, PMID 10085064, PDF (freier Volltextzugriff, engl).
  49. H. Heyn, N. Li u. a.: Distinct DNA methylomes of newborns and centenarians. In: Proceedings of the National Academy of Sciences of the United States of America. Band 109, Nummer 26, Juni 2012, S. 10522–10527. doi:10.1073/pnas.1120658109. PMID 22689993.
  50. A. A. Johnson, K. Akman, S. R. Calimport, D. Wuttke, A. Stolzing, J. P. de Magalhães: The role of DNA methylation in aging, rejuvenation, and age-related disease. In: Rejuvenation research. Band 15, Nummer 5, Oktober 2012, S. 483–494, doi:10.1089/rej.2012.1324. PMID 23098078. PMC 3482848 (freier Volltext).
  51. J. A. Hackett, M. A. Surani: DNA methylation dynamics during the mammalian life cycle. In: Philosophical transactions of the Royal Society of London. Series B, Biological sciences. Band 368, Nummer 1609, Januar 2013, S. 20110328, doi:10.1098/rstb.2011.0328. PMID 23166392. PMC 3539357 (freier Volltext).
  52. M. Berdasco, M. Esteller: DNA methylation in stem cell renewal and multipotency. In: Stem cell research & therapy. Band 2, Nummer 5, 2011, S. 42, doi:10.1186/scrt83. PMID 22041459. PMC 3308039 (freier Volltext).
  53. Keh-Yang Wang, Chun-Chang Chen, Shih-Feng Tsai, Che-Kun James Shen: Epigenetic Enhancement of the Post-replicative DNA Mismatch Repair of Mammalian Genomes by a Hemi-mCpG-Np95-Dnmt1 Axis. In: Scientific Reports. 6, 2016, S. 37490, doi:10.1038/srep37490. PMC 5122852 (freier Volltext). PMID 27886214.
  54. E. Daura-Oller, M. Cabre, M. A. Montero, J. L. Paternain, A. Romeu: Specific gene hypomethylation and cancer: new insights into coding region feature trends. In: Bioinformation. 3. Jahrgang, Nr. 8, 2009, S. 340–343, PMID 19707296, PMC 2720671 (freier Volltext).
  55. R. L. Momparler, V. Bovenzi: DNA methylation and cancer. In: J. Cell Physiol. Bd. 183, 2000, Nr. 2, S. 145–154, PMID 10737890.
  56. P. V. Wijermans et al.: An epigenetic approach to the treatment of advanced MDS; the experience with the DNA demethylating agent 5-aza-2'-deoxycytidine (decitabine) in 177 patients. In: Ann. Hematol. Bd. 84, 2005, Nr. l, S. 9–17, PMID 16211386, doi:10.1007/s00277-005-0012-1.
  57. Dacogen-Freigabe durch die FDA.