1,3-Butadien
Strukturformel | ||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
![]() | ||||||||||||||||
Allgemeines | ||||||||||||||||
Name | 1,3-Butadien | |||||||||||||||
Andere Namen |
| |||||||||||||||
Summenformel | C4H6 | |||||||||||||||
Kurzbeschreibung |
farbloses Gas mit aromatischem Geruch[1] | |||||||||||||||
Externe Identifikatoren/Datenbanken | ||||||||||||||||
| ||||||||||||||||
Eigenschaften | ||||||||||||||||
Molare Masse | 54,09 g·mol−1 | |||||||||||||||
Aggregatzustand |
gasförmig | |||||||||||||||
Dichte |
2,4982 kg·m−3 (0 °C)[1] | |||||||||||||||
Schmelzpunkt |
−108,92 °C[1] | |||||||||||||||
Siedepunkt |
−4,5 °C[1] | |||||||||||||||
Dampfdruck | ||||||||||||||||
Löslichkeit |
wenig löslich in Wasser (1,03 g·l−1 bei 20 °C)[1] | |||||||||||||||
Brechungsindex |
1,4292 (−25 °C)[2] | |||||||||||||||
Sicherheitshinweise | ||||||||||||||||
| ||||||||||||||||
MAK |
Schweiz: 5 ml·m−3 bzw. 11 mg·m−3[4] | |||||||||||||||
Thermodynamische Eigenschaften | ||||||||||||||||
ΔHf0 |
110,0 kJ/mol[5] | |||||||||||||||
Soweit möglich und gebräuchlich, werden SI-Einheiten verwendet. Wenn nicht anders vermerkt, gelten die angegebenen Daten bei Standardbedingungen. Brechungsindex: Na-D-Linie, 20 °C |
1,3-Butadien [-butaˈdi̯eːn] (Vinylethylen) ist ein farbloses Gas mit mildem, aromatischen Geruch. Es ist ein ungesättigter Kohlenwasserstoff von großer industrieller Bedeutung. Daneben existiert noch das schwieriger herzustellende und industriell weit weniger bedeutende 1,2-Butadien.
2-Methyl-1,3-butadien oder Isopren, die Grundeinheit der Terpene, ist ein Derivat des Butadiens.
Inhaltsverzeichnis
Herstellung[Bearbeiten | Quelltext bearbeiten]
Butadien wird technisch in erheblichen Mengen durch Wasserstoffabspaltung aus gesättigten Kohlenwasserstoffen durch starkes Erhitzen (Cracken) hergestellt. Im Labor wird der Zerfall von 3-Sulfolen in siedendem Xylol in einer [4+1]-Cycloeliminierung zu 1,3-Butadien und Schwefeldioxid verwendet.[6]
Eigenschaften[Bearbeiten | Quelltext bearbeiten]
Die Geruchsschwelle von Butadien liegt bei 4 mg/m³. Das Gas lässt sich leicht verflüssigen. Butadien ist schwerer als Luft und in Wasser – mit 1,03 g/l bei 20 °C – nur sehr gering löslich.
Butadien ist brennbar und polymerisiert leicht, weswegen ihm meist ein Stabilisator wie das 4-tert-Butylbrenzcatechin (TBC) beigefügt wird. Die Polymerisationswärme beträgt −73 kJ·mol−1 bzw. −1350 kJ·kg−1.[7]
Konjugierte Doppelbindungen beim 1,3-Butadien[Bearbeiten | Quelltext bearbeiten]
Konjugierte π-Bindung |
![]() Delokalisiertes Molekülorbital bei 1,3-Butadien |
Im planar gebauten Molekül sind alle vier Kohlenstoffatome sp2-hybridisiert. Die π-Orbitale überlappen sich ober- und unterhalb der Molekülebene. π-Bindungen entstehen durch Überlappung bei dem 1. und 2. Kohlenstoffatom sowie dem 3. und 4. Kohlenstoffatom. Zusätzlich können aber die Orbitale des 2. und des 3. Kohlenstoffatoms überlappen, so dass sich die π-Elektronen über das ganze Molekül ausbreiten können. Die Elektronen sind delokalisiert. Dadurch, dass sich Elektronen auf einem größeren Raum verteilen, wird im 1,3-Butadien eine erhöhte Stabilität beobachtet. Der Einfluss dieser konjugierten Doppelbindungen zeigt sich bei Additionsreaktionen von Butadien: Es können sich 1,2- und 1,4-Addukte bilden. Im letzten Fall bildet sich zwischen dem 2. und dem 3. Atom eine „neue“ Doppelbindung. Analog verlaufen Polyadditionsreaktionen von Butadien, die zu 1,2-Polybutadien oder 1,4-Polybutadien führen, siehe Butadien-Kautschuk. Das Verhältnis von 1,4- zu 1,2-Verknüpfung hängt stark von der Polymerisationsmethode und den Reaktionsbedingungen ab.
Verwendung[Bearbeiten | Quelltext bearbeiten]
Mehr als 90 Prozent der Produktion von Butadien wird zu Synthesekautschuk weiterverarbeitet. Eine weitere Anwendung ist ABS, ein Terpolymerisat aus Acrylnitril, Butadien und Styrol. Außerdem wird aus Butadien und Blausäure in technischem Maßstab Adiponitril hergestellt, das ein Zwischenprodukt in der Produktion von Polyamiden ist. Aus Butadien werden Hydroxyl-terminierte Polybutadiene (HTPB) hergestellt, die als Treibstoff in Feststoffraketentriebwerken eingesetzt werden. Cyclobuten kann durch photochemische Cyclisierung von 1,3-Butadien erhalten werden:[8]
Diese Methode verläuft allerdings nur mit 30%iger Ausbeute ab.[9]
Historisches[Bearbeiten | Quelltext bearbeiten]
Das aus Butadien und dem Katalysator Natrium produzierte Polymer Buna (ButadienNatrium) hatte große Bedeutung für die deutsche Rüstungs- und Kriegswirtschaft vor und während des Zweiten Weltkrieges.
Sicherheitshinweise[Bearbeiten | Quelltext bearbeiten]
Butadien ist hochentzündlich. Zwischen einem Luftvolumenanteil von 1,4 bis 16,3 Prozent bildet es explosive Gemische. Butadien wirkt narkotisierend. Beim Menschen wirkt 1,3-Butadien krebserregend.[10] Bei Industriearbeitern, die über längere Zeit einer Exposition mit 1,3-Butadien ausgesetzt waren, wurde eine erhöhte Anzahl an Krebserkrankungen festgestellt. Dabei handelte es sich vor allem um lympho-hämatopoetische Malignome (maligne Lymphome und Leukämien).[11] Die Auswirkungen von 1,3-Butadien auf menschliche Gesundheit und Umwelt werden unter REACH im Jahr 2014 im Rahmen der Stoffbewertung von Deutschland geprüft.[12]
Berufskrankheit[Bearbeiten | Quelltext bearbeiten]
Seit August 2017 können bestimmte Erkrankungen durch 1,3-Butadien in Deutschland auf Antrag als Berufskrankheit anerkannt werden (Nummer 1320 der Anlage 1 zur Berufskrankheiten-Verordnung – BKV). Das gilt auch für solche Erkrankungen, die vor diesem Termin eingetreten sind (§ 6 Abs. 1 BKV).
Literatur[Bearbeiten | Quelltext bearbeiten]
- J. Grub, E. Löser: Butadiene. In: Ullmanns Enzyklopädie der Technischen Chemie. Wiley-VCH Verlag, Weinheim 2012; doi:10.1002/14356007.a04_431.pub2.
Einzelnachweise[Bearbeiten | Quelltext bearbeiten]
- ↑ a b c d e f g h Eintrag zu Butadien in der GESTIS-Stoffdatenbank des IFA, abgerufen am 1. Februar 2016 (JavaScript erforderlich).
- ↑ David R. Lide (Hrsg.): CRC Handbook of Chemistry and Physics. 90. Auflage. (Internet-Version: 2010), CRC Press/Taylor and Francis, Boca Raton, FL, Physical Constants of Organic Compounds, S. 3-72.
- ↑ Eintrag zu Buta-1,3-diene im Classification and Labelling Inventory der Europäischen Chemikalienagentur (ECHA), abgerufen am 1. Februar 2016. Hersteller bzw. Inverkehrbringer können die harmonisierte Einstufung und Kennzeichnung erweitern.
- ↑ Schweizerische Unfallversicherungsanstalt (SUVA): Grenzwerte am Arbeitsplatz 2015 – MAK-Werte, BAT-Werte, Grenzwerte für physikalische Einwirkungen, abgerufen am 2. November 2015.
- ↑ David R. Lide (Hrsg.): CRC Handbook of Chemistry and Physics. 90. Auflage. (Internet-Version: 2010), CRC Press/Taylor and Francis, Boca Raton, FL, Standard Thermodynamic Properties of Chemical Substances, S. 5-25.
- ↑ Siegfried Hauptmann: Reaktion und Mechanismus in der organischen Chemie, B. G. Teubner, Stuttgart 1991, ISBN 3-519-03515-4, S. 131.
- ↑ Berufsgenossenschaft Rohstoffe und chemische Industrie, Merkblatt R 008 Polyreaktionen und polymerisationsfähige Systeme, Ausgabe 05/2015, ISBN 978-3-86825-069-5.
- ↑ Waldemar Adam, Thomas Oppenlaender, Gerald Zang: The 185-nm photochemistry of cyclobutene and bicyclo[1.1.0]butane. In: Journal of the American Chemical Society. 107, 1985, S. 3921–3924, doi:10.1021/ja00299a028.
- ↑ Albert Gossauer: Struktur und Reaktivität der Biomoleküle, Verlag Helvetica Chimica Acta, Zürich 2006, ISBN 978-3-906390-29-1, S. 143.
- ↑ Butadienkapitel (PDF; 829 kB) der IARC-Monographie 97 aus dem Jahr 2008, Link abgerufen am 14. Februar 2012.
- ↑ 1,3-BUTADIENE – Risk Assessment Report. (PDF; 4,5 MB) European Commission, Joint Research Centre, Institute for Health and Consumer Protection, European Chemicals Bureau, 2002.
- ↑ Community rolling action plan (CoRAP) der Europäischen Chemikalienagentur (ECHA): Buta-1,3-diene, abgerufen am 31. Oktober 2017.