Fermat-Zahl
Eine Fermat-Zahl, benannt nach dem französischen Mathematiker Pierre de Fermat, ist eine Zahl der Form
mit einer ganzen Zahl .
Inhaltsverzeichnis
Fermat-Zahlen[Bearbeiten | Quelltext bearbeiten]
Die ersten Fermat-Zahlen lauten und .[1]
Eine etwas längere Liste bis findet man in der folgenden aufklappbaren Box.
n | Dezimal- stellen von Fn |
Fn |
---|---|---|
0 | 1 | 3 |
1 | 1 | 5 |
2 | 2 | 17 |
3 | 3 | 257 |
4 | 5 | 65.537 |
5 | 10 | 4.294.967.297 |
6 | 20 | 18.446.744.073.709.551.617 |
7 | 39 | 340.282.366.920.938.463.463.374.607.431.768.211.457 |
8 | 78 | 115.792.089.237.316.195.423.570.985.008.687.907.853.269.984.665.640.564.039.457.584.007.913.129.639.937 |
9 | 155 | 13.407.807.929.942.597.099.574.024.998.205.846.127.479.365.820.592.393.377.723.561.443.721.764.030.073.546.976.801.874.298.166.903.427.690.031.858.186.486.050.853.753.882.811.946.569.946.433.649.006.084.097 |
10 | 309 | 179.769.313.486.231.590.772.930.519.078.902.473.361.797.697.894.230.657.273.430.081.157.732.675.805.500.963.132.708.477.322.407.536.021.120.113.879.871.393.357.658.789.768.814.416.622.492.847.430.639.474.124.377.767.893.424.865.485.276.302.219.601.246.094.119.453.082.952.085.005.768.838.150.682.342.462.881.473.913.110.540.827.237.163.350.510.684.586.298.239.947.245.938.479.716.304.835.356.329.624.224.137.217 |
11 | 617 | 32.317.006.071.311.007.300.714.876.688.669.951.960.444.102.669.715.484.032.130.345.427.524.655.138.867.890.893.197.201.411.522.913.463.688.717.960.921.898.019.494.119.559.150.490.921.095.088.152.386.448.283.120.630.877.367.300.996.091.750.197.750.389.652.106.796.057.638.384.067.568.276.792.218.642.619.756.161.838.094.338.476.170.470.581.645.852.036.305.042.887.575.891.541.065.808.607.552.399.123.930.385.521.914.333.389.668.342.420.684.974.786.564.569.494.856.176.035.326.322.058.077.805.659.331.026.192.708.460.314.150.258.592.864.177.116.725.943.603.718.461.857.357.598.351.152.301.645.904.403.697.613.233.287.231.227.125.684.710.820.209.725.157.101.726.931.323.469.678.542.580.656.697.935.045.997.268.352.998.638.215.525.166.389.437.335.543.602.135.433.229.604.645.318.478.604.952.148.193.555.853.611.059.596.230.657 |
12 | 1234 | 1.044.388.881.413.152.506.691.752.710.716.624.382.579.964.249.047.383.780.384.233.483.283.953.907.971.557.456.848.826.811.934.997.558.340.890.106.714.439.262.837.987.573.438.185.793.607.263.236.087.851.365.277.945.956.976.543.709.998.340.361.590.134.383.718.314.428.070.011.855.946.226.376.318.839.397.712.745.672.334.684.344.586.617.496.807.908.705.803.704.071.284.048.740.118.609.114.467.977.783.598.029.006.686.938.976.881.787.785.946.905.630.190.260.940.599.579.453.432.823.469.303.026.696.443.059.025.015.972.399.867.714.215.541.693.835.559.885.291.486.318.237.914.434.496.734.087.811.872.639.496.475.100.189.041.349.008.417.061.675.093.668.333.850.551.032.972.088.269.550.769.983.616.369.411.933.015.213.796.825.837.188.091.833.656.751.221.318.492.846.368.125.550.225.998.300.412.344.784.862.595.674.492.194.617.023.806.505.913.245.610.825.731.835.380.087.608.622.102.834.270.197.698.202.313.169.017.678.006.675.195.485.079.921.636.419.370.285.375.124.784.014.907.159.135.459.982.790.513.399.611.551.794.271.106.831.134.090.584.272.884.279.791.554.849.782.954.323.534.517.065.223.269.061.394.905.987.693.002.122.963.395.687.782.878.948.440.616.007.412.945.674.919.823.050.571.642.377.154.816.321.380.631.045.902.916.136.926.708.342.856.440.730.447.899.971.901.781.465.763.473.223.850.267.253.059.899.795.996.090.799.469.201.774.624.817.718.449.867.455.659.250.178.329.070.473.119.433.165.550.807.568.221.846.571.746.373.296.884.912.819.520.317.457.002.440.926.616.910.874.148.385.078.411.929.804.522.981.857.338.977.648.103.126.085.903.001.302.413.467.189.726.673.216.491.511.131.602.920.781.738.033.436.090.243.804.708.340.403.154.190.337 |
13 | 2467 | 1.090.748.135.619.415.929.462.984.244.733.782.862.448.264.161.996.232.692.431.832.786.189.721.331.849.119.295.216.264.234.525.201.987.223.957.291.796.157.025.273.109.870.820.177.184.063.610.979.765.077.554.799.078.906.298.842.192.989.538.609.825.228.048.205.159.696.851.613.591.638.196.771.886.542.609.324.560.121.290.553.901.886.301.017.900.252.535.799.917.200.010.079.600.026.535.836.800.905.297.805.880.952.350.501.630.195.475.653.911.005.312.364.560.014.847.426.035.293.551.245.843.928.918.752.768.696.279.344.088.055.617.515.694.349.945.406.677.825.140.814.900.616.105.920.256.438.504.578.013.326.493.565.836.047.242.407.382.442.812.245.131.517.757.519.164.899.226.365.743.722.432.277.368.075.027.627.883.045.206.501.792.761.700.945.699.168.497.257.879.683.851.737.049.996.900.961.120.515.655.050.115.561.271.491.492.515.342.105.748.966.629.547.032.786.321.505.730.828.430.221.664.970.324.396.138.635.251.626.409.516.168.005.427.623.435.996.308.921.691.446.181.187.406.395.310.665.404.885.739.434.832.877.428.167.407.495.370.993.511.868.756.359.970.390.117.021.823.616.749.458.620.969.857.006.263.612.082.706.715.408.157.066.575.137.281.027.022.310.927.564.910.276.759.160.520.878.304.632.411.049.364.568.754.920.967.322.982.459.184.763.427.383.790.272.448.438.018.526.977.764.941.072.715.611.580.434.690.827.459.339.991.961.414.242.741.410.599.117.426.060.556.483.763.756.314.527.611.362.658.628.383.368.621.157.993.638.020.878.537.675.545.336.789.915.694.234.433.955.666.315.070.087.213.535.470.255.670.312.004.130.725.495.834.508.357.439.653.828.936.077.080.978.550.578.912.967.907.352.780.054.935.621.561.090.795.845.172.954.115.972.927.479.877.527.738.560.008.204.118.558.930.004.777.748.727.761.853.813.510.493.840.581.861.598.652.211.605.960.308.356.405.941.821.189.714.037.868.726.219.481.498.727.603.653.616.298.856.174.822.413.033.485.438.785.324.024.751.419.417.183.012.281.078.209.729.303.537.372.804.574.372.095.228.703.622.776.363.945.290.869.806.258.422.355.148.507.571.039.619.387.449.629.866.808.188.769.662.815.778.153.079.393.179.093.143.648.340.761.738.581.819.563.002.994.422.790.754.955.061.288.818.308.430.079.648.693.232.179.158.765.918.035.565.216.157.115.402.992.120.276.155.607.873.107.937.477.466.841.528.362.987.708.699.450.152.031.231.862.594.203.085.693.838.944.657.061.346.236.704.234.026.821.102.958.954.951.197.087.076.546.186.622.796.294.536.451.620.756.509.351.018.906.023.773.821.539.532.776.208.676.978.589.731.966.330.308.893.304.665.169.436.185.078.350.641.568.336.944.530.051.437.491.311.298.834.367.265.238.595.404.904.273.455.928.723.949.525.227.184.617.404.367.854.754.610.474.377.019.768.025.576.605.881.038.077.270.707.717.942.221.977.090.385.438.585.844.095.492.116.099.852.538.903.974.655.703.943.973.086.090.930.596.963.360.767.529.964.938.414.598.185.705.963.754.561.497.355.827.813.623.833.288.906.309.004.288.017.321.424.808.663.962.671.333.528.009.232.758.350.873.059.614.118.723.781.422.101.460.198.615.747.386.855.096.896.089.189.180.441.339.558.524.822.867.541.113.212.638.793.675.567.650.340.362.970.031.930.023.397.828.465.318.547.238.244.232.028.015.189.689.660.418.822.976.000.815.437.610.652.254.270.163.595.650.875.433.851.147.123.214.227.266.605.403.581.781.469.090.806.576.468.950.587.661.997.186.505.665.475.715.792.897 |
14 | 4933 | 1.189.731.495.357.231.765.085.759.326.628.007.130.763.444.687.096.510.237.472.674.821.233.261.358.180.483.686.904.488.595.472.612.039.915.115.437.484.839.309.258.897.667.381.308.687.426.274.524.698.341.565.006.080.871.634.366.004.897.522.143.251.619.531.446.845.952.345.709.482.135.847.036.647.464.830.984.784.714.280.967.845.614.138.476.044.338.404.886.122.905.286.855.313.236.158.695.999.885.790.106.357.018.120.815.363.320.780.964.323.712.757.164.290.613.406.875.202.417.365.323.950.267.880.089.067.517.372.270.610.835.647.545.755.780.793.431.622.213.451.903.817.859.630.690.311.343.850.657.539.360.649.645.193.283.178.291.767.658.965.405.285.113.556.134.369.793.281.725.888.015.908.414.675.289.832.538.063.419.234.888.599.898.980.623.114.025.121.674.472.051.872.439.321.323.198.402.942.705.341.366.951.274.739.014.593.816.898.288.994.445.173.400.364.617.928.377.138.074.411.345.791.848.573.595.077.170.437.644.191.743.889.644.885.377.684.738.322.240.608.239.079.061.399.475.675.334.739.784.016.491.742.621.485.229.014.847.672.335.977.897.158.397.334.226.349.734.811.441.653.077.758.250.988.926.030.894.789.604.676.153.104.257.260.141.806.823.027.588.003.441.951.455.327.701.598.071.281.589.597.169.413.965.608.439.504.983.171.255.062.282.026.626.200.048.042.149.808.200.002.060.993.433.681.237.623.857.880.627.479.727.072.877.482.838.438.705.048.034.164.633.337.013.385.405.998.040.701.908.662.387.301.605.018.188.262.573.723.766.279.240.798.931.717.708.807.901.740.265.407.930.976.419.648.877.869.604.017.517.691.938.687.988.088.008.944.251.258.826.969.688.364.194.133.945.780.157.844.364.946.052.713.655.454.906.327.187.428.531.895.100.278.695.119.323.496.808.703.630.436.193.927.592.692.344.820.812.834.297.364.478.686.862.064.169.042.458.555.136.532.055.050.508.189.891.866.846.863.799.917.647.547.291.371.573.500.701.015.197.559.097.453.040.033.031.520.683.518.216.494.195.636.696.077.748.110.598.284.901.343.611.469.214.274.121.810.495.077.979.275.556.645.164.983.850.062.051.066.517.084.647.369.464.036.640.569.339.464.837.172.183.352.956.873.912.042.640.003.611.618.789.278.195.710.052.094.562.761.306.703.551.840.330.110.645.101.995.435.167.626.688.669.627.763.820.604.342.480.357.906.415.354.212.732.946.756.073.006.907.088.870.496.125.050.068.156.659.252.761.297.664.065.498.347.492.661.798.824.062.312.210.409.274.584.565.587.264.846.417.650.160.123.175.874.034.726.261.957.289.081.466.197.651.553.830.744.424.709.698.634.753.627.770.356.227.126.145.052.549.125.229.448.040.149.114.795.681.359.875.968.512.808.575.244.271.871.455.454.084.894.986.155.020.794.806.980.939.215.658.055.319.165.641.681.105.966.454.159.951.476.908.583.129.721.503.298.816.585.142.073.061.480.888.021.769.818.338.417.129.396.878.371.459.575.846.052.583.142.928.447.249.703.698.548.125.295.775.920.936.450.022.651.427.249.949.580.708.203.966.082.847.550.921.891.152.133.321.048.011.973.883.636.577.825.533.325.988.852.156.325.439.335.021.315.312.134.081.390.451.021.255.363.707.903.495.916.963.125.924.201.167.877.190.108.935.255.914.539.488.216.897.117.943.269.373.608.639.074.472.792.751.116.715.127.106.396.425.081.353.553.137.213.552.890.539.802.602.978.645.319.795.100.976.432.939.091.924.660.228.878.912.900.654.210.118.287.298.298.707.382.159.717.184.569.540.515.403.029.173.307.292.454.391.789.568.674.219.640.761.451.173.600.617.752.186.991.913.366.837.033.887.201.582.071.625.868.247.133.104.513.315.097.274.713.442.728.340.606.642.890.406.496.636.104.443.217.752.811.227.470.029.162.858.093.727.701.049.646.499.540.220.983.981.932.786.613.204.254.226.464.243.689.610.107.429.923.197.638.681.545.837.561.773.535.568.984.536.053.627.234.424.277.105.760.924.864.023.781.629.665.526.314.910.906.960.488.073.475.217.005.121.136.311.870.439.925.762.508.666.032.566.213.750.416.695.719.919.674.223.210.606.724.721.373.471.234.021.613.540.712.188.239.909.701.971.943.944.347.480.314.217.903.886.317.767.779.921.539.892.177.334.344.368.907.550.318.800.833.546.852.344.370.327.089.284.147.501.640.589.448.482.001.254.237.386.680.074.457.341.910.933.774.891.959.681.016.516.069.106.149.905.572.425.810.895.586.938.833.067.490.204.900.368.624.166.301.968.553.005.687.040.285.095.450.484.840.073.528.643.826.570.403.767.157.286.512.380.255.109.954.518.857.013.476.588.189.300.004.138.849.715.883.139.866.071.547.574.816.476.727.635.116.435.462.804.401.112.711.392.529.180.570.794.193.422.686.818.353.212.799.068.972.247.697.191.474.268.157.912.195.973.794.192.807.298.886.952.361.100.880.264.258.801.320.928.040.011.928.153.970.801.130.741.339.550.003.299.015.924.978.259.936.974.358.726.286.143.980.520.112.454.369.271.114.083.747.919.007.803.406.596.321.353.417.004.068.869.443.405.472.140.675.963.640.997.405.009.225.803.505.672.726.465.095.506.267.339.268.892.424.364.561.897.661.906.898.424.186.770.491.035.344.080.399.248.327.097.911.712.881.140.170.384.182.058.601.614.758.284.200.750.183.500.329.358.499.691.864.066.590.539.660.709.069.537.381.601.887.679.046.657.759.654.588.001.937.117.771.344.698.326.428.792.622.894.338.016.112.445.533.539.447.087.462.049.763.409.147.542.099.248.815.521.395.929.388.007.711.172.017.894.897.793.706.604.273.480.985.161.028.815.458.787.911.160.979.113.422.433.557.549.170.905.442.026.397.275.695.283.207.305.331.845.419.990.749.347.810.524.006.194.197.200.591.652.147.867.193.696.254.337.864.981.603.833.146.354.201.700.628.817.947.177.518.115.217.674.352.016.511.172.347.727.727.075.220.056.177.748.218.928.597.158.346.744.541.337.107.358.427.757.919.660.562.583.883.823.262.178.961.691.787.226.118.865.632.764.934.288.772.405.859.754.877.759.869.235.530.653.929.937.901.193.611.669.007.472.354.746.360.764.601.872.442.031.379.944.139.824.366.828.698.790.212.922.996.174.192.728.625.891.720.057.612.509.349.100.482.545.964.152.046.477.925.114.446.500.732.164.109.099.345.259.799.455.690.095.576.788.686.397.487.061.948.854.749.024.863.607.921.857.834.205.793.797.188.834.779.656.273.479.112.388.585.706.424.836.379.072.355.410.286.787.018.527.401.653.934.219.888.361.061.949.671.961.055.068.686.961.468.019.035.629.749.424.086.587.195.041.004.404.915.266.476.272.761.070.511.568.387.063.401.264.136.517.237.211.409.916.458.796.347.624.949.215.904.533.937.210.937.520.465.798.300.175.408.017.538.862.312.719.042.361.037.129.338.896.586.028.150.046.596.078.872.444.365.564.480.545.689.033.575.955.702.988.396.719.744.528.212.984.142.578.483.954.005.084.264.327.730.840.985.420.021.409.069.485.412.320.805.268.520.094.146.798.876.110.414.583.170.390.473.982.488.899.228.091.818.213.934.288.295.679.717.369.943.152.460.447.027.290.669.964.066.817 |
Wegen hat die Fermatzahl ungefähr doppelt so viele Stellen wie ihre Vorgängerin .
Fermatsche Primzahlen[Bearbeiten | Quelltext bearbeiten]
Die Idee hinter Fermatschen Primzahlen ist der Satz, dass nur für mit prim sein kann:
Beweis durch Widerspruch: Man führt die Annahme, dass das zu Beweisende falsch sei, zu einem Widerspruch.
- Annahme: ist prim und die Hochzahl hat einen ungeraden Teiler .
- Dann gilt
- mit einer ganzen Zahl . Nach Annahme ist ungerade, also ist diese Summe bekanntlich durch die Summe der beiden Basen teilbar:
- Weil die Zahl prim ist, muss ihr Teiler gleich 1 oder gleich sein. Aber in Widerspruch dazu ist (wegen ) größer als 1 und (wegen ) kleiner als . Die Annahme, dass prim ist und einen ungeraden Teiler hat, muss daher fallengelassen werden: kann nur prim sein, wenn eine Zweierpotenz mit ist, was zu zeigen war.
Die Umkehrung dieses Satzes, dass also jede Fermat-Zahl prim sei, ist falsch. bis sind sogar die einzigen bisher bekannten Fermatschen Primzahlen:
Schon Fermat zeigte, dass diese ersten fünf Fermat-Zahlen Primzahlen sind, und vermutete 1637, dass dies auf alle Fermat-Zahlen zutreffe. Diese Vermutung wurde aber schon 1732 von Leonhard Euler einfach widerlegt, indem er mit 641 einen echten Teiler von F5 = 4.294.967.297 fand.[2]
Man vermutet inzwischen, dass außer den ersten fünf keine weiteren Fermatschen Primzahlen existieren. Diese Vermutung beruht auf statistischen Abschätzungen: Der Primzahlsatz besagt, dass die Anzahl der Primzahlen, die nicht größer als x sind, näherungsweise gleich x / ln x ist. Die Primzahldichte oder Wahrscheinlichkeit dafür, dass Fn als ungerade Zahl eine Primzahl ist, beträgt daher näherungsweise 2 / ln Fn ≈ 3/2n. Die Wahrscheinlichkeit, dass die Fermatzahl Fn oder eine der folgenden Fermatzahlen eine Primzahl ist, ergibt sich durch Summation der geometrische Reihe ungefähr zu 6/2n.
Für verbliebene weder teilweise noch vollständig faktorisierte Fermat-Zahlen ist diese Wahrscheinlichkeit mit etwa 6 · 10−10 mittlerweile aber sehr klein geworden.
Faktorisierungsergebnisse von Fermat-Zahlen[Bearbeiten | Quelltext bearbeiten]
Die Zahlen F0 bis F4 sind, wie schon Fermat erkannt hat, Primzahlen:
n | Fermat-Primzahl Fn |
---|---|
0 | 3 |
1 | 5 |
2 | 17 |
3 | 257 |
4 | 65537 |
Die Zahlen F5 bis F11 sind entgegen der Vermutung Fermats zusammengesetzt. Sie sind bereits vollständig faktorisiert:[3]
n | Entdecker der Faktoren | Primfaktorenzerlegung von Fn |
---|---|---|
5 | Leonhard Euler (1732) | 4.294.967.297 (10 Stellen)
= 641 (3 Stellen) × 6.700.417 (7 Stellen) |
6 | Clausen (1855), Landry & Le Lasseur (1880) |
18.446.744.073.709.551.617 (20 Stellen)
= 274.177 (6 Stellen) × 67.280.421.310.721 (14 Stellen) |
7 | Morrison & Brillhart (1970)[4] | 340.282.366.920.938.463.463.374.607.431.768.211.457 (39 Stellen)
= 59.649.589.127.497.217 (17 Stellen) × 5.704.689.200.685.129.054.721 (22 Stellen) |
8 | Brent & Pollard (1980) | 115.792.089.237.316.195.423.570.985.008.687.907.853.269.984.665.640.564.039.457.584.007.913.129.639.937 (78 Stellen)
= 1.238.926.361.552.897 (16 Stellen) × 93.461.639.715.357.977.769.163.558.199.606.896.584.051.237.541.638.188.580.280.321 (62 Stellen) |
9 | Western (1903), Lenstra & Manasse (1990) |
13.407.807.929.942.597.099.574.024.998.205.846.127.479.365.820.592.393.377.723.561.443.721.764.030.073.546.976.801.874.298.166.903.427.690.031. 858.186.486.050.853.753.882.811.946.569.946.433.649.006.084.097 (155 Stellen) = 2.424.833 (7 Stellen) × 7.455.602.825.647.884.208.337.395.736.200.454.918.783.366.342.657 (49 Stellen) × 741.640.062.627.530.801.524.787.141.901.937.474.059.940.781.097.519.023.905.821.316.144.415.759.504.705.008.092.818.711.693.940.737 (99 Stellen) |
10 | Selfridge (1953), Brillhart (1962), Brent (1995) |
179.769.313.486.231.590.772.930 … 304.835.356.329.624.224.137.217 (309 Stellen)
= 45.592.577 (8 Stellen) × 6.487.031.809 (10 Stellen) × 4.659.775.785.220.018.543.264.560.743.076.778.192.897 (40 Stellen) × 130.439.874.405.488.189.727.484 … 806.217.820.753.127.014.424.577 (252 Stellen) |
11 | Cunningham (1899), Brent & Morain (1988) |
32.317.006.071.311.007.300.714.8 … 193.555.853.611.059.596.230.657 (617 Stellen)
= 319.489 (6 Stellen) × 974.849 (6 Stellen) × 167.988.556.341.760.475.137 (21 Stellen) × 3.560.841.906.445.833.920.513 (22 Stellen) × 173.462.447.179.147.555.430.258 … 491.382.441.723.306.598.834.177 (564 Stellen) |
Ab F12 ist keine Fermat-Zahl mehr vollständig faktorisiert. Die ersten drei lauten:
n | Entdecker der Faktoren | Primfaktorenzerlegung von Fn |
---|---|---|
12 | Lucas & Pervushin (1877), Western (1903), Hallyburton & Brillhart (1974), Baillie (1986), Vang, Zimmermann & Kruppa (2010) |
1.044.388.881.413.152.506.691.752.710.716 … 340.403.154.190.337 (1234 Stellen)
= 114.689 (6 Stellen) × 26.017.793 (8 Stellen) × 63.766.529 (8 Stellen)
× 190.274.191.361 (12 Stellen)
× 1.256.132.134.125.569 (16 Stellen) |
13 | Hallyburton & Brillhart (1974), Crandall (1991), Brent (1995) |
1.090.748.135.619.415.929.462.984.244.733 … 665.475.715.792.897 (2467 Stellen)
= 2.710.954.639.361 (13 Stellen)
× 2.663.848.877.152.141.313 (19 Stellen) |
14 | Rajala & Woltman (2010) | 1.189.731.495.357.231.765.085.759.326.628 … 290.669.964.066.817 (4933 Stellen)
= 116.928.085.873.074.369.829.035.993.834.596.371.340.386.703.423.373.313 (54 Stellen) × zusammengesetzte Zahl (4880 Stellen) |
Von F12 bis F32 und von einigen größeren Fermat-Zahlen ist bekannt, dass sie zusammengesetzt sind – hauptsächlich, weil ein oder mehrere Faktoren gefunden wurden. Von zwei Fermat-Zahlen (F20 und F24) kennt man zwar keinen Faktor, hat aber auf andere Art gezeigt, dass sie zusammengesetzt sind.[5][6]
Für F14 wurde am 3. Februar 2010 ein Faktor veröffentlicht,[7] für F22 am 25. März 2010.[8]
Die kleinste Fermat-Zahl, von der bislang nicht bekannt ist, ob sie prim oder zusammengesetzt ist, ist F33. Diese Zahl hat 2.585.827.973 Stellen.
F3.329.780 ist die größte Fermat-Zahl, von der ein Faktor bekannt ist, nämlich die Primzahl 193 · 23.329.782 + 1. Dieser Faktor wurde am 25. Juli 2014 von Raymond Ottusch mit Computer-Programmen von Geoffrey Reynolds, Jean Penné und Jim Fougeron entdeckt und hat 1.002.367 Stellen. Die Fermat-Zahl F3.329.780 selbst hat allerdings mehr als 4,55997 · 101.002.363 Stellen.
Es gibt keine sinnvolle Methode, sich die Menge an Papier, die man benötigt sie aufzuschreiben – oder gar die Zahl selber – vorzustellen: Selbst mit den hypothetisch kleinsten Teilchen aufgeschrieben, ist das Universum spätestens mit F615 vollgeschrieben und für jeden weiteren Schritt bis F3329780 würde sich der Platz zum Aufschreiben jeweils verdoppeln. Nur hat man mit F615 ja quasi damit noch nicht mal richtig angefangen! Ein wissenschaftlicher Taschenrechner würde eine etwa 5 Kilometer lange Zeile oder alternativ eine 5 Meter mal 10 Meter große Tafel allein für das Anschreiben der Anzahl der Stellen, also von 101002363, als Dezimalzahl benötigen.
Insgesamt weiß man von 299 Fermat-Zahlen, dass sie zusammengesetzt sind. 343 Primfaktoren sind bisher bekannt (Stand: 5. April 2018).[3][9]
Der folgenden Tabelle kann man entnehmen, in welchem Intervall wie viele zusammengesetzte Fermat-Zahlen bekannt sind (Stand: 5. April 2018):
Nachgewiesen keine Primzahl | |||||
---|---|---|---|---|---|
n | bekannt zusammengesetzt |
Anteil | n | bekannt zusammengesetzt |
Anteil |
5 ≤ n ≤ 32 | 28 | 100,0 % | 10001 ≤ n ≤ 50000 | 35 | 0,0875 % |
33 ≤ n ≤ 100 | 31 | 45,6 % | 50001 ≤ n ≤ 100000 | 10 | 0,0200 % |
101 ≤ n ≤ 500 | 59 | 14,8 % | 100001 ≤ n ≤ 500000 | 25 | 0,0063 % |
501 ≤ n ≤ 1000 | 22 | 4,4 % | 500001 ≤ n ≤ 1000000 | 6 | 0,0012 % |
1001 ≤ n ≤ 5000 | 46 | 1,2 % | 1000001 ≤ n ≤ 5000000 | 12 | 0,0003 % |
5001 ≤ n ≤ 10000 | 25 | 0,5 % | 5000001 ≤ n ≤ 10000000 | 0 | 0,0000 % |
TOTAL | 211 | 88 |
Die kleinsten 25 Fermat-Primfaktoren sind die folgenden:
- 3, 5, 17, 257, 641, 65537, 114689, 274177, 319489, 974849, 2424833, 6700417, 13631489, 26017793, 45592577, 63766529, 167772161, 825753601, 1214251009, 6487031809, 70525124609, 190274191361, 646730219521, 2710954639361, 2748779069441, … (Folge A023394 in OEIS)
Um von einer Fermat-Zahl nachzuweisen, dass sie zusammengesetzt ist, benutzt man in der Regel den Pépin-Test und den Suyama-Test, die beide besonders auf diese Zahlen zugeschnitten und sehr schnell sind.
Die folgenden 16 Primfaktoren von Fermat-Zahlen wurden vor 1950 entdeckt.
Jahr | Entdecker | Fermat- Zahl |
Dezimal- stellen von Fn |
Faktor | Dezimal- stellen dieses Faktors |
---|---|---|---|---|---|
1732 | Leonhard Euler | F5 (a) | 10 | 5 · 27 + 1 | 3 |
1732 | Leonhard Euler | F5 (a) | 10 | 52347 · 27 + 1 | 7 |
1855 | Thomas Clausen | F6 (a) | 20 | 1071 · 28 + 1 | 6 |
1855 | Thomas Clausen | F6 (a) | 20 | 262814145745 · 28 + 1 | 14 |
1877 | Ivan M. Pervushin (en) | F12 | 1.234 | 7 · 214 + 1 | 6 |
1878 | Ivan M. Pervushin | F23 | 2.525.223 | 5 · 225 + 1 | 9 |
1886 | Paul Peter Heinrich Seelhoff | F36 | 20.686.623.784 | 5 · 239 + 1 | 13 |
1899 | Allan Joseph Champneys Cunningham | F11 | 617 | 39 · 213 + 1 | 6 |
1899 | Allan Joseph Champneys Cunningham | F11 | 617 | 119 · 213 + 1 | 6 |
1903 | Alfred Edward Western | F9 | 155 | 37 · 216 + 1 | 7 |
1903 | Alfred Edward Western | F12 | 1.234 | 397 · 216 + 1 | 8 |
1903 | Alfred Edward Western | F12 | 1.234 | 973 · 216 + 1 | 8 |
1903 | Alfred Edward Western | F18 | 78.914 | 13 · 220 + 1 | 8 |
1903 | James Cullen | F38 | 82.746.495.136 | 3 · 241 + 1 | 13 |
1906 | James Caddall Morehead | F73 | 2.843.147.923.723.958.896.933 | 5 · 275 + 1 | 24 |
1925 | Maurice Borissowitsch Kraitchik | F15 | 9.865 | 579 · 221 + 1 | 10 |
Seit 1950 wurden alle weiteren Faktoren durch Einsatz von Computern gefunden.[10]
Jahr | Teiler | Jahr | Teiler | Jahr | Teiler | Jahr | Teiler | Jahr | Teiler | Jahr | Teiler | Jahr | Teiler |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1951 | – | 1961 | – | 1971 | – | 1981 | 3 | 1991 | 12 | 2001 | 22 | 2011 | 9 |
1952 | – | 1962 | 2 | 1972 | – | 1982 | 2 | 1992 | 10 | 2002 | 8 | 2012 | 16 |
1953 | 2 | 1963 | 11 | 1973 | – | 1983 | 2 | 1993 | 10 | 2003 | 8 | 2013 | 7 |
1954 | – | 1964 | – | 1974 | 2 | 1984 | 7 | 1994 | 1 | 2004 | 2 | 2014 | 7 |
1955 | – | 1965 | – | 1975 | – | 1985 | 2 | 1995 | 8 | 2005 | 7 | 2015 | 6 |
1956 | 14 | 1966 | – | 1976 | 2 | 1986 | 12 | 1996 | 7 | 2006 | 1 | 2016 | 7 |
1957 | 6 | 1967 | – | 1977 | 4 | 1987 | 5 | 1997 | 4 | 2007 | 4 | 2017 | 5 |
1958 | – | 1968 | – | 1978 | 2 | 1988 | 4 | 1998 | 8 | 2008 | 6 | 2018 | 3 |
1959 | – | 1969 | – | 1979 | 13 | 1989 | – | 1999 | 9 | 2009 | 6 | ||
1960 | – | 1970 | 2 | 1980 | 9 | 1990 | 8 | 2000 | 13 | 2010 | 7 | ||
TOTAL | 22 | 15 | 32 | 45 | 82 | 71 | 60 |
Eigenschaften[Bearbeiten | Quelltext bearbeiten]
- Beispiele:
- Der Teiler 641 von F5: 641 = 5 · 27 + 1 = 5 · 128 + 1
- Der Teiler 6700417 von F5: 6700417 = 52347 · 27 + 1 = 52347 · 128 + 1
- Fermat-Zahlen lassen sich auf folgende Arten rekursiv berechnen:
- für
- für
- für
- für
Zwei der vier Beweise funktionieren mittels vollständiger Induktion. Man zeigt, dass die Behauptungen für den Anfang gelten (Induktionsanfang), nimmt an, dass die Behauptung für gilt (Induktionsvoraussetzung) und beweist, dass die Behauptung dadurch auch für gelten muss (Induktionsschluss).
Beweis von für : Der Beweis funktioniert direkt.
- , was zu zeigen war.
Beweis von für : Der Beweis funktioniert mittels vollständiger Induktion.
- Induktionsanfang:
- Induktionsvoraussetzung: bzw. umgeformt
- Induktionsschluss: zu zeigen:
- Was zu zeigen war.
Beweis von für : Der Beweis funktioniert direkt.
- Was zu zeigen war.
Beweis von für : Der Beweis funktioniert mittels vollständiger Induktion.
- Induktionsanfang:
- Induktionsvoraussetzung:
- Induktionsschluss: zu zeigen:
- Was zu zeigen war.
- Jede Fermat-Zahl mit ist von der Form wobei ganzzahlig ist.[11]
Der Beweis funktioniert direkt. Man startet mit einer bekannten richtigen Aussage und beweist das Gewünschte.
Beweis:
- Eine weiter oben angegebene Eigenschaft besagt, dass gilt für . Somit gilt aber, weil ist:
- .
- Der Ausdruck ist als Produkt von ungeraden Fermat-Zahlen selber ungerade. Addiert man 1 dazu, erhält man eine gerade Zahl. Also ist ein Produkt aus 3 und einer geraden Zahl und somit durch 6 teilbar. Es gibt also ein mit . Daher ist von der Form , was zu zeigen war.
- Eine Fermat-Zahl mit kann niemals als Summe von zwei Primzahlen dargestellt werden.[12]
Der Beweis funktioniert indirekt. Man startet mit einer Behauptung und zeigt, dass sie falsch ist, womit die Behauptung fallengelassen werden muss und das Gegenteil gilt.
Beweis:
- Alle Fermat-Zahlen sind als Summe einer geraden und einer ungeraden Zahl 1 immer ungerade Zahlen. Primzahlen sind, bis auf die erste Primzahl , immer ungerade. Wenn also die ungerade Zahl Summe von zwei Primzahlen sein soll, so dürfen nicht beide Primzahlen ungerade sein, weil die Summe zweier ungerader Zahlen eine gerade Zahl ergibt. Eine davon muss gerade sein. Weil es nur eine gerade Primzahl gibt, muss also 2 eine der beiden Summanden sein. Der andere prime Summand ist somit und es gilt trivialerweise . Es gilt aber:
- Somit ist aber für zusammengesetzt und keine Primzahl, weil sogar der kleinere der beiden Faktoren ist und somit eine nichttriviale Faktorisierung von existiert. Wir erhalten einen Widerspruch. Die Annahme, dass man eine Fermat-Zahl als Summe zweier Primzahlen darstellen kann, muss fallengelassen werden, was zu zeigen war.
- Für gilt:[13]
- Sei , und prim. Dann gilt:[13]
Der Beweis funktioniert direkt. Man startet mit einer bekannten richtigen Aussage und beweist mittels Umformungen und Modulo-Rechnungen das Gewünschte.
Beweis der ersten Behauptung:
- Somit gilt:
- Für erhält man:
- Setzt man nun in obiges Ergebnis ein, dann erhält man:
- Die Zahl ist als Potenz von 2 durch jede kleinere Potenz von 2 teilbar, somit für auch durch . Es existiert also eine positive ganze Zahl mit . Wenn man dies in obiges Ergebnis einsetzt, erhält man:
- Womit die erste Behauptung bewiesen ist.
- Sei eine Primzahl und eine ganze Zahl. Dann gilt für jede prime Fermat-Zahl mit :[14]
- teilt
Der Beweis funktioniert direkt. Man startet mit einer bekannten richtigen Aussage und beweist das Gewünschte.
Beweis:
- Sei eine prime Fermat-Zahl mit .
- Sei weiters ein Teiler von . Dann ist auch ein Teiler von und somit auch Teiler der Differenz. Also gilt:
- teilt
- Sei nun kein Teiler von . Dann gilt wegen dem kleinen fermatschen Satz: und somit:
- teilt
- Weil aber jede kleine Zweierpotenz jede größere Zweierpotenz teilt, gilt auch:
- teilt
- Weiters gilt bei mehrfacher Anwendung der dritten binomischen Formel:
- teilt
- Obige Ergebnisse zusammengefasst ergibt:
- teilt teilt teilt
- Sei weiters ein Teiler von . Dann ist auch ein Teiler von und somit auch Teiler der Differenz. Also gilt:
- Was zu zeigen war.
- Keine prime Fermat-Zahl kann als Differenz von zwei p-ten Potenzen geschrieben werden, wenn p eine ungerade Primzahl ist:[15]
- für alle
Der Beweis funktioniert indirekt. Man startet mit einer Behauptung und zeigt, dass sie falsch ist, womit die Behauptung fallengelassen werden muss und das Gegenteil gilt.
Beweis:
- Angenommen, ist eine ungerade Primzahl und kann dargestellt werden als Differenz von zwei p-ten Potenzen. Es sei also . Dann gilt:
- mit
- Weil prim ist und somit nicht zwei Teiler haben darf, muss sein. Wegen dem kleinen fermatschen Satz ist und und somit gilt:
- Somit muss ein Teiler von sein, was aber nicht sein kann, weil nur Zweierpotenzen als Teiler hat.
- Die Annahme muss also fallengelassen werden, kann also nicht dargestellt werden als Differenz von zwei p-ten Potenzen.
- Was zu zeigen war.
- Die Menge aller quadratischen Nichtreste einer primen Fermat-Zahl ist gleich der Menge aller ihrer Primitivwurzeln.[16]
- Zwei Fermat-Zahlen sind gleich oder teilerfremd, wie aus der letzten Aussage folgt (Goldbachs Theorem, nach Christian Goldbach, 1730). Daraus lässt sich folgern, dass es unendlich viele Primzahlen gibt (siehe auch Beweisarchiv).
- Mit Ausnahme von F0 = 3 und F1 = 5 endet jede Fermat-Zahl im Dezimalsystem mit der Ziffer 7. Die letzten beiden Ziffern sind 17, 37, 57 oder 97.[17]
- Die Summe der Kehrwerte aller Fermat-Zahlen ist eine irrationale Zahl (bewiesen von Solomon W. Golomb im Jahr 1963).[18] Es gilt:
- Keine Fermat-Zahl ist eine perfekte Zahl. Keine Fermat-Zahl ist Teil eines Paares befreundeter Zahlen (bewiesen von Florian Luca im Jahr 2000).[19]
- Die Summe der Kehrwerte aller Primteiler von Fermat-Zahlen ist konvergent (bewiesen von Michal Křížek, Florian Luca und Lawrence Somer im Jahr 2002).[20] Mit anderen Worten:
- Sei die Menge aller Primzahlen, die irgendeine Fermat-Zahl teilen. Dann gilt:
- ist konvergent.
- Sei eine Primzahl. Dann ist mit einer ganzen Zahl .[21]
- In diesem Fall gilt:
- Sei der größte Primteiler der Fermat-Zahl . Dann gilt:[22]
- für alle (bewiesen von Aleksander Grytczuk, Florian Luca und Marek Wójtowicz im Jahr 2001).
- Jede zusammengesetzte Fermat-Zahl ist eine starke Pseudoprimzahl zur Basis 2, weil für alle Fermat-Zahlen gilt:[23]
- für mindestens ein (im Speziellen für ).
- Jede zusammengesetzte Fermat-Zahl ist eine eulersche Pseudoprimzahl zur Basis 2, weil für alle Fermat-Zahlen gilt:[23]
- Jede zusammengesetzte Fermat-Zahl ist eine fermatsche Pseudoprimzahl zur Basis 2. Das heißt, für alle Fermat-Zahlen gilt:
- Eine prime Fermat-Zahl ist niemals eine Wieferich-Primzahl.[24] Das heißt, für alle primen Fermat-Zahlen gilt:
- Ein Produkt
- von Fermat-Zahlen mit ist eine fermatsche Pseudoprimzahl zur Basis 2 genau dann, wenn (bewiesen von Michele Cipolla im Jahr 1904).[25]
- Jede Fermat-Zahl hat im Binärsystem die Form
- mit Nullen zwischen den beiden Einsern.[26]
Ungelöste Probleme[Bearbeiten | Quelltext bearbeiten]
- Ist Fn eine zusammengesetzte Zahl für alle n ≥ 5?
- Gibt es unendlich viele zusammengesetzte Fermatsche Zahlen? (Diese Behauptung ist etwas schwächer als die vorherige.)
- Gibt es unendlich viele Fermatsche Primzahlen? (Diese Behauptung steht nicht im Widerspruch zur vorherigen; es könnten beide Behauptungen gelten.)
- Gibt es Fermatsche Zahlen, die nicht quadratfrei sind?
Geometrische Anwendung der Fermatschen Primzahlen[Bearbeiten | Quelltext bearbeiten]
Carl Friedrich Gauß zeigte, dass es einen Zusammenhang zwischen der Konstruktion von regelmäßigen Polygonen und den Fermatschen Primzahlen gibt:
- Ein regelmäßiges Polygon mit n Seiten kann dann und nur dann mit Zirkel und Lineal konstruiert werden, wenn n eine Potenz von 2 oder das Produkt einer Potenz von 2 mit paarweise verschiedenen Fermatschen Primzahlen ist.[27]
Insbesondere zeigte Gauß so die Konstruierbarkeit des regelmäßigen Siebzehnecks.
Verallgemeinerte Fermatsche Zahlen[Bearbeiten | Quelltext bearbeiten]
Eine Zahl der Form mit zwei teilerfremden natürlichen Zahlen a > 0 und b > 0 heißt verallgemeinerte Fermatsche Zahl. Ist eine solche Zahl prim, dann heißt sie verallgemeinerte Fermatsche Primzahl.
Ist a = 1, so werden die so erhaltenen verallgemeinerten Fermatschen Zahlen üblicherweise mit
bezeichnet. Die Zahl b nennt man Basis.
Ist a = 1 und b = 2, so handelt es sich um die schon weiter oben erwähnten Fermat-Zahlen
- .
Insgesamt sind schon über 11620 Faktoren von verallgemeinerten zusammengesetzten Fermat-Zahlen bekannt[28][29] (Stand: 12. September 2015). Davon wurden alleine über 5000 von Anders Björn und Hans Riesel vor 1998 entdeckt.
Verallgemeinerte Fermatsche Zahlen der Form Fn(b)[Bearbeiten | Quelltext bearbeiten]
Ist b eine gerade Zahl, so kann Fn(b) sowohl zusammengesetzt als auch prim sein.
Beispiel:
- b = 8, n = 3 ergibt die zusammengesetzte Zahl
- .
Beispiel:
- b = 6, n = 2 ergibt die Primzahl
- .
Ist b eine ungerade Zahl, so ist Fn(b) als Summe einer Potenz einer ungeraden Zahl (die selbst wieder ungerade ist) und 1 immer eine gerade Zahl, somit durch 2 teilbar und deshalb für b > 1 keine Primzahl, sondern zusammengesetzt. In diesem Fall wird häufig die Zahl
auf ihre Primalität untersucht. Diese Zahlen werden auch halbe verallgemeinerte Fermatsche Zahlen genannt.
Beispiel:
- b = 3, n = 2 ergibt die gerade und somit zusammengesetzte Zahl
- .
- Es ist aber
- eine Primzahl.
Beispiel:
- b = 5, n = 3 ergibt die gerade und somit zusammengesetzte Zahl
- Es ist aber
- eine zusammengesetzte Zahl.
Liste der Primzahlen der Form Fn(b)[Bearbeiten | Quelltext bearbeiten]
Verallgemeinerte Fermatsche Zahlen der Form sind in den meisten Fällen zusammengesetzt. Weil diese Zahlen sehr schnell sehr groß werden, sind nicht besonders viele Primzahlen dieser Art bekannt. Es folgt eine Auflistung (aller) bekannten Primzahlen:
n | Fn(b) | b, für die Fn(b) prim ist | OEIS-Folge |
---|---|---|---|
0 | 1, 2, 4, 6, 10, 12, 16, 18, 22, 28, 30, 36, 40, 42, 46, 52, 58, 60, 66, 70, 72, 78, 82, 88, 96, 100, 102, 106, 108, 112, 126, 130, 136, 138, 148, 150, 156, 162, 166, 172, 178, 180, 190, 192, 196, 198, 210, 222, 226, 228, 232, 238, 240, 250, 256, 262, 268, 270, … (alle Primzahlen minus 1) |
(Folge A006093 in OEIS) | |
1 | 1, 2, 4, 6, 10, 14, 16, 20, 24, 26, 36, 40, 54, 56, 66, 74, 84, 90, 94, 110, 116, 120, 124, 126, 130, 134, 146, 150, 156, 160, 170, 176, 180, 184, 204, 206, 210, 224, 230, 236, 240, 250, 256, 260, 264, 270, 280, 284, 300, 306, 314, 326, 340, 350, 384, 386, 396, … | (Folge A005574 in OEIS) | |
2 | 1, 2, 4, 6, 16, 20, 24, 28, 34, 46, 48, 54, 56, 74, 80, 82, 88, 90, 106, 118, 132, 140, 142, 154, 160, 164, 174, 180, 194, 198, 204, 210, 220, 228, 238, 242, 248, 254, 266, 272, 276, 278, 288, 296, 312, 320, 328, 334, 340, 352, 364, 374, 414, 430, 436, 442, 466, … | (Folge A000068 in OEIS) | |
3 | 1, 2, 4, 118, 132, 140, 152, 208, 240, 242, 288, 290, 306, 378, 392, 426, 434, 442, 508, 510, 540, 542, 562, 596, 610, 664, 680, 682, 732, 782, 800, 808, 866, 876, 884, 892, 916, 918, 934, 956, 990, 1022, 1028, 1054, 1106, 1120, 1174, 1224, 1232, 1256, 1284, … | (Folge A006314 in OEIS) | |
4 | 1, 2, 44, 74, 76, 94, 156, 158, 176, 188, 198, 248, 288, 306, 318, 330, 348, 370, 382, 396, 452, 456, 470, 474, 476, 478, 560, 568, 598, 642, 686, 688, 690, 736, 774, 776, 778, 790, 830, 832, 834, 846, 900, 916, 946, 956, 972, 982, 984, 1018, 1044, 1078, … | (Folge A006313 in OEIS) | |
5 | 1, 30, 54, 96, 112, 114, 132, 156, 332, 342, 360, 376, 428, 430, 432, 448, 562, 588, 726, 738, 804, 850, 884, 1068, 1142, 1198, 1306, 1540, 1568, 1596, 1678, 1714, 1754, 1812, 1818, 1878, 1906, 1960, 1962, 2046, 2098, 2118, 2142, 2330, 2418, 2434, 2654, 2668, … | (Folge A006315 in OEIS) | |
6 | 1, 102, 162, 274, 300, 412, 562, 592, 728, 1084, 1094, 1108, 1120, 1200, 1558, 1566, 1630, 1804, 1876, 2094, 2162, 2164, 2238, 2336, 2388, 2420, 2494, 2524, 2614, 2784, 3024, 3104, 3140, 3164, 3254, 3278, 3628, 3694, 3738, 3750, 4000, 4030, 4058, 4166, … | (Folge A006316 in OEIS) | |
7 | 1, 120, 190, 234, 506, 532, 548, 960, 1738, 1786, 2884, 3000, 3420, 3476, 3658, 4258, 5788, 6080, 6562, 6750, 7692, 8296, 9108, 9356, 9582, 9706, 10238, 10994, 11338, 11432, 11466, 11554, 11778, 12704, 12766, 13082, 13478, 13700, … | (Folge A056994 in OEIS) | |
8 | 1, 278, 614, 892, 898, 1348, 1494, 1574, 1938, 2116, 2122, 2278, 2762, 3434, 4094, 4204, 4728, 5712, 5744, 6066, 6508, 6930, 7022, 7332, 8524, 8644, 8762, 8808, 9024, 9142, 9412, 10892, 12206, 13220, 13222, 13246, 13370, 13738, 14114, 14930, … | (Folge A056995 in OEIS) | |
9 | 1, 46, 1036, 1318, 1342, 2472, 2926, 3154, 3878, 4386, 4464, 4474, 4482, 4616, 4688, 5374, 5698, 5716, 5770, 6268, 6386, 6682, 7388, 7992, 8678, 8792, 9448, 9452, 9972, 10086, 10448, 10926, 11468, 12754, 13198, 13776, 14734, 16826, 16914, 18334, … | (Folge A057465 in OEIS) | |
10 | 1, 824, 1476, 1632, 2462, 2484, 2520, 3064, 3402, 3820, 4026, 6640, 7026, 7158, 9070, 12202, 12548, 12994, 13042, 15358, 17646, 17670, 18336, 19564, 20624, 22500, 24126, 26132, 26188, 26240, 29074, 29658, 30778, 31126, 32244, 33044, 34016, … | (Folge A057002 in OEIS) | |
11 | 1, 150, 2558, 4650, 4772, 11272, 13236, 15048, 23302, 26946, 29504, 31614, 33308, 35054, 36702, 37062, 39020, 39056, 43738, 44174, 45654, 46502, 47348, 49190, 49204, 49544, 54514, 57210, 59770, 61184, 66894, 68194, 70574, 72446, 82642, … | (Folge A088361 in OEIS) | |
12 | 1, 1534, 7316, 17582, 18224, 28234, 34954, 41336, 48824, 51558, 51914, 57394, 61686, 62060, 89762, 96632, 98242, 100540, 101578, 109696, 110540, 114690, 125440, 125442, 127596, 138068, 144362, 154908, 157310, 161822, 161900, 166224, … | (Folge A088362 in OEIS) | |
13 | 1, 30406, 71852, 85654, 111850, 126308, 134492, 144642, 147942, 150152, 165894, 176206, 180924, 201170, 212724, 222764, 225174, 241600, 241860, 248744, 268032, 270674, 302368, 316970, 326260, 347962, 350830, 397468, 410938, 416010, 441238, 443718, 458520, 462678, 463012, 475158, 481750, … | (Folge A226528 in OEIS) | |
14 | 1, 67234, 101830, 114024, 133858, 162192, 165306, 210714, 216968, 229310, 232798, 422666, 426690, 449732, 462470, 468144, 498904, 506664, 509622, 528614, 572934, 581424, 638980, 641762, 656210, 698480, 704930, 730352, 795810, 840796, 908086, 975248, 976914, 990908, 1007874, 1037748, 1039970, 1067896, 1082054, 1097352, 1102754, 1132526, 1162996, 1171010, 1177808, 1181388, … | (Folge A226529 in OEIS) | |
15 | 1, 70906, 167176, 204462, 249830, 321164, 330716, 332554, 429370, 499310, 524552, 553602, 743788, 825324, 831648, 855124, 999236, 1041870, 1074542, 1096382, 1113768, 1161054, 1167528, 1169486, 1171824, 1210354, 1217284, 1277444, 1519380, 1755378, 1909372, 1922592, 1986700, 2034902, 2147196, 2167350, … | (Folge A226530 in OEIS) | |
16 | 1, 48594, 108368, 141146, 189590, 255694, 291726, 292550, 357868, 440846, 544118, 549868, 671600, 843832, 857678, 1024390, 1057476, 1087540, 1266062, 1361846, 1374038, 1478036, 1483076, 1540550, 1828502, 1874512, 1927034, 1966374, 2019300, 2041898, 2056292, 2162068, 2177038, 2187182, 2251082, 2313394, … | (Folge A251597 in OEIS) | |
17 | 1, 62722, 130816, 228188, 386892, 572186, 689186, 909548, 1063730, 1176694, 1361244, 1372930, 1560730, 1660830, 1717162, 1722230, 1766192, 1955556, 2194180, 2280466, 2639850, 3450080, 3615210, 3814944, 4085818, 4329134, 4893072, 4974408, 5326454, 5400728, 5471814, 5586416, 5734100, 5877582, 6391936, 6403134, 6705932, 7379442, 7832704, 7858180, 7926326, 8150484, 8704114, 8770526, 9240606, 9419976, 9785844, 9907326, 10037266, 10368632, 10453790, 10765720, 10921162, 10962066, 10994460, 11036888, 11195602, 11267296, 11292782, 11778792, 11876066, 42654182, 43163894, 43165206, 44049878, 44085096, 44330870, 44438760, 44919410, 45315256, 45570624, 46077492, 46371508, 46385310, 46413358, 46730280, 46736070, 46776558, 47090246, 47179704, 48273828, 48370248, 48643706, 49038514, 49090656, 49225986, 49243622, 49331672, 49397682, 49530004, 49817700, 50055102, 50110436, 50217306, … | (Folge A253854 in OEIS) | |
18 | 1, 24518, 40734, 145310, 361658, 525094, 676754, 773620, 1415198, 1488256, 1615588, 1828858, 2042774, 2514168, 2611294, 2676404, 3060772, 3547726, 3596074, 3673932, 3853792, 3933508, 4246258, 4489246, … | (Folge A244150 in OEIS) | |
19 | 1, 75898, 341112, 356926, 475856, 1880370, 2061748, … | (Folge A243959 in OEIS) | |
20 | 1, 919444, … |
Stand: 20. März 2018
Die 10 größten bekannten verallgemeinerten Fermatschen Primzahlen[Bearbeiten | Quelltext bearbeiten]
Der folgenden Liste kann man die 10 größten bekannten verallgemeinerten Fermatschen Primzahlen entnehmen. Sämtliche Entdecker dieser Primzahlen sind Teilnehmer des PrimeGrid-Projektes. In der zweiten Spalte steht, die wievieltgrößte bekannte Primzahl diese Fermatsche Primzahl im Moment ist.
Rang | wievieltgrößte bekannte Primzahla[30][31] |
Primzahl | Fn(b) | Dezimalstellen von Fn(b) |
Entdeckungsdatum | Entdecker | Quelle |
---|---|---|---|---|---|---|---|
1 | 13. | 9194441048576 + 1 | F20(1048576) | 6.253.210 | 2. September 2017 | Sylvanus A. Zimmerman (USA) | [32] |
2 | 23. | 2061748524288 + 1 | F19(2061748) | 3.310.478 | 20. März 2018 | Cesare Marini (ITA) | [33] |
3 | 24. | 1880370524288 + 1 | F19(1880370) | 3.289.511 | 15. Januar 2018 | Scott Brown (USA) | [34] |
4 | 28. | 475856524288 + 1 | F19(475856) | 2.976.633 | 8. August 2012 | Masashi Kumagai (JPN) | [35] |
5 | 30. | 356926524288 + 1 | F19(356926) | 2.911.151 | 20. Juni 2012 | anonym (JPN) | [36] |
6 | 31. | 341112524288 + 1 | F19(341112) | 2.900.832 | 15. Juni 2012 | Peyton Hayslette (USA) | [37] |
7 | 37. | 75898524288 + 1 | F19(75898) | 2.558.647 | 19. November 2011 | Michael Goetz (USA) | [38] |
8 | 59. | 4489246262144 + 1 | F18(4246258) | 1.743.828 | 1. März 2018 | Wolfgang Schwieger (DEU) | [39] |
9 | 61. | 4246258262144 + 1 | F18(4246258) | 1.737.493 | 15. Februar 2018 | Rob Gahan (IRL) | [40] |
10 | 62. | 3933508262144 + 1 | F18(3933508) | 1.728.783 | 27. Januar 2018 | Alen Kecic (DEU) | [41] |
Die meisten der oben genannten Ergebnisse konnten natürlich nur mit Hilfe von Computern gefunden werden.
Siehe auch[Bearbeiten | Quelltext bearbeiten]
Einzelnachweise[Bearbeiten | Quelltext bearbeiten]
- ↑ Folge A000215 in OEIS
- ↑ Leonhard Euler: Observationes de theoremate quodam Fermatiano aliisque ad numeros primos spectantibus. (PDF; 399 kB). [E26]. In: Commentarii academiae scientiarum Petropolitanae. 6 (1732/33), St. Petersburg 1738, S. 103–107, hier S. 104. Nachdruck in Opera Omnia, Bd. 1/2, S. 1–5. Englische Übersetzung von Ian Bruce: Observations concerning a certain theorem of Fermat and other considerations regarding prime numbers. (PDF; 100 kB) bzw. von David Zhao: Oberservations on a certain theorem of Fermat and on others regarding prime numbers. (PDF; 101 kB).
- ↑ a b Faktorisierungsstatus aller Fermatzahlen. Stand: 28. Januar 2017 (englisch).
- ↑ Siehe Algorithmus nach Morrison und Brillhart.
- ↑ Jeff Young und Duncan A. Buell: The Twentieth Fermat Number is Composite. Mathematics of Computation, Vol. 50, Nr. 181, Januar 1988, S. 261–263, abgerufen am 14. August 2016 (PDF).
- ↑ Richard E. Crandall, Ernst W. Mayer und Jason S. Papadopoulos: The Twenty-Fourth Fermat Number is Composite. Mathematics of Computation, Vol. 72, Nr. 243, 6. Dezember 2002, S. 1555–1572, abgerufen am 14. August 2016 (PDF).
- ↑ GIMPS’ second Fermat factor! Bei: MersenneForum.org.
- ↑ F22 factored! Bei: MersenneForum.org.
- ↑ Luigi Morelli: Distributed Search for Fermat Number Divisors – NEWS. Abgerufen am 19. Dezember 2016.
- ↑ Luigi Morelli: Distributed Search for Fermat Number Divisors - HISTORY. Abgerufen am 25. Januar 2017.
- ↑ Michal Křížek, Florian Luca und Lawrence Somer: 17 Lectures on Fermat Numbers: From Number Theory to Geometry, Theorem 3.12. Canadian Mathematical Society, S. 31, abgerufen am 23. August 2016.
- ↑ Michal Křížek, Florian Luca und Lawrence Somer: 17 Lectures on Fermat Numbers: From Number Theory to Geometry, Proposition 3.8. Canadian Mathematical Society, S. 29, abgerufen am 29. November 2017.
- ↑ a b Michal Křížek, Florian Luca und Lawrence Somer: 17 Lectures on Fermat Numbers: From Number Theory to Geometry, Theorem 3.9. Canadian Mathematical Society, S. 29, abgerufen am 1. Dezember 2017.
- ↑ Michal Křížek, Florian Luca und Lawrence Somer: 17 Lectures on Fermat Numbers: From Number Theory to Geometry, Theorem 3.11. Canadian Mathematical Society, S. 30–31, abgerufen am 6. Dezember 2017.
- ↑ Michal Křížek, Florian Luca und Lawrence Somer: 17 Lectures on Fermat Numbers: From Number Theory to Geometry, Theorem 3.14. Canadian Mathematical Society, S. 31, abgerufen am 23. August 2016.
- ↑ Michal Křížek, Florian Luca und Lawrence Somer: 17 Lectures on Fermat Numbers: From Number Theory to Geometry, Theorem 3.10. Canadian Mathematical Society, S. 30, abgerufen am 6. Dezember 2017.
- ↑ Michal Křížek, Florian Luca und Lawrence Somer: 17 Lectures on Fermat Numbers: From Number Theory to Geometry, vor Remark 3.7. Canadian Mathematical Society, S. 29, abgerufen am 1. Dezember 2017.
- ↑ Solomon W. Golomb: On the sum of the reciprocals of the Fermat numbers and related irrationalities. Canad. J. Math., Vol. 15, 1963, S. 475–478, abgerufen am 9. August 2016 (PDF).
- ↑ Florian Luca: The Anti-Social Fermat Number. The American Mathematical Monthly, Vol. 107, Nr. 2, Februar 2000, S. 171–173, abgerufen am 9. August 2016.
- ↑ Michal Krížek, Florian Luca, Lawrence Somer: On the Convergence of Series of Reciprocals of Primes Related to the Fermat Numbers. Journal of Number Theory, Vol. 97, Nr. 1, November 2002, S. 95–112, abgerufen am 9. August 2016.
- ↑ Jeppe Stig Nielsen: S(n) = n^n+1. Abgerufen am 9. August 2016.
- ↑ Aleksander Grytczuk, Florian Luca & Marek Wójtowicz: Another note on the greatest prime factors of Fermat numbers. Southeast Asian Bulletin of Mathematics, Vol. 25, Nr. 1, Juli 2001, S. 111–115, abgerufen am 9. August 2016.
- ↑ a b Michal Křížek, Florian Luca und Lawrence Somer: 17 Lectures on Fermat Numbers: From Number Theory to Geometry, Theorem 12.16. Canadian Mathematical Society, S. 138, abgerufen am 14. August 2016.
- ↑ Fredrick Kennard: Unsolved Problems in Mathematics. S. 56, abgerufen am 21. September 2016.
- ↑ Michal Křížek, Florian Luca und Lawrence Somer: 17 Lectures on Fermat Numbers: From Number Theory to Geometry, Theorem 12.1. Canadian Mathematical Society, S. 132, abgerufen am 14. August 2016.
- ↑ Michal Křížek, Florian Luca und Lawrence Somer: 17 Lectures on Fermat Numbers: From Number Theory to Geometry, Theorem 3.17. Canadian Mathematical Society, S. 32, abgerufen am 23. August 2016.
- ↑ Emil Artin: Galoissche Theorie. Verlag Harri Deutsch, Zürich 1973, ISBN 3-87144-167-8, S. 85.
- ↑ Faktoren von verallgemeinerten Fermat-Zahlen, die von Björn und Riesel gefunden wurden. Archiviert vom Original am 17. November 2015; abgerufen am 12. September 2015.
Info: Der Archivlink wurde automatisch eingesetzt und noch nicht geprüft. Bitte prüfe den Link gemäß Anleitung und entferne dann diesen Hinweis.
- ↑ Faktoren von verallgemeinerten Fermat-Zahlen, die nach Björn und Riesel gefunden wurden. Archiviert vom Original am 17. November 2015; abgerufen am 12. September 2015.
Info: Der Archivlink wurde automatisch eingesetzt und noch nicht geprüft. Bitte prüfe den Link gemäß Anleitung und entferne dann diesen Hinweis.
- ↑ Die 20 größten verallgemeinerten Fermatschen Primzahlen (englisch). Abgerufen am 24. Juli 2017.
- ↑ Liste der größten bekannten Primzahlen (englisch). Abgerufen am 24. Juli 2017.
- ↑ 9194441048576 + 1 auf primegrid.com (PDF)
- ↑ 2061748524288 + 1 auf primegrid.com (PDF)
- ↑ 1880370524288 + 1 auf primegrid.com (PDF)
- ↑ 475856524288 + 1 auf primegrid.com (PDF)
- ↑ 356926524288 + 1 auf primegrid.com (PDF)
- ↑ 341112524288 + 1 auf primegrid.com (PDF)
- ↑ 75898524288 + 1 auf primegrid.com (PDF)
- ↑ 4489246262144 + 1 auf primegrid.com (PDF)
- ↑ 4246258262144 + 1 auf primegrid.com (PDF)
- ↑ 3933508262144 + 1 auf primegrid.com (PDF)
Literatur[Bearbeiten | Quelltext bearbeiten]
- Solomon W. Golomb: On the sum of the reciprocals of the Fermat numbers and related irrationalities. In: Canad. J. Math. Vol. 15 (1963), S. 475–478.
- Florian Luca: The Anti-Social Fermat Number. In: American Mathematical Monthly. Vol. 107, Nr. 2 (Feb. 2000), S. 171–173.
- Michal Křížek, Florian Luca, Lawrence Somer: On the Convergence of Series of Reciprocals of Primes Related to the Fermat Numbers. In: Journal of Number Theory. Vol. 97, Nr. 1 (Nov. 2002), S. 95–112.
- Aleksander Grytczuk, Florian Luca, Marek Wójtowicz: Another note on the greatest prime factors of Fermat numbers. In: Southeast Asian Bulletin of Mathematics. Vol. 25, Nr. 1 (Juli 2001), S. 111–115.
- Michal Křížek, Florian Luca, Lawrence Somer: 17 Lectures on Fermat Numbers: From Number Theory to Geometry. In: Canad. J. Math. S. 132–138.
- Fredrick Kennard: Unsolved Problems in Mathematics. S. 56.