Zugvollständigkeitskontrolle

aus Wikipedia, der freien Enzyklopädie
Zur Navigation springen Zur Suche springen
Ein Zeichen des Lichtsignals des Zugschlusssignals (Zg 2) wurde durch ein Formsignal ersetzt. Diese Kombination ist durch die Ril 301 der DB Netz verboten. Durch Erkennen des Zugschlusssignals kann nach einer Zugvollständigkeitskontrolle durch den Zugführer eine Zugvollständigkeitsmeldung abgegeben werden. Der Zug muss dabei halten und darf nach dem Verlassen des betroffenen Zugfolgeabschnitts nicht verändert worden sein. Der Wortlaut für eine Zugvollständigkeitsmeldung lautet: „Zug [Nummer] vollständig in [Name der Betriebsstelle] angekommen.“

Zugvollständigkeitskontrolle nennt man technische Systeme oder betriebliche Regeln, die überprüfen, ob ein Eisenbahnzug an einer bestimmten Stelle vollständig ist, also keine Eisenbahnwagen verloren hat.

Hintergrund[Bearbeiten | Quelltext bearbeiten]

Ein Zug darf in der Regel einen Zugfolgeabschnitt nur befahren, wenn sich darin keine anderen Fahrzeuge befinden, mit denen der Zug zusammenstoßen könnte. Einige Verfahren zur Sicherung von Zugfahrten beruhen auf der Erkenntnis, dass ein Gleisabschnitt frei ist, wenn ihn der letzte eingefahrene Zug vollständig verlassen hat (und keine weiteren Fahrzeuge eingefahren sind).

Klassische Umsetzung[Bearbeiten | Quelltext bearbeiten]

Der letzte Wagen jedes Zuges erhält bei den meisten Eisenbahnen Zugschlusssignale. Bei klassischer Sicherung der Zugfahrten kann ein Bahnbediensteter an den Schlusssignalen eines vorbeifahrenden Zuges erkennen, dass der Zug vollständig ist. Fehlen die Zugschlusssignale, ist davon auszugehen, dass sich noch Wagen im zurückliegenden Abschnitt befinden. Moderne Stellwerke und Blockanlagen verfügen meistens über eine direkte technische Gleisfreimeldung. Eine Zugvollständigkeitskontrolle aus Sicherheitsgründen ist in diesen Bereichen nicht erforderlich.

Umsetzung für ETCS Level 3[Bearbeiten | Quelltext bearbeiten]

Moderne Zugbeeinflussungssysteme bestimmen den Standort der Fahrzeuge (Zugspitze) herkömmlich quasi-kontinuierlich über ortsfeste Einrichtungen. Ist der Standort aller Züge bekannt, liegt es nahe, auf die technisch aufwendige Gleisfreimeldung zu verzichten. Bei ETCS Level 3 ist das der Fall (engl.: End of Train Detection). Die Kenntnis des Standortes der Zugspitze ist aber allein nicht ausreichend.[1]

Bei ETCS Level 3 teilt der Zug per Position Report der Strecke u. a. seinen Standort und seine Zugintegrität mit. Die ETCS-Zentrale wertet diese Daten aus und erteilt entsprechende nachfolgenden Zügen Fahrterlaubnisse.

Geschichte[Bearbeiten | Quelltext bearbeiten]

Eine breit angelegte Studie zur Zugvollständigkeitsüberwachung und -längenbestimmung (insbesondere von Güterzügen), die in der 2. Hälfte der 1990er Jahre im Auftrag der EU vom Forschungs- und Technologiezentrum der DB durchgeführt wurde, mündete im Jahr 2000 in der Empfehlung, die weitere Entwicklung auf Verfahren zu konzentrieren, die auf der Überwachung von Druck und Luftmassestrom in der Hauptluftleitung basieren.[2][3] Im Rahmen des Projekts wurde ein Lastenheft für das Zugvollständigkeits-Überwachungssystem (ZVS) sowie mögliche Lösungsansätze entwickelt.[2] Dabei wurde ein Sicherheitsniveau gefordert, das der ortsfesten Gleisfreimeldung entspricht.[2] Neben der Sicherheit bei der Erfassung von Zugtrennungen wurde auch ein Schutz gegen ein regelwidriges Anhängen von Wagen an den Zugverband betrachtet.[2] Die zu erfüllenden Offenbarungszeiten an die Zugtrennung von Güterzügen lagen dabei bei bis zu 100 Sekunden.[3] Als weitere technische Lösungsansätze waren eine Kombination von GPS mit Inertialsystem (für Tunnelbereiche), Messungen von Funklaufzeiten zwischen Zuganfang und -ende, eine Schallübertragung über die Hauptluftleitung vom Zugende her untersucht worden.[3] Daneben wurde die Nutzung des UIC-EP-Kabels (mit Zugschlusskontakt), elektrische/elektronische Bremsabfrage und -steuerung (EBAS), die Nutzung von Lichtleitern einschließlich der Triebzugrechner (z. B. auf dem ICE) sowie die Zuglängenmessung mittels Spread-Spectrum-Signalen.[2] Für Triebfahrzeuge des Personenverkehrs wurde eine Überwachung der Zugvollständigkeit auf drei Ebenen erwogen: Neben der Überwachung des Kupplungskontaktes und der Auswertung des Status einer oder mehrerer Sicherheitsschleifen sollte das zentrale Steuergerät (ZSG) die Kommunikation auf dem Zugbus überwachen.[2]

Ansätze mit Satellitennavigation wurden aufgrund häufiger Abschattungen und mangelnder Genauigkeit des verwendeten Inertialsystems verworfen.[4] Die Schallübertragung durch die Hauptluftleitung erwies sich als zu anfällig gegenüber Störgeräuschen, insbesondere solchen in Folge von Bremsbetätigungen.[4] Am aussagekräftigsten erwiesen sich Druck- und Volumenstrommessungen in der Hauptluftleitung. Als wesentlicher Nachteil dieses und weiterer Verfahren galt das notwendige Zugendgerät.[4] Die Erstanwendung des ZVS war im Rahmen des Funkfahrbetriebs vorgesehen, für das bis Ende 1999 ein Prototyp des ZVS zur Verfügung gestellt werden sollte (Stand: 1997).[2]

Zur Sicherstellung der Integrität von Güterzügen wird u. a. auch die Einführung automatischer Kupplungen vorgeschlagen, mit der Daten entlang des Zuges übertragen werden können.[5][6][7] Die Zugintegritätsüberwachung könnte dabei beispielsweise durch eine permanente Kommunikation eines Zugspitzengeräts mit dem Überwachungsgerät der letzten Kupplung des Zuges hergestellt werden.[8] An der Technischen Universität Berlin laufen Entwicklungen zu einer darauf aufbauenden Prüfung der Zugintegrität für Level 3.[9] Zu den weiteren Lösungsansätzen zählen verschiedene Varianten von Zugschlussgeräten (end of train devices), die Erkennung von Wagenzahl- und Anordnung durch das führende Fahrzeug per in die Schiene induziertem Ultraschall, die Überwachung diverser Werte (u. a. Druck auf der Hauptluftleitung) auf dem Triebfahrzeug, die Erkennung des letzten Fahrzeugs durch die Strecke (mit Rückübermittlung an den Zug) sowie der Vergleich zug- und streckenseitig er- bzw. bekannter Achsen.[10] Auch so genannte "Güterwagen 4.0" werden vorgeschlagen, bei denen die Verfügbarkeit elektrischer Energie eine permanente Überwachung erlauben soll.[11]

Ausstehende Entwicklung[Bearbeiten | Quelltext bearbeiten]

Damit nachfolgende Züge nicht mit abgetrennten Zugteilen zusammenstoßen, muss gleichzeitig und kontinuierlich die Vollständigkeit der Züge kontrolliert werden. Dies wird herkömmlich durch Achszählung ortsfest erreicht. Zwischen den Zählpunkten ist keine Information verfügbar, so dass dieses Konzept weiterhin die Blocksicherung erfordert. Eine Ablösung ist bei elektrisch ausgestatteten Zügen durch Signalisierung zwischen Zugspitze und Zugende möglich, bei nicht durchweg elektrisch ausgestatteten Zügen durch Funkübertragung zwischen Zugspitze und Zugende.

Künftige Entwicklung[Bearbeiten | Quelltext bearbeiten]

Erst eine Trennung von gleisfester Zugwegsicherung und zugfester Zugfahrsicherung erlaubt die Ablösung der Blocksicherung und damit eine erhebliche Steigerung der Leistung der Gleisnetze und der Zugsysteme. Das ist im Rahmen des ETCS Level 2 nicht vorgesehen. Besondere Erschwernis tritt durch die Vielfalt verschiedener Zugsysteme und alten Wagenmaterials ein.

Geschlossene Gleisnetze außerhalb Europas, insbesondere für den Kohle-, Erz- und Mineraltransport, verwenden solche Lösungen mit großem wirtschaftlichen Erfolg.

Technische Ausführung[Bearbeiten | Quelltext bearbeiten]

Personenzüge[Bearbeiten | Quelltext bearbeiten]

Moderne Triebwagenzüge wie TGV, ICE oder AVE sind mit Bussystemen zur zuginternen Kommunikation und für die Fahrzeugleittechnik ausgerüstet. Auch moderne Reisezugwagen verfügen über eine 24-polige genormte Steuerleitung, die durch alle Wagen läuft. Eine Zugtrennung würde auch den Bus trennen. Um eine unbeabsichtigte Zugtrennung zu erkennen, muss also nur sichergestellt werden, dass eine fehlende Verbindung zwischen erstem und letztem Wagen sicher erkannt wird (z. B. über regelmäßige Telegramme über den Zugbus).

Güterzüge[Bearbeiten | Quelltext bearbeiten]

Telemeter an einem südafrikanischen Kohlenzug
Zugspitzengerät im Führerstand einer nordamerikanischen Lokomotive.

In Güterzügen sind die Güterwagen lediglich mechanisch gekuppelt. Daneben verfügen sie über eine durchgehende Hauptluftleitung zur Ansteuerung der Bremsen. Deshalb setzen Überlegungen für die Zugvollständigkeitskontrolle bei Güterzügen an dieser Leitung an. Bei einer Zugtrennung würde der Luftdruck der Leitung rasch abfallen. Marktgängige Produkte sind allerdings noch nicht bekannt.

In Nordamerika und Südafrika werden funkgestützte Zugvollständigkeitskontrollgeräte verwendet, die im Englischen als Train Integrity Devices (TID) oder Train Integrity Monitoring System (TIMS) bezeichnet werden. Sie bestehen aus einem "End-of-Train-Device" (EOT) genannten Zugschlussgerät, das wie ein Zugschlusssignal durch das Eisenbahnpersonal am letzten Fahrzeug des Zuges angebracht und mit der Bremsleitung des Zuges verbunden wird, sowie einem Zugspitzengerät, das in Englisch "Head-of-Train Device" (HTD oder HOT) genannt wird. Die beiden Geräte tauschen über Funk Daten miteinander aus, wobei das EOT den Druck der Hauptluftleitung und die Zugbewegung mittels Beschleunigungensoren und GPS misst und dem Zugspitzengerät über Funk übermittelt, wo sich mit Hilfe der Daten der Zugspitze eine Zugtrennung erkennen lässt. Die Zugvollständigkeitskontrollgeräte sind für europäische Anwendungen ungeeignet, da bei den üblichen kurzen Zugfolgen eine Zugtrennung nicht genügend schnell erkannt werden kann.

In Nordamerika werden die Zugendgeräte meist als "Flashing rear-end device", abgekürzt FRED bezeichnet, in Südafrika als "Telemeter". Die Energieversorgung des Kontrollgerätes erfolgt durch Luft aus der Bremsleitung, die eine kleine Turbine im Gerät antreibt.

Das Zugspitzengerät wird in Nordamerika umgangssprachlich als Wilma bezeichnet, in Kanada ist auch die Abkürzung SBU für Sense and Brake Unit üblich. Das Zugspitzengerät verfügt in der Regel über mehrere Leuchtmelder, welche den Status des Zugendgerätes, der Kommunikation und die Bewegungen des Zugendes anzeigen. Weiter wird der Druck der Bremsleitung am Zugende digital angezeigt. Über einen Schalter kann eine Schnellbremsung durch das EOT ausgelöst werden. In modernen Lokomotiven ist das Zugspitzengerät meist in die Steuerung der Lokomotive integriert und die Anzeige erfolgt über das Prozesswert-Display an den Triebfahrzeugführer.

Einzelnachweise[Bearbeiten | Quelltext bearbeiten]

  1. Railway Timetable & Traffic, Analysis - Modelling - Simulation, Editors: Ingo Arne Hansen - Jörn Pachl, Eurailpress, p. 19, ISBN 978-3-7771-0371-6
  2. a b c d e f g Rolf Heitmann, Frank-Bernhard Ptok: Systeme zur Zugvollständigkeitsüberwachung. In: Signal + Draht. Band 89, Nr. 11, November 1997, ISSN 0037-4997, S. 22–25.
  3. a b c Franz Quante, Frank Leißner, Bernhard Ptok, Hans-Jürgen Seyfarth: Untersuchungen zur Zugvollständigkeitsüberwachung (ZVS) für Güterzüge. In: Eisenbahntechnische Rundschau. Band 49, Nr. 7/8, Juli 2000, ISSN 0013-2845, S. 534–539.
  4. a b c Rolf Heitmann, Frank-Bernhard Ptok, Franz Quante: Machbarkeitsuntersuchungen zu Strategien in der Zugvollständigkeitsüberwachung. In: Signal + Draht. Band 91, Nr. 1+2, Januar 1999, ISSN 0037-4997, S. 5–11.
  5. Ralf Jahncke, Roland Bänsch, Johannes Kohlschütter: Zukunftsfähige Güterwagen: Revolution statt Evolution. In: ... (= Eisenbahn Ingenieur Kompendium). 2019, ISSN 0934-5930, ZDB-ID 2878509-5, S. 71–78.
  6. Ullrich Martin, Niels Neuberg, Carlo von Molo, Kewen Ji, Matthias Körner: Automatische Mittelpufferkupplung mit elektrischer Leitungsverbindung – Perspektiven für EIU und EVU. In: Eisenbahntechnische Rundschau. Nr. 11, November 2015, ISSN 0013-2845, S. 31–34.
  7. Jürgen Sielmann, Armando Carrillo Zanuy: Mehr Produktivität durch längere und intelligentere Güterzüge. In: Eisenbahntechnische Rundschau. Nr. 1+2, Januar 2017, ISSN 0013-2845, S. 18–21.
  8. Ullrich Martin, Matthias Körner, Rainer Beck: Funktionale Sicherheitsanforderungen an eine ETCS L3 kompatible Mittelpufferkupplung. In: Signal + Draht. Band 107, Nr. 12, Dezember 2015, ISSN 0037-4997, S. 15–19.
  9. Jenny Böhm, Ulrich Deghela, Márton Pálinkó, Dachuan Shi, Markus Hecht, Lutz Hübner: Bahn neu denken – Technische Innovationen für den Schienenverkehr aus Berlin-Brandenburg. In: Eisenbahntechnische Rundschau. Nr. 9, September 2018, ISSN 0013-2845, S. 60–65.
  10. Rolf Seiffert: Train Integrity, making ETCS L3 happen. In: Signal + Draht. Band 102, Nr. 9, September 2010, ISSN 0037-4997, S. 49 f.
  11. Manfred Enning, Raphael Pfaff: Güterwagen 4.0 – Der Güterwagen für das Internet der Dinge. Teil 1: Gesamtsystembetrachtung und grundlegendes Konzept. In: Eisenbahntechnische Rundschau. Nr. 1+2, Januar 2017, ISSN 0013-2845, S. 12–16.