„Dynamisches System“ – Versionsunterschied

aus Wikipedia, der freien Enzyklopädie
Zur Navigation springen Zur Suche springen
[gesichtete Version][gesichtete Version]
Inhalt gelöscht Inhalt hinzugefügt
→‎Literatur: Der Bronstein kann wohl raus
Zeile 176: Zeile 176:
* {{Literatur|Autor=Herbert Amann|Titel=Gewöhnliche Differentialgleichungen|Auflage=2|Verlag=de Gruyter|ISBN=3-11-014582-0|Jahr=1995|Ort=Berlin}}
* {{Literatur|Autor=Herbert Amann|Titel=Gewöhnliche Differentialgleichungen|Auflage=2|Verlag=de Gruyter|ISBN=3-11-014582-0|Jahr=1995|Ort=Berlin}}
* George David Birkhoff: ''Dynamical Systems.'' Rev. Ed.. AMS, Providence, RI, 1966.
* George David Birkhoff: ''Dynamical Systems.'' Rev. Ed.. AMS, Providence, RI, 1966.
* {{Literatur|Autor=Manfred Denker|Titel=Einführung in die Analysis dynamischer Systeme|Verlag=Springer|ISBN=3-540-20713-9|Jahr=2005|Ort=Berlin u. a.}}
* [[John Guckenheimer]], Philip Holmes: ''Nonlinear Oscillations, Dynamical Systems and Bifurcations of Vector Fields.'' Corr. 3rd printing. Springer, New York 1990, ISBN 3-540-90819-6.
* [[John Guckenheimer]], Philip Holmes: ''Nonlinear Oscillations, Dynamical Systems and Bifurcations of Vector Fields.'' Corr. 3rd printing. Springer, New York 1990, ISBN 3-540-90819-6.
* Diederich Hinrichsen, Anthony J. Pritchard: ''Mathematical Systems Theory I - Modelling, State Space Analysis, Stability and Robustness.'' Springer, 2005.
* Diederich Hinrichsen, Anthony J. Pritchard: ''Mathematical Systems Theory I - Modelling, State Space Analysis, Stability and Robustness.'' Springer, 2005.

Version vom 21. Februar 2014, 11:23 Uhr

Ein (deterministisches) dynamisches System ist ein mathematisches Modell eines zeitabhängigen Prozesses, der homogen bezüglich der Zeit ist, also dessen weiterer Verlauf nur vom Anfangszustand, aber nicht von der Wahl des Anfangszeitpunkts abhängt. Der Begriff des dynamischen Systems geht in seiner heutigen Form auf den Mathematiker George David Birkhoff zurück.

Dynamische Systeme finden vielfältige Anwendungen auf Prozesse im Alltag und erlauben Einblicke in viele Bereiche nicht nur der Mathematik (z. B. Zahlentheorie, Stochastik), sondern auch der Physik (z. B. Pendelbewegung, Klimamodelle) oder der theoretischen Biologie (z. B. Räuber-Beute-Modelle).

Man unterscheidet zwischen diskreter und kontinuierlicher Zeitentwicklung. Bei einem zeitdiskreten dynamischen System ändern sich die Zustände in äquidistanten Zeitsprüngen, d. h. in aufeinanderfolgenden, stets gleich großen zeitlichen Abständen, während die Zustandsänderungen eines zeitkontinuierlichen dynamischen Systems in infinitesimal kleinen Zeitschritten stattfinden. Das wichtigste Beschreibungsmittel für zeitkontinuierliche dynamische Systeme sind autonome gewöhnliche Differenzialgleichungen.

Ein gemischtes System aus kontinuierlichen und diskreten Teilsystemen mit kontinuierlich-diskreter Dynamik wird auch als hybrid bezeichnet. Beispiele solcher hybrider Dynamiken finden sich in der Verfahrenstechnik (z. B. Dosiervorlage-Systeme).

Grundlagen des dynamischen Systems

Ein dynamisches System ist eine abgegrenzte zeitabhängige Funktionseinheit, die durch ihre Signaleingänge und Signalausgänge in einer Wechselwirkung mit der Umwelt steht. Das System kann beispielsweise ein mechanisches Gebilde, ein elektrisches Netzwerk aber auch ein biologischer Vorgang oder ein Bestandteil der Volkswirtschaft sein. Es hat mindestens einen Signaleingang und einen Signalausgang.

Ein technisches dynamisches System enthält einen oder mehrere Energiespeicher, die konzentriert oder räumlich verteilt angeordnet sind. Häufig werden bei Systemberechnungen zur Vereinfachung konzentrierte Energiespeicher angenommen. Einfache Systembeispiele: Feder-Masse-Dämpfungssystem, Elektrischer Schwingkreis.

Dynamische Systeme mit konzentrierten Systemspeichern enthalten Variablen als Funktion der Zeit. Dynamische Systeme mit räumlicher Verteilung der Systemspeicher enthalten Variablen als Funktionen der Zeit und des Ortes.

Das Ausgangs- Eingangsverhalten dieser Systeme kann linear, kontinuierlich nichtlinear, diskontinuierlich nichtlinear, zeitinvariant, zeitvariant und totzeitbehaftet sein. Dies gilt für Eingrößen- und Mehrgrößensysteme.

Ferner können die internen Energiespeicher Anfangswerte enthalten, wenn das Signalverhalten eines Systems zu einem bestimmten Zeitpunkt innerhalb eines Einschwingvorgangs für betrachtete werden sollen.

Statische lineare oder nichtlineare Systeme haben keine Energiespeicher und damit kein Zeitverhalten. Das Ausgangs- Eingangsverhalten wird durch algebraische oder transzendente Funktionen oder Wertetabellen beschrieben.

Mathematische Verfahren zur Systembeschreibung und Systemberechnung

Systemtrennung in statisches nichtlineares System und lineares dynamisches System.

Mathematische Modelle der dynamischen Systeme werden je nach Kenntnis und Verfügbarkeit der Systemparameter durch verschiedene mathematische Beschreibungsmethoden gekennzeichnet, bzw. angenähert.

Dynamische Systeme können zur einfacheren Berechnung auch durch Modelle in Kombinationen von nichtlinearen Systemen ohne Zeitverhalten und linearen dynamischen Systemen aufgeteilt werden, z.B. nach dem Hammerstein-Modell. Nichtlineare statische Modelle sind meist Unikate.

Die bekannteste Systembeschreibung ist die Differenzialgleichung. Andere bekannte Systembeschreibungen der dynamischen Systeme lassen sich von den Differenzialgleichungen entwickeln, wie die Übertragungsfunktion mit dem komplexen Frequenzbereich F(s), der Frequenzgang F(jω), die Zustandsraumdarstellung und die für die numerische Berechnung benötigten Differenzengleichungen.

Die Berechnung dynamischer Systeme dient der Kenntnis des Ausgangs-Eingangsverhaltens und der Systemanalyse. Je nach Art des dynamischen Systems eignen sich verschiedene mathematische Beschreibungs- und Berechnungsverfahren. Dynamische Systeme mit Totzeitverhalten (Transportzeit) können praktisch nur mit numerischen zeitdiskreten Verfahren berechnet werden.

Eine Differentialgleichung ist eine Gleichung, die eine oder mehrere Ableitungen einer unbekannten Funktion enthält. Die Bezeichnung "gewöhnlich" bezieht sich darauf, dass die gesuchte Funktion nur von einer Variablen abhängt. Eine lineare gewöhnliche Differenzialgleichung enthält die gesuchte Funktion und deren Ableitungen nur in der ersten Potenz. Die gesuchte Funktion darf auch nicht in Argumenten von Winkelfunktionen, Logarithmen usw. erscheinen, anderenfalls wird die Differenzialgleichung nichtlinear. Nichtlineare Differenzialgleichungen mit den verschiedenen Arten der Nichtlinearität sind nur in sehr seltenen Ausnahmefällen analytisch lösbar. Solche dynamischen Systeme können mittels der numerischen zeitdiskreten Methoden beschrieben und berechnet werden.
Die häufigsten mathematischen Systembeschreibungen linearer Systeme sind gewöhnliche Differenzialgleichungen mit konstanten Koeffizienten. Zur Aufstellung der Differenzialgleichungen höherer Ordnung werden Bilanzgleichungen der Energie / Materie-Speicher benötigt. Systeme mit konzentrierten Speichern erfordern für jede Speicherfunktion eine Differenzialgleichung 1. Ordnung.
Bei dynamischen Systemen in Form ausgeführter technischer Anlagen stehen Differentialgleichungen selten zur Verfügung. Das Systemverhalten muss erst noch analysiert und dann formuliert werden.
Beispiel einer gewöhnliche Differenzialgleichung n-ter Ordnung mit konstanten Koeffizienten a und b für ein System mit dem Ausgangssignal y(t) und Eingangssignal u(t):
Konventionelle Lösung der gewöhnlichen Differenzialgleichung:
Die Lösung einer Differenzialgleichung (DGL) erfolgt immer durch Integration und ist eine Funktion, nicht ein Wert.
Mit dem Lösungsansatz (λ = Nullstelle) ergibt sich ein universelles Lösungsverfahren für die homogene Lösung der DGL beliebiger Ordnung mit konstanten Koeffizienten.
  • Gesamtlösung besteht aus zwei Lösungsanteilen: y(t) = Homogene Lösung yH(t) + Partikuläre Lösung yP(t)
  • Homogene Lösung:
Bedingung: Die homogene Lösung bezieht sich nur auf Anfangswerte. Die System-Eingangserregung ist Null. Nachteil: Umständliche Berechnung der Integrationskonstanten C.
  • Partikuläre Lösung für der DGL über das Faltungsintegral oder über die Laplace-Transformation.
Bedingung: Alle Anfangswerte sind = Null. Die Eingangserregung ist ≠ Null. Das Faltungsintegral für Systeme höherer Ordnung ist schwierig zu lösen.
Lösung des zeitlichen Systemverhaltens aus der Übertragungsfunktion der DGL bei einem gegebenen Eingangssignal U(s):
Bei der gewöhnlichen DGL höherer Ordnung eignet sich besser der Lösungsweg über die Laplace-Transformation oder über die numerische Berechnung mit der diskreten Zeit. Bei der Anwendung zur Lösung einer DGL über die Übertragungsfunktion mit Hilfe der inversen Laplace-Transformation wird die analytische Lösung im Zeitbereich über den Suchbegriff in der Laplace-Transformationstabelle in Operatorenschreibweise gefunden.
  • Differenzialgleichung höherer Ordnung mit variablen Koeffizienten
    • Sind diese Koeffizienten oder nur ein Koeffizient dieser Differenzialgleichung variabel, dann ändert sich das Zeitverhalten des dynamischen Systems, d.h. eine Sprungantwort des Systems für einen gegebenen Eingangssprung nimmt einen anderen zeitlichen Verlauf. Dieses Verhalten wird leicht verständlich, wenn man die Laplace-transformierte Differenzialgleichung als Übertragungsfunktion betrachtet.
    • Sind die Koeffizienten zeitabhängig, führt dieses zu zeitvariantem Systemverhalten, d.h. das Zeitverhalten des Systems ist zu unterschiedlichen Zeitpunkten für t > t0 unterschiedlich. Systembeispiel: Wenn bei einer beschleunigten Rakete die Masse des Treibstoffs sich ändert.
Bei partiellen Differenzialgleichungen hängt die gesuchte Funktion von mehreren Variablen ab. Es wird nach mehreren Variablen abgeleitet. Die Anwendung dieser Gleichung erfolgt z.B. bei dynamischen Systemen mit Zeit- und Ortskoordinaten.
Systembeispiel: Signalübertragung bei langen elektrischen Leitungen oder Wärmefluss in homogenen Medien (Flüssigkeiten, Metalle, Stein).
Blockdiagramm einer Übertragungsfunktion als Ein- und Mehrgrößensystem.
Die Übertragungsfunktion mit der komplexen Frequenz s entsteht aus der Laplace-Transformation einer linearen Differenzialgleichung mit konstanten Koeffizienten. Die Zerlegung der entstehenden Polynomgleichung erfolgt durch die Pol-Nullstellenbestimmung (sp und sn) in Linearfaktoren. Die Darstellungsformen der Übertragungsfunktion als rational gebrochene Funktion unterscheidet die faktorisierte Pol-Nullstellendarstellung und die Zeitkonstantendarstellung.
Weitere Entstehungsweisen sind über System-Identifikationsmethoden mittels Testsignalen, durch Messen des Frequenzgangs des Systems oder über Spannungsteiler aus einem rückwirkungsfreien Impedanzverhältnis möglich.
Die Übertragungsfunktion ist die häufigste Systemdarstellung, weil nur 3 Formen - je im Zähler und Nenner - von Linearfaktoren oder deren Vielfache von differenzierenden und verzögernden linearen elementaren Grundsystemen existieren und die Wiedererkennung des Systems anhand der Gleichung hoch ist.
Formen der drei möglichen Linearfaktoren der regulären (stabilen) Übertragungsfunktionen der Pol-Nullstellendarstellung in die Zeitkonstantendarstellung umgerechnet:
Typ Übertragungsfunktion Bedeutung im Zähler Bedeutung im Nenner

Linearfaktor ohne Absolutglied
Differenzierer, D-Glied Integrator, I-Glied

Linearfaktor mit Absolutglied
Proportional-differentional, PD1-Glied Verzögerung, PT1-Glied
PD2-Glied: für 0 < D < 1
mit konjugiert komplexen Nullstellen
Schwingungsglied, PT2-Glied:
für 0 < D < 1
mit konjugiert komplexen Polen
Alle Terme im Zähler und Nenner der Übertragungsfunktion können algebraisch behandelt werden. Im Zeitbereich bestimmen Linearfaktoren im Nenner das Systemzeitverhalten und wirken integrierend oder zeitverzögernd. Linearfaktoren im Zähler bestimmen die Größe der Amplituden und haben ein differenzierendes Verhalten.
Die Übertragungsfunktion in Polynom-Darstellung und Zeitkonstanten-Darstellung mit T = 1/sp und Tv = 1/sn lautet:
Die Lösung y(t) erfolgt über die Laplace-Transformationstabellen oder über die numerische zeitdiskrete Berechnung.
Unter dem Begriff Zustandsraumdarstellung versteht man die Beschreibung eines dynamischen Übertragungssystems durch seine Zustandsgrößen (= Zustandsvariablen). Dabei wird die systembeschreibende Differenzialgleichung n-ter Ordnung mit n konzentrierten Energiespeichern in n Differenzialgleichungen 1. Ordnung zerlegt und in eine Matrizen/Vektor-Darstellung gebracht. Die Zustandsvariablen beschreiben physikalisch den Energiegehalt der in einem technischen dynamischen System enthaltenen Speicherelemente.
Lineare und nichtlineare dynamische Systeme, auch Mehrgrößensysteme können so behandelt werden. Lineare dynamische Systeme mit Anfangswerten können relativ einfach mit der Regelungsnormalform des Zustandsraumes numerisch berechnet werden, ohne Überführung in die Matrizen/Vektor-Darstellung.
  • Numerische Berechnung dynamischer Systeme
Rechteck-Approximation eines PT1-Gliedes durch Berechnung mit einer Differenzengleichung.
Für die Berechnung linearer und nichtlinearer totzeitbehafteter Systeme kommt praktisch nur die numerische Berechnung mit der diskreten Zeit Δt infrage. Sie entspricht in der einfachsten Form der menschlichen Denkweise für ein lineares System in Operatorendarstellung des Ausgangssignals für ein gegebenes Eingangssignal .
Je nach der Systemeigenschaft wird schrittweise für eine kleine Zeitdifferenz ein neues Ausgangssignal berechnet. Für jede neue Berechnungsfolge eines Teilsystems bezieht sich das aktuelle Ausgangssignal additiv auf eine zurückliegende Folge .
Numerische Lösungen der Berechnung des Systemverhaltens sind üblicherweise tabellarisch in ki Zeilen dargestellt. Jede Zeile enthält die gleichen logischen Befehle (bei Nichtlinearität) und Differenzengleichungen.
Differenzengleichung
Differenzengleichungen beschreiben im einfachsten Falle Differenzialgleichungen 1. Ordnung, deren Differentialquotienten durch Differenzenquotienten ausgetauscht wurden. Sämtliche linearen Systeme höherer Ordnung können mit Hilfe von 4 Arten von Differenzengleichungen beschrieben werden, auch schwingende Systeme mit konjugiert komplexen Polpaaren.
Beispiel der Integrationsfunktion in Operatorendarstellung:
Abgetastete lineare dynamische Systeme im Online-Betrieb wie auch Simulationen von dynamischen Systemen werden mit Differenzengleichungen berechnet.

Definitionen

Ein dynamisches System ist ein Tripel bestehend aus einer Menge oder dem Zeitraum, einer nichtleeren Menge , dem Zustandsraum, und einer Operation von auf so dass für alle Zustände und alle Zeitpunkte gilt:

  1.   (Identitätseigenschaft)   und
  2.   (Halbgruppeneigenschaft).

Wenn oder ist, dann heißt zeitdiskret oder kurz diskret, und mit oder nennt man zeitkontinuierlich oder kontinuierlich. wird außerdem als diskretes oder kontinuierliches dynamisches System für reelle Zeit oder als invertierbar bezeichnet, falls bzw. gilt.

Für jedes heißt die Abbildung die Bewegung von und die Menge wird die Bahn oder der (volle) Orbit von genannt. Der positive Halborbit oder Vorwärtsorbit von ist und falls invertierbar ist, ist der negative Halborbit oder Rückwärtsorbit von .

Ein diskretes dynamisches System ist stetig, wenn sein Zustandsraum ein (nichtleerer) metrischer Raum ist und wenn jede zu einem Zeitpunkt gehörende Transformation stetig ist. Man nennt ein kontinuierliches dynamisches System stetig oder einen Halbfluss, wenn sein Zustandsraum ein metrischer Raum ist und wenn jede zu einem Zeitpunkt gehörende Transformation sowie jede Bewegung eines Zustands stetig ist. Außerdem nennt man ein stetiges diskretes dynamisches System auch eine Kaskade und einen Halbfluss einen Fluss. Der Zustandsraum eines stetigen dynamischen Systems wird auch als Phasenraum und von jedem der Orbit als die Phasenkurve oder Trajektorie von bezeichnet, die einfach geschrieben wird mit .

Koppelt man kontinuierliche und gegebenen Falles noch zusätzliche diskrete dynamische Systeme zu einem System zusammen, so nennt man dieses ein kontinuierlich-diskretes oder auch hybrides dynamisches System.

Bemerkungen

  • In der Literatur wird häufig nicht zwischen dynamischen Systemen und stetigen dynamischen Systemen bzw. Flüssen unterschieden, außerdem versteht man unter einem Fluss nicht selten einen differenzierbaren Fluss (siehe unten). Es finden sich auch allgemeinere Definitionen stetiger dynamischer Systeme, bei denen z. B. als Phasenraum eine topologische Mannigfaltigkeit, ein (u. U. kompakter) Hausdorff-Raum oder gar nur ein topologischer Raum genommen wird.
  • An Stelle der Linksoperation wie in der obigen Definition werden oft dynamische Systeme mit einer Rechtsoperation auf definiert, die Reihenfolge der Argumente dreht sich dann entsprechend um.
  • In der Definition wird die Identitätseigenschaft von der Operation deshalb gefordert, weil jeder Zustand , so lang keine Zeit vergeht (also für ), sich nicht verändern soll. Diese Eigenschaft bedeutet, dass die zu gehörende Transformation die identische Abbildung auf ist: 
  • Die Halbgruppeneigenschaft macht das dynamische System bezüglich der Zeit homogen: Man gelangt zunächst in Zeiteinheiten vom Zustand zum Zustand und anschließend von dort in Zeiteinheiten zum Zustand , d. h. zum gleichen Zustand zu dem man direkt vom Zustand in Zeiteinheiten kommt. Die zu allen Zeitpunkten gehörenden Transformationen bilden eine kommutative Halbgruppe mit der Komposition als Verknüpfung und mit einem neutralen Element , außerdem ist die Abbildung ein Halbgruppenhomomorphismus für alle Diese Transformationshalbgruppe ist bei invertierbaren dynamischen Systemen sogar eine Gruppe, denn für alle ist das inverse Element zu
  • Ein dynamisches System mit oder mit lässt sich genau dann zu einem invertierbaren dynamischen System mit fortsetzen, wenn die zu gehörende Transformation eine Umkehrfunktion besitzt. Es sind dann und rekursiv für alle Ist kontinuierlich, so sind durch für alle mit und ebenso sämtliche zu negativen Zeiten gehörenden Transformationen eindeutig gegeben. Mit ist so genau eine Operation von auf erklärt, so dass die invertierbare Fortsetzung von ist.
  • Wegen der Halbgruppeneigenschaft lässt sich jedes diskrete dynamische System oder als iterative Anwendung der zu gehörenden Transformation mit den Zeitpunkten als Iterationsindizes auffassen:  für alle und bei ist zusätzlich für alle Daher ist bereits durch eindeutig bestimmt und lässt sich einfacher schreiben.
  • Schränkt man bei einem kontinuierlichen dynamischen System die Zeit auf ein, dann ergibt sich mit stets ein diskretes dynamisches System. Diese Diskretisierung findet zum einen in der Numerik eine große Anwendung, wie z. B. bei der Rückwärtsanalyse. Zum Anderen existieren natürliche und technische Systeme, die durch nichtkontinuierliche Zustandsänderungen charakterisiert und in direkter Weise durch diskrete Dynamische Systeme modelliert werden können.
  • In der Theorie dynamischer Systeme interessiert man sich besonders für das Verhalten von Trajektorien für Hierbei sind Limesmengen und deren Stabilität von großer Bedeutung. Dabei sind Fixpunkte gerade diejenigen Punkte des Phasenraums, für die ein Punkt existiert, dessen Trajektorie für gegen x strebt, und Limesmengen solcher Punkte. Die wichtigsten Limesmengen sind neben Fixpunkten die periodischen Orbits. Gerade in nichtlinearen Systemen trifft man aber auch komplexe nichtperiodische Grenzmengen an. In der Theorie der nichtlinearen Systeme werden Fixpunkte, periodische Orbits und allgemeine nichtperiodische Grenzmengen unter dem Oberbegriff Attraktor (bzw. Repeller, falls abstoßend, vgl. auch seltsamer Attraktor) subsumiert. Diese werden in der Chaostheorie ausführlich untersucht.

Wichtige Spezialfälle

  • Symbolische Dynamik hat man bei einem diskreten dynamischen System mit für ein Alphabet ( ist also eine unendliche Folge von Symbolen aus ) und ist eine sogenannte Shift-Abbildung (Verschiebungsabbildung), die die Symbole in jeder Folge um eine Stelle verschiebt.
  • Differenzierbare (Halb-)Flüsse sind (Halb-)Flüsse , bei denen jede zu einem Zeitpunkt gehörende Transformation differenzierbar ist. Insbesondere ist jede dieser Transformationen eines differenzierbaren Flusses ein Diffeomorphismus.
  • In chaotischen Abbildungen, wie z. B. der Bernoulli-Abbildung, logistischen Abbildung oder Hénon-Abbildung, spielen Diskretisierungen eine große Rolle, um iterierte Abbildungen untersuchen zu können.

Beispiele

Ein physikalisches Beispiel ist das Doppelpendel, ein chemisches der Brüsselator.

Ein differenzierbarer Fluss aus der Physik

Sei eine kompakte differenzierbare Mannigfaltigkeit, beispielsweise eine nichtdegenerierte Energiefläche im , und ein glattes Vektorfeld über . Dann existiert nach dem Satz von Picard-Lindelöf eine einparametrige Gruppe von Diffeomorphismen mit

  1.    für alle

Die Trajektorie eines festen Punkts aus ist eine Lösungskurve der Differentialgleichung von 3. zum Anfangswert . Man nennt diese zum glatten Vektorfeld korrespondierende -parametrige Gruppe den Fluss auf .

Siehe auch

Weblinks

Literatur

  • Herbert Amann: Gewöhnliche Differentialgleichungen. 2. Auflage. de Gruyter, Berlin 1995, ISBN 3-11-014582-0.
  • George David Birkhoff: Dynamical Systems. Rev. Ed.. AMS, Providence, RI, 1966.
  • Manfred Denker: Einführung in die Analysis dynamischer Systeme. Springer, Berlin u. a. 2005, ISBN 3-540-20713-9.
  • John Guckenheimer, Philip Holmes: Nonlinear Oscillations, Dynamical Systems and Bifurcations of Vector Fields. Corr. 3rd printing. Springer, New York 1990, ISBN 3-540-90819-6.
  • Diederich Hinrichsen, Anthony J. Pritchard: Mathematical Systems Theory I - Modelling, State Space Analysis, Stability and Robustness. Springer, 2005.
  • Wolfgang Metzler: Nichtlineare Dynamik und Chaos, B.G. Teubner, Stuttgart/Leipzig 1998, ISBN 3-519-02391-1.
  • Gerald Teschl: Ordinary Differential Equations and Dynamical Systems. American Mathematical Society, Providence 2012, ISBN 978-0-8218-8328-0 (freie Onlineversion).
  • J. de Vries: Elements of Topological Dynamics. Springer, 1993.