Ventilator

aus Wikipedia, der freien Enzyklopädie
Wechseln zu: Navigation, Suche
Grafisches Symbol für einen Ventilator nach DIN EN 12792

Ein Ventilator (von lat. ventilare „Wind erzeugen“, „Kühlung zufächeln“) ist eine fremd angetriebene Strömungsmaschine, die meist mittels eines in einem Gehäuse rotierenden Laufrads ein gasförmiges Medium fördert und verdichtet sowie dabei zwischen Ansaug- und Druckseite ein Druckverhältnis zwischen 1 und 1,1 erzielt. Maschinen mit einem Druckverhältnis zwischen 1,1 und 3 sind Gebläse. Ventilatoren und Gebläse werden auch als Lüfter bezeichnet, insbesondere wenn sie zur Luftabsaugung vorgesehen sind. Im weiteren Sinn werden alle zu den Verdichtern gerechnet. Verdichter im engeren Sinn erzielen dagegen Druckverhältnisse von mehr als 3. Im Verhältnis zur Leistung erzielen Ventilatoren aufgrund des niedrigen Druckverhältnisses hohe Volumenströme, Gebläse wegen des mittleren Druckverhältnisses mittlere Volumenströme.

Einordnung nach Maschinenart[Bearbeiten]

Ventilatoren sind Strömungsmaschinen, die als Arbeitsmaschinen wirken. Da sie durch kontinuierliche Rotation eines Axial- bzw. Radiallaufrads arbeiten, sind es Turbomaschinen.

Axialventilator[Bearbeiten]

Axialventilator
Symbol des Axialventilators nach DIN EN 12792
Wirkprinzip des Axialventilators

Axialventilatoren sind die gebräuchlichste Bauform. Die Drehachse des Axiallaufrads verläuft parallel bzw. axial zum Luftstrom. Die Luft wird durch das Axiallaufrad ähnlich wie bei einem Flugzeug- oder Schiffspropeller bewegt. Die Vorteile von Axialventilatoren sind die im Verhältnis zum hohen geförderten Luftdurchsatz geringen Abmessungen. Der Nachteil ist die geringere Druckerhöhung im Verhältnis zum Radialventilator. Die Ausführung ohne Gehäuse ist bei Tisch- und Deckenventilatoren (Lüftern) üblich. Axialventilatoren mit Gehäuse und innen liegendem Antriebsmotor haben den Nachteil des Nabentotwassers hinter der Laufradnabe, den man jedoch durch geeignete Einbauten (Innendiffusor) weitgehend vermeiden kann. Da die Luft durch die Rotation hinter dem Axiallaufrad in Wirbeln austritt, wird durch feststehende Einbauten (Nachleitrad) eine Druckerhöhung erreicht. Um die Druckaustrittsverluste aus dem Axialventilator zu minimieren, werden bei größeren Ventilatoren Außendiffusoren eingesetzt.

Diagonalventilator[Bearbeiten]

Eine abgewandelte Ausführung des Axialventilators ist der so genannte Diagonalventilator, bei dem das Gehäuse und die Lüfterschaufeln konisch geformt sind (der Radius wird zur Druckseite hin größer) damit die Luft nicht axial, sondern diagonal austritt. Diagonalventilatoren haben bei gleicher Leistung und Größe einen größeren Luftdurchsatz und bauen einen höheren Druck auf, deshalb können sie z. B. bei gleichem Effekt bei geringerer Drehzahl betrieben werden und sind somit leiser.

Beide Ausführungen haben ein so genanntes Nabentotwasser (auch: „Dead Spot“), das sich hinter dem in der Mitte des Geräts angeordneten Motor befindet: Dort findet kaum eine Luftbewegung statt. Deshalb wurden auch schon Axialventilatoren entwickelt, die den Motor in einem umgebenden Gehäuse enthalten und bei denen sich nur noch das Lager in der Mitte befindet. Diese Ausführung ist jedoch aufgrund der ungewöhnlichen Bauform des Motors eher selten und auch teurer als vergleichbare Axialventilatoren. Aufwändig ist auch das Auswuchten wegen der großen, außen liegenden umlaufenden Masse des Antriebs. Besonders kompakte Ventilatoren werden üblicherweise von einem Außenläufermotor direkt angetrieben.

Radialventilator[Bearbeiten]

Radialventilator mit Direktantrieb
Radialventilator mit Riemenantrieb
Symbol des Radialventilators nach DIN EN 12792
Wirkprinzip des Radialventilators

Radialventilatoren werden überall dort verwendet, wo es im Vergleich zu Axialventilatoren auf größere Druckerhöhung bei gleicher Luftmenge ankommt. Die Luft wird parallel bzw. axial zur Antriebsachse des Radialventilators angesaugt und durch die Rotation des Radiallaufrads um 90° umgelenkt und radial ausgeblasen. Man unterscheidet Laufräder mit rückwärtsgekrümmten Schaufeln (bei hohen Drücken und Wirkungsgraden), geraden Schaufeln (für Sonderzwecke) und vorwärtsgekrümmten Schaufeln (bei geringen Drücken und Wirkungsgraden). Es gibt einseitig und beidseitig ansaugende Radialventilatoren mit und ohne Gehäuse.

Zentrifugalventilator[Bearbeiten]

Bei der Ausführung mit spiralförmigem Gehäuse wird die Luft über eine Austrittsfläche des Gehäuses ausgeblasen. Um die Druckverluste durch die hohe Austrittsgeschwindigkeit aus dem Radialventilator zu minimieren, muss auf geeignete weiterführende Kanalgestaltung geachtet werden (ggf. Einsetzen eines Diffusors).

Bei der Ausführung ohne spiralförmiges Gehäuse wird die Luft radial aus dem Radiallaufrad ausgeblasen und durch eine geeignete Gehäuseausführung wie bei Dachventilatoren ins Freie geblasen.

Tangential- oder Querstromventilatoren[Bearbeiten]

Diese sehen auf den ersten Blick aus wie breite oder auch längliche Radialventilatoren, das Funktionsprinzip ist jedoch grundlegend anders. Bei den Tangentialventilatoren wird die Luft zweimal durch das Lüfterrad geführt, wobei sie großflächig etwa über die halbe Oberfläche des Lüfterrads tangential angesaugt wird, durch das Innere des Rads geführt und ebenfalls tangential wieder abgegeben wird. Einen geringen Luftanteil befördert das Rad außen mit. Der Luftaustritt geschieht dann meist über einen schmalen Spalt in der Breite des Lüfterrads. Der Antriebsmotor befindet sich meist außerhalb des Luftstroms; entsprechend kleine Motoren sind auch im Inneren des Lüfterrads unterzubringen, was auch deren Kühlung verbessert.

Tangentialventilatoren können große Luftmengen gleichmäßig über eine breite Austrittsfläche abgeben und kommen in Klimageräten, Nachtspeicheröfen und Heizlüftern zum Einsatz. Da sie schon bei geringen Drehzahlen einen ausreichenden Luftdurchsatz haben, sind die meist von Spaltpolmotoren angetriebenen Tangentialventilatoren im Betrieb sehr leise und daher gut zur Kühlung von z. B. Tageslichtprojektoren geeignet.

Unverbindliche Referenzwerte für Ventilatoren [4][Bearbeiten]

Die Tabelle enthält Werte der Ventilatoren mit der besten zur Zeit der Verabschiedung dieser Verordnung auf dem Markt verfügbaren Technik. Diese Referenzwerte können möglicherweise nicht immer in allen Anwendungen oder für das gesamte von dieser Verordnung erfasste Leistungsspektrum erreicht werden:

Ventilatortyp Messkategorie
(A–D)
Effizienzkategorie
(statischer oder totaler Wirkungsgrad)
Effizienzgrad
(N)
Axialventilator A, C
B, D
statisch
total
65
75
Radialventilator mit vorwärtsgekrümmten Schaufeln und
Radialventilator mit Radialschaufeln
A, C
B, D
statisch
total
62
65
Radialventilator mit rückwärtsgekrümmten Schaufeln ohne Gehäuse A, C statisch 70
Radialventilator mit rückwärtsgekrümmten Schaufeln mit Gehäuse A, C
B, D
statisch
total
72
75
Diagonalventilator A, C
B, D
statisch
total
61
65
Querstromventilator B, D total 32

Begriffsbestimmung:

  • „Messkategorie“ bezeichnet eine Prüfung, Messung oder Betriebsanordnung, die die Einlass- und Auslassbedingungen des geprüften Ventilators festlegt (Einbausituationen gemäß ISO 5801)[5]
    • „Messkategorie A“ bezeichnet eine Anordnung, bei der Messungen am Ventilator mit freien Einlass- und Auslassbedingungen vorgenommen werden
    • „Messkategorie B“ bezeichnet eine Anordnung, bei der Messungen am Ventilator mit freiem Einlass und mit einer am Auslass montierten Rohrleitung vorgenommen werden
    • „Messkategorie C“ bezeichnet eine Anordnung, bei der Messungen am Ventilator mit einer am Einlass montierten Rohrleitung und mit freien Auslassbedingungen vorgenommen werden
    • „Messkategorie D“ bezeichnet eine Anordnung, bei der Messungen am Ventilator mit einer am Einlass und einer am Auslass montierten Rohrleitung vorgenommen werden
  • „Effizienzkategorie“ bezeichnet die zur Ermittlung der Energieeffizienz – d. h. des statischen Wirkungsgrads oder des totalen Wirkungsgrads – des Ventilators herangezogene Ausgangsenergieform des Ventilatorgases, wobei
    • a) der „statische Ventilatordruck“ (psf) zur Ermittlung der Ventilatorgasleistung in der Effizienzgleichung für den statischen Wirkungsgrad des Ventilators herangezogen wurde und
    • b) der „totale Druck des Ventilators“ (pf) zur Ermittlung der Ventilatorgasleistung in der Effizienzgleichung für den totalen Wirkungsgrad des Ventilators herangezogen wurde
  • „Effizienzgrad“ bezeichnet einen Parameter in der Berechnung der Zielenergieeffizienz eines Ventilators mit einer bestimmten elektrischen Eingangsleistung am Energieeffizienzoptimum (in der Berechnung der Energieeffizienz des Ventilators als Parameter „N“ dargestellt)
  • „Zielenergieeffizienz“ηZiel ist die Mindestenergieeffizienz, die ein Ventilator erreichen muss, um den Anforderungen zu entsprechen; sie beruht auf seiner elektrischen Eingangsleistung am Energieeffizienzoptimum, wobei ηZiel der Ausgangswert aus der entsprechenden Gleichung in Anhang II Abschnitt 3 ist, unter Verwendung der betreffenden ganzen Zahl N des Effizienzgrads (Anhang I Abschnitt 2, Tabellen 1 und 2) und der in kW ausgedrückten elektrischen Eingangsleistung Pe(d)des Ventilators an seinem Energieeffizienzoptimum in der betreffenden Energieeffizienzformel
  • „Gesamteffizienz“ bezeichnet je nach zutreffendem Fall entweder den „statischen Wirkungsgrad“ oder den „totalen Wirkungsgrad“

Anforderungen der ErP-Ökodesign-Richtlinie an Ventilatoren [6][Bearbeiten]

Das Entscheidungskriterium für die Energieeffizienz von Ventilatoren ist der Systemwirkungsgrad, der sich aus den Wirkungsgraden des Ventilators, des Motors und der Steuerungselektronik zusammensetzt.

Die Anforderungen wurden per 1. Januar 2015 in einer zweiten Stufe nochmals angehoben (siehe Tabelle).

Ventilatorkategorie Messkategorie
(A–D)
Ventilatordruck Leistungsbereich
> 0,125 KW
Wirkungsgrade
Leistungsbereich
> 10 KW
Wirkungsgrade
Leistungsbereich
> 500 KW
Wirkungsgrade
Axialventilator A, C
B, D
statisch
total
28
46
40
58
43
61
Radialventilator mit vorwärtsgekrümmten Schaufeln und
Radialventilator mit Radialschaufeln
A, C
B, D
statisch
total
32
37
44
49
47
52
Radialventilator mit rückwärtsgekrümmten Schaufeln ohne Gehäuse A, C statisch 42 62 66
Radialventilator mit rückwärtsgekrümmten Schaufeln mit Gehäuse A, C
B, D
statisch
total
41
44
61
64
65
68
Diagonalventilator A, C
B, D
statisch
total
30
42
50
62
54
66
Querstromventilator B, D total 16 21 21

Der Systemwirkungsgrad[Bearbeiten]

Der Systemwirkungsgrad der Ventilatoreinheit (ηSys) setzt sich aus den Wirkungsgraden des Ventilators (ηV), des Motors (ηM), des Antriebs (ηA) und der Regelung (ηR) wie folgt zusammen: ηSys = ηV * ηM * ηA * ηR[7]

Je nach Bauart des Ventilators und der eingesetzten Technik unterscheidet sich der Systemwirkungsgrad sehr stark. Beispielsweise liegt der Wirkungsgrad bei Axialventilatoren bis 10 kW Aufnahmeleistung im Mittel zwischen 25 und 45 % und bei Freiläufern mit rückwärts gekrümmten Schaufeln bis 10 kW Aufnahmeleistung zwischen 35 und 60 %. Mit steigendem Volumenstrom und Aufnahmeleistung des Motors verbessert sich der Systemwirkungsgrad, da sich der Motorwirkungsgrad (75 bis 95 %) und die Antriebswirkungsgrade (90 bis 95 % bei Keilriemen bis 97 % bei Flachriemen) wesentlich verbessern. Der Ventilatorwirkungsgrad erhöht sich nur moderat. Da die meisten RLT-Anlagen variabel betrieben werden, wird entweder ein Frequenzumrichter mit einem Wirkungsgrad von 95 bis 97 % oder eine in den Motor integrierte Steuerung zur Regelung eingesetzt.

Anforderungen an die Produktinformationen zu Ventilatoren[8][Bearbeiten]

Nr. 1. Die in Nr. 2 Punkte 1 bis 14 genannten Informationen zu Ventilatoren müssen wie folgt sichtbar bereitgestellt werden:

a) in den technischen Unterlagen zu Ventilatoren
b) auf frei zugänglichen Internetseiten der Ventilatorenhersteller

Nr. 2. Dabei ist anzugeben:

  1. Gesamteffizienz (η), gerundet auf eine Dezimalstelle
  2. zur Ermittlung der Energieeffizienz verwendete Messkategorie (A-D)
  3. Effizienzkategorie (statischer Wirkungsgrad oder totaler Wirkungsgrad)
  4. Wirkungsgrad am Energieeffizienzoptimum
  5. ob die Berechnung der Ventilatoreffizienz auf der Annahme beruht, dass eine Drehzahlregelung zum Einsatz kommt; falls ja, ob diese in den Ventilator integriert ist oder ob sie mit diesem installiert werden muss
  6. Herstellungsjahr
  7. Name oder Warenzeichen, amtliche Registrierungsnummer und Niederlassungsort des Herstellers
  8. Modellnummer des Produkts
  9. Nennmotoreingangsleistung(en) (kW), Massen- bzw. Volumenstrom (-ströme) und Druck (Drücke) am Energieeffizienzoptimum
  10. Umdrehungen pro Minute am Energieeffizienzoptimum
  11. „spezifisches Verhältnis“
  12. für die Erleichterung des Zerlegens, des Recyclings oder der Entsorgung nach der endgültigen Außerbetriebnahme relevante Informationen
  13. für die Minimierung der Umweltauswirkungen und die Gewährleistung optimaler Lebensdauer relevante Informationen zu Einbau, Betrieb und Instandhaltung des Ventilators
  14. Beschreibung weiterer bei der Ermittlung der Energieeffizienz von Ventilatoren genutzter Gegenstände wie Rohrleitungen, die nicht in der Messkategorie beschrieben und nicht mit dem Ventilator geliefert werden.

Die Informationen in den technischen Unterlagen sind in der Reihenfolge gemäß Nr. 2 Punkte 1 bis 14 bereitzustellen. Dabei müssen nicht genau die in der Aufstellung gebrauchten Formulierungen wiederholt werden. Die Angaben können statt in Textform auch in Form von Grafiken, Schaubildern und Symbolen erfolgen.

Die in Nr. 2 Punkte 1, 2, 3, 4 und 5 genannten Informationen sind dauerhaft auf oder nahe dem Leistungsschild anzugeben; in Bezug auf Nummer 2 Punkt 5 ist diejenige der folgenden Formulierungen zu verwenden, die zutrifft:

  • „Mit diesem Ventilator muss eine Drehzahlregelung installiert werden.“
  • „In diesen Ventilator ist eine Drehzahlregelung integriert.“

Die Hersteller machen in der Bedienungsanleitung Angaben zu besonderen Sicherheitsvorkehrungen, die beim Zusammenbau, beim Einbau oder bei der Instandhaltung von Ventilatoren zu treffen sind. Falls gemäß Nr. 2 Punkt 5 der Anforderungen an die Produktinformationen mit dem Ventilator eine Drehzahlregelung installiert werden muss, geben die Hersteller zur Gewährleistung eines optimalen Betriebs nach der Montage Einzelheiten zu den Eigenschaften der Drehzahlregelung an.

Anwendung[Bearbeiten]

Die meisten Ventilatoren fördern Luft und gehören in das Fachgebiet der Lufttechnik bzw. Lüftung. Bei Beschränkung auf dieses Medium: Luft ergeben sich folgende Einsatzbereiche:

Anwendungen von Ventilatoren < 0,125 KW im PC-Bereich[Bearbeiten]

Die Abwärme des Netzteils wird - von wenigen Ausnahmen abgesehen („Flüsterbetrieb“ durch lüfterlosen Betrieb) - per Ventilator nach außen befördert und bewirkt dadurch gleichzeitig einen permanenten Luftstrom im Gehäuse selbst. Eine unterschwellige ständige Lärmbelästigung am Arbeitsplatz ist so unvermeidbar.

Mit steigender Prozessorleistung (zunächst nur die CPU; ab i486) wurde eine „aktive Kühlung“, d. h. ein Kühlkörper mit Ventilator, zusätzlich erforderlich, damit die dicht gedrängten Schaltkreise im Chip-Innern keinen sogenannten „Hitzetod“ erleiden. Später wurde diese Maßnahme auch auf die GPU von Grafikkarten und vielfach die Chipsätze der Motherboards ausgeweitet, ebenso wie auf die Festplatten, besonders bei mehreren gleichzeitig nebeneinander. Bedingt durch enge und flache Gehäuse insbesondere im Server-Bereich („Pizzakarton“ oder auch „Pizzarack“) wurden weitere Lüfter erforderlich, da die RAM-Module sowie die Spannungsteiler-Kondensatoren ebenso besondere Wärmeabfuhr benötigen.

Zum Betrieb benötigt ein Lüfter eine Versorgungsspannung, typischerweise 12  V. Mit niedrigerer Spannung läuft der Lüfter zwar leiser, erbringt aber auch weniger Kühlleistung. Beim Unterschreiten eines bestimmten Spannungswertes bleibt der Rotor stehen. Ein drittes Kabel liefert ein so genanntes Tachosignal (Rückmeldung ob funktionsfähig bzw. maximale Drehzahl erreichbar). Pro Umdrehung wechselt es zwischen Masse und undefiniertem Zustand. Neuere Lüfter besitzen einen vierten Anschluss. Über ihn kann die Drehzahl durch Pulsweitenmodulation (PWM) geregelt werden.

Geschichte und Ventilator-Hersteller des 18.–20. Jahrhundert Deutschlands[Bearbeiten]

1851 gründete der Ingenieur Christian Schiele, ein Sohn des Johann Georg Schiele, der 1828 in der Mainzer Landstraße die erste Frankfurter Gasanstalt gebaut hatte, in der Neuen Mainzer Straße 12 in Frankfurt a. M. die erste Ventilatorenfabrik Deutschlands.

Die Industrie für Kleinventilatoren in Deutschland konzentriert sich in Hohenlohe und bildet einen so genannten Cluster. Dieser Cluster entstand aus einer einzigen Firma (Ziehl-Abegg), ist aber inzwischen so ausgeprägt (u.a. entstand vor 50 Jahren die Firma ebm-papst, Mitbegründer war Heinz Ziehl), dass er in der ersten Themenausgabe „Cluster“ des Magazins der Unternehmensberatungsfirma McKinsey (McK Wissen) ausführlich als Musterbeispiel für das Cluster-Phänomen dargestellt wird.

Ein weiteres Ventilatorenzentrum entstand in Bad Hersfeld. Hier gründete Benno Schilde 1874 die spätere Benno Schilde GmbH. 1884 baute Benno Schilde den ersten aus Stahlblech geschweißten Radialventilator. Das gesamte Ventilatorenprogramm wird heute von der TLT-Turbo GmbH in Zweibrücken weitergeführt.

Bereits 1879 wurden in der Karl-August-Hütte in Euskirchen Radialventilatoren gebaut. Anfangs noch aus Guss, erfolgte später eine Spezialisierung auf Sonderwerkstoffe. Hitze- und verschleißfeste Werkstoffe und Ventilatoren aus Edelstahl kamen ins Programm. Weiterentwicklung und Fertigung dieser Spezialanfertigungen werden heute durch die BVA Kockelmann GmbH in Euskirchen durchgeführt.

1923 wurde die Elektro-Motoren-Handelsgesellschaft von Karl W. Müller in Esslingen am Neckar gegründet. Daraus entstand die Elektror airsystems GmbH, die heute Industrieventilatoren und Seitenkanalverdichter herstellt. Die dazugehörigen Motoren werden im eigenen Werk hergestellt.

Trivia[Bearbeiten]

In Südkorea ist der Ventilatortod ein weit verbreiteter Aberglaube, dem zufolge man aufgrund von Ventilatoren, die längere Zeit laufen, erstickt, vergiftet wird oder verklammt.[9]

Siehe auch[Bearbeiten]

Literatur[Bearbeiten]

Weblinks[Bearbeiten]

 Wiktionary: Ventilator – Bedeutungserklärungen, Wortherkunft, Synonyme, Übersetzungen
 Wiktionary: Lüfter – Bedeutungserklärungen, Wortherkunft, Synonyme, Übersetzungen
 Commons: elektrische Lüfter und Ventilatoren – Sammlung von Bildern, Videos und Audiodateien

Einzelnachweise[Bearbeiten]

  1. Amtsblatt der Europäischen Union Anhang IV; www.erp-richtlinie.at, abgerufen am 3. Januar 2014.
  2. Anforderungen der ErP-(Ökodesign)-Richtlinie an Ventilatoren www.cci-dialog.de, abgerufen am 3. Januar 2014.
  3. Anforderungen an die Produktinformationen zu Ventilatoren – Typenschild und Datenblätter www.erp-richtlinie.at, abgerufen am 4. Januar 2015.
  4. Amtsblatt der Europäischen Union Anhang IV; www.erp-richtlinie.at, abgerufen am 3. Januar 2014.
  5. Neue Entwicklungen undAnforderungen an Ventilatoren in Lüftungs- und Klimasystemen(PDF; 2,9MB) www.rlt-geraete.de, abgerufen am 14. Januar 2015.
  6. Anforderungen der ErP-(Ökodesign)-Richtlinie an Ventilatoren www.cci-dialog.de, abgerufen am 3. Januar 2014.
  7. Energieeinsparpotential von Radialventilatoren in Lüftungs- und Klimageräten(PDF; 5,5MB) opus.ba-glauchau.de, abgerufen am 9. Januar 2015.
  8. Anforderungen an die Produktinformationen zu Ventilatoren – Typenschild und Datenblätter www.erp-richtlinie.at, abgerufen am 4. Januar 2015.
  9. Beware of Summer Hazards!. Korea Consumer Protection Board (KCPB). 18. Juli 2006. Archiviert vom Original am 8. Januar 2009. Abgerufen am 1. September 2007.