Don Zagier

aus Wikipedia, der freien Enzyklopädie
(Weitergeleitet von Zagier)
Wechseln zu: Navigation, Suche
Don Zagier 2006 in Oberwolfach

Don Bernard Zagier (* 29. Juni 1951 in Heidelberg) ist ein amerikanischer Mathematiker. Derzeit ist er einer der Direktoren des Max-Planck-Instituts für Mathematik in Bonn und Professor am französischen Collège de France in Paris. Seine Hauptarbeitsgebiete sind Zahlentheorie, Theorie der Modulformen und Verbindungen zur Topologie.

Biografie[Bearbeiten]

Zagier ist 1951 in Heidelberg als Sohn amerikanischer Eltern geboren und in den USA aufgewachsen. Er bestand im Alter von 13 Jahren sein Abitur. Er studierte am MIT Mathematik und Physik und wurde 1967 - im Alter von 16 Jahren - Putnam Fellow (im Jahr zuvor gewann er den ersten Preis in der Mathematik-Olympiade). 1968 erhielt er den B.A., ging dann an die Oxford University und an die Universität Bonn, wo er bei Friedrich Hirzebruch mit 19 promovierte (offiziell in Oxford). Nach zweijährigem Aufenthalt an der ETH Zürich und am IHES in Bures-sur-Yvette bei Paris kam er 1974 nach Bonn, habilitierte sich 1975 und wurde 1976 Deutschlands jüngster Professor. 1984 wurde er als Wissenschaftliches Mitglied der Max-Planck-Gesellschaft an das Max-Planck-Institut für Mathematik in Bonn berufen, wo er 1995 zum Direktor ernannt wurde. Von 1979 bis 1990 war er gleichzeitig Professor an der University of Maryland und danach bis 2001 Professor an der Universität Utrecht. Seit 2000 ist er auch am College de France in Paris tätig.

Seit dem Jahr 1998 ist Zagier Mitglied der Leopoldina, im Jahr 1999 wurde er in die Nordrhein-Westfälischen Akademie der Wissenschaften und der Künste gewählt.

2007 hielt er die Gauß-Vorlesung der DMV. 1986 war er Invited Speaker auf dem Internationalen Mathematikerkongress in Berkeley (L-series and the Green´s functions of modular curves).

Mathematische Leistungen[Bearbeiten]

Mit Benedikt Gross löste er 1986 das allgemeine Klassenzahlproblem imaginär quadratischer Zahlkörper von Gauß, indem sie (aufbauend auf einer Idee von Dorian Goldfeld (1976), die einen Zusammenhang mit der Theorie der L-Funktionen elliptischer Kurven herstellte) eine im Prinzip effektive Methode angaben, die Liste der imaginär quadratischen Klassenkörper \Bbb Q(\sqrt {(-n)}) mit einer bestimmten Klassenanzahl anzugeben. Der Spezialfall der Klassenzahl 1 (bei dem die Primfaktorzerlegung eindeutig ist, und den C. F. Gauß ursprünglich behandelt hatte) war schon von Kurt Heegner und Harold Stark bewiesen worden. In ihrer Arbeit gaben Gross und Zagier auch eine Teillösung der Vermutung von Birch und Swinnerton-Dyer (Ordnung r der Nullstelle s=1 der L-Funktion einer elliptischen Kurve ist gleich dem Rang r der „additiven“ Gruppe der rationalen Punkte auf der Kurve). Sie bewiesen, dass der Rang der Gruppe der rationalen Punkte mindestens 1 ist, falls die Ordnung der Nullstelle L(1) gleich 1 ist.

Neben der Theorie Diophantischer Gleichungen, die er auch als Programmierer numerisch erforscht, beschäftigte er sich u. a. mit Modulformen und deren Perioden (viele spielen eine Rolle als „Motive“ in der Zahlentheorie) und mit Jacobiformen (er arbeitete dort mit Martin Eichler und Nils-Peter Skoruppa zusammen). In jüngster Zeit arbeitet er über Thetafunktionen zu indefiniten quadratischen Formen.

Er bewies die Vermutung, dass die Werte der Dedekindschen Zetafunktion für die natürlichen Zahlen durch Polylogarithmen ausgedrückt werden können. Außerdem schuf er eine Verbindung zu hyperbolischen Mannigfaltigkeiten (Räume negativer Krümmung), wo schon Lobatschewski das Volumen eines dreidimensionalen Simplexes durch Dilogarithmen ausdrückte. Er arbeitete auch über den Zusammenhang von Knoteninvarianten und multiplen Zetafunktionen.

Mit Harer bewies er eine Vermutung über die Euler-Charakteristik der Modulräume Riemannscher Flächen vom Geschlecht g, die danach gleich dem Wert der Riemannschen Zetafunktion bei (1-2g) ist. Dabei studierte er auch die Kombinatorik der Zellenzerlegung dieser Modulräume. Diese Arbeit hat auch Anwendungen in der Stringtheorie (wo die Störungstheorie zur Betrachtung Riemannscher Flächen beliebig hohen Geschlechts führt, auf denen die fundamentalen Teilchen als Eichfelder bzw. Spinorfelder definiert sind).

In einer bisher unveröffentlichten Arbeit berechnete er gemeinsam mit Martin Möller mithilfe von Thetafunktionen die Taylorentwicklung von Teichmüllerkurven. Dieses Ergebnis lieferte somit eine der ersten bedeutenden expliziten analytischen Erkenntnisse über Teichmüllerkurven.

Außerdem untersuchte er auch stabile Rang-2-Vektorbündel auf Riemannflächen und die zugehörige Verlindeformel (aus der Stringtheorie).


Zagier arbeitet auch in mathematischer Physik, z. B. in der Perkolationstheorie.

1987 wurde er mit dem Colepreis, 2001 mit dem Karl-Georg-Christian-von-Staudt-Preis ausgezeichnet. Außerdem erhielt er die Carus-Medaille 1984 und den Prix Élie Cartan 1996, sowie 2000 den Chauvenet-Preis der AMS.

Zu seinen Doktoranden zählen Winfried Kohnen, Maxim Kontsevich, Nils-Peter Skoruppa, Sander Zwegers und Svetlana Katok.

Literatur[Bearbeiten]

von Zagier:

Weblinks[Bearbeiten]