Satz von Wedderburn

aus Wikipedia, der freien Enzyklopädie
Zur Navigation springen Zur Suche springen

Der Satz von Wedderburn (nach Joseph Wedderburn) gehört zum mathematischen Teilgebiet der Algebra. Er besagt, dass jeder endliche Schiefkörper ein Körper ist, das heißt: Wenn ein Schiefkörper nur endlich viele Elemente enthält, folgt daraus bereits die Kommutativität der Multiplikation. Mit anderen Worten: Ein Schiefkörper, der kein Körper ist (in dem die Multiplikation also nicht kommutativ ist), enthält unendlich viele Elemente.[Anm 1]

Neben Wedderburn (der mehrere Beweise gab, zuerst 1905)[1] haben auch andere Mathematiker unterschiedliche Beweise für den Satz geliefert, zum Beispiel Leonard Dickson, Emil Artin,[2] Ernst Witt (der Beweis umfasst eine Seite),[3] Hans Zassenhaus und Israel Herstein.

Es gibt noch andere bekannte Sätze, die manchmal auch einfach Satz von Wedderburn genannt werden, wie sein Satz zur Klassifikation halbeinfacher Algebren,[4] verallgemeinert im Satz von Artin-Wedderburn. Im Englischen wird Wedderburns Satz über endliche Schiefkörper deshalb auch Kleiner Satz von Wedderburn genannt.

Anwendung[Bearbeiten | Quelltext bearbeiten]

Dieser Satz hat eine wichtige Anwendung in der synthetischen Geometrie: Für endliche affine oder projektive Ebenen folgt aus dem Satz von Desargues der Satz von Pappos.[5] Man kann jede desarguessche Ebene als affine bzw. projektive Ebene über einem Schiefkörper betrachten, wobei der Satz von Pappos genau dann gilt, wenn kommutativ ist. Hier kommt der Satz von Wedderburn zum Einsatz. Für diesen rein geometrischen Sachverhalt kennt man bis heute keinen geometrischen Beweis.[5]

Die umgekehrte Aussage „Jede pappossche Ebene ist desarguessch“ wird (nach Gerhard Hessenberg) als Satz von Hessenberg bezeichnet und gilt für jede affine und jede projektive Ebene.[5]

Beweise[Bearbeiten | Quelltext bearbeiten]

Ernst Witt (1931)[Bearbeiten | Quelltext bearbeiten]

Der Beweis von Ernst Witt[3] beruht auf dem Zusammenwirken dreier einfacher Fakten:

Zur Erläuterung: Der Stabilisator (oder die Standgruppe) eines Elementes ist definiert durch und bildet eine Untergruppe in .[Anm 2] Es besteht eine Bijektion von der Menge der Linksnebenklassen dieser Gruppe zur Bahn: . Für die Mächtigkeiten bedeutet dies, dass die Länge der Bahn von mit dem Index der Standgruppe von (in der Gruppe ) übereinstimmt: Für endliche Gruppen ist dies gerade die Aussage des Bahnensatzes, und die Bahnformel ergibt sich, indem für endliche Mengen die Anzahlen beider Seiten über ein Repräsentantensystem der Bahnen summiert werden, und liefert .
Wählt man als Operation die Konjugation der Gruppe auf sich selbst, so werden die Bahnen Konjugationsklassen genannt: Also erfolgt die Summe über Repräsentanten der Konjugationsklassen und liefert die Gruppenordnung als die Summe der Indizes der zugehörigen Zentralisatoren, denn diese sind unter der Konjugation gerade die Stabilisatoren. Die Bahnengleichung heißt in diesem Falle auch Klassengleichung.

Ferner zwei Fakten für eine natürliche Zahl :

  • Faktum 2: Das -te Kreisteilungspolynom ist dasjenige ganzzahlige normierte Polynom größten Grades, das teilt, jedoch zu allen mit teilerfremd ist. Daher gilt und für alle mit .[Anm 3]
  • Faktum 3 entspringt unmittelbar der geometrischen Anschauung am Einheitskreis: Für jede ganze Zahl und jede primitive -te Einheitswurzel – etwa  – gilt im Falle die einfache Abschätzung[Anm 4] , so dass mit Faktum 2 (oder ebenso gut unmittelbar nach Definition des Kreisteilungpolynoms) folgt: . Im Falle egalisiert sich diese Abschätzung zu , da .[Anm 5]

Nun zum eigentlichen Beweis: Es sei also ein endlicher Schiefkörper. Seine multiplikative Gruppe operiere auf sich selbst durch Konjugation: .

Für ein beliebiges ist der Stabilisator gleich der multiplikativen Gruppe eines Schiefkörpers mit [Anm 6]

Für die Menge der Fixpunkte gilt insbesondere: ist das Zentrum des Schiefkörpers und selbst ein kommutativer Körper. Somit ist eine Divisionsalgebra über der endlichen Dimension , so dass , wenn gesetzt wird.

Für bezeichne nun , sodass und . (Es gilt ja sogar .)

Insbesondere ist für ein der Stabilisator , also und . Die Umkehrung gilt ebenso: .

Ein Repräsentantensystem für die Bahnen (Konjugationsklassen) gemäß Faktum 1 sei mit bezeichnet. Dieses enthält notwendig die Menge der Fixpunkte, d. h. der Punkte mit einelementigen Bahnen: Dies ist gerade .

Faktum 1, also die Aufsummierung der Klassengleichung (d. h. der Bahnformel) über die Konjugationsklassen, liefert nun:

Faktum 2 gestattet nun, auf zu schließen, was jedoch auf den erbitterten Widerspruch des Faktums 3 stößt, solange . Allein der Fall löst die Unvereinbarkeit beider Aussagen in Wohlgefallen auf, und genau dies war zu zeigen: Die Divisionsalgebra stimmt mit ihrem Zentrum überein, d. h., sie ist kommutativ.

Beweis mit Hilfe des Satzes von Skolem-Noether[Bearbeiten | Quelltext bearbeiten]

Einen Beweis mit Hilfe des Satzes von Skolem-Noether (basierend auf den Struktursätzen von Wedderburn über einfache und halbeinfache Algebren (1907)) findet man bei Ina Kersten, Brauergruppen, Abschnitt 6.2, Seiten 50 f. oder bei Bartel Leendert van der Waerden, Algebra II, Kapitel XIV (Darstellungstheorie der Gruppen und Algebren), § 112 (Doppelmoduln und Produkte von Algebren), Anwendung in Textziffer 4 (siehe Literatur).

Folgerungen[Bearbeiten | Quelltext bearbeiten]

Aus dem Satz von (Dickson-)Wedderburn folgt, dass die Brauergruppe eines endlichen Körpers trivial ist:

Die Brauergruppe besitzt eine galoiskohomologische Interpretation.

Literatur[Bearbeiten | Quelltext bearbeiten]

Anmerkungen[Bearbeiten | Quelltext bearbeiten]

  1. Denn ist bekanntlich gleichwertig mit
  2. Dabei gilt für . Also ist die Standgruppe genau dann Normalteiler in , wenn sie Standgruppe für jedes Element der Bahn von ist:  .
  3. Diese Teilerbeziehungen gelten in und – der Normiertheit der beteiligten Polynome wegen – sogar schon über . – Zur Abrundung des Hintergrunds: Im Übrigen ist die Nullstellenmenge von in einem Zerfällungskörper gerade die Menge aller primitiven -ten Einheitswurzeln. Daher ist und , woraus mit den Möbiusschen Umkehrformeln (in multiplikativem Kontext) folgt: . In gilt gerade , und die Einheitswurzeln liegen sämtlich auf dem Einheitskreis. Ferner ist , d. h., es hat ganzzahlige Koeffizienten (Beweis mit Lemma von Gauß oder direkt durch euklidische Division normierter (!) Polynome mit (notwendig verschwindendem!) Rest), und es ist irreduzibel über (und gleichermaßen über ) vom Grade (Eulersche -Funktion); die Kreisteilungserweiterung ist galoissch mit als Minimalpolynom und als Galoisgruppe, und die -ten primitiven Einheitswurzeln sind sämtlich untereinander konjugiert (unter der Operation der Galoisgruppe, d. h., sie liegen in derselben Bahn), d. h., sie haben dasselbe Minimalpolynom, d. h., ihr gemeinsames Minimalpolynom ist normal (galoissch) über (im Sinne von B. L. van der Waerden, Algebra I, § 41, Seite 126). – Über einem endlichen Primkörper jedoch kann das Kreisteilungspolynom reduzibel sein.
  4. Dies ist geometrisch unmittelbar einsichtig und folgt gleichermaßen aus der Dreiecksungleichung am Einheitskreis.
  5. Dieses Faktum involviert also die archimedische (indiskrete) Bewertung, nämlich den Betrag des lokalen Körpers . Es versetzt in Erstaunen, auf welch anschauliche Weise dieser Beweis die Notwendigkeit der Kommutativität des Schiefkörpers in einer einfachen geometrische Abschätzung widerspiegelt.
  6. Beweis durch Nachrechnen. – Mit der auf definierten, über bilinearen Kommutatorklammer gilt für : Wenn also , so gilt (i) gemäß Bilinearität , (ii) gemäß Produktregel und (iii) . – Nebenbei bemerkt gilt die Jacobi-Identität .

Einzelnachweise[Bearbeiten | Quelltext bearbeiten]

  1. Wobei der erste fehlerhaft war, so dass die Priorität eigentlich Leonard Dickson zusteht. Die Geschichte der Beweise ist von Karen Parshall untersucht worden.
  2. Siehe Literatur; Emil Artin gibt in seinem Beitrag auch die Quellen für die Beweise von Wedderburn und Dickson.
  3. a b Ernst Witt: Über die Kommutativität endlicher Schiefkörper. Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg, Band 8, 1931, S. 413, doi:10.1007/BF02941019.
  4. Zum Beispiel Bartel L. van der Waerden: Algebra. Band 2, Springer, Heidelberger Taschenbücher, S. 73.
  5. a b c Heinz Lüneburg: Die euklidische Ebene und ihre Verwandten. Birkhäuser, Basel/Boston/Berlin 1999, ISBN 3-7643-5685-5, III: Papossche Ebenen (digitalisierte Leseprobe bei Google Books [abgerufen am 30. Juli 2013] – ausführliche Diskussion und Beweis des Satzes von Hessenberg; Erläuterungen, wie der Satz von Pappos die algebraische Struktur des Koordinatenkörpers bestimmt).