Kongruenzrelation

aus Wikipedia, der freien Enzyklopädie
Wechseln zu: Navigation, Suche

In der Mathematik, genauer der Algebra, nennt man eine Äquivalenzrelation auf einer algebraischen Struktur eine Kongruenzrelation, wenn die Operationen der algebraischen Struktur mit dieser Äquivalenzrelation verträglich sind. In allgemeiner Form, wie hier dargestellt, werden sie in der universellen Algebra untersucht.

Definition[Bearbeiten]

Seien A eine Menge, f\colon A^n \rightarrow A eine n-stellige Operation (Funktion) auf A und \theta eine Äquivalenzrelation auf A. Man nennt f mit \theta verträglich, falls für alle a_1, \dots, a_n, b_1, \dots, b_n \in A mit a_1 \theta b_1, \dots, a_n \theta b_n immer

f(a_1, \dots, a_n) \theta f(b_1, \dots, b_n)

gilt.

Sei nun (A, (f_i)) eine algebraische Struktur, dann wird \theta Kongruenzrelation auf (A, (f_i)) genannt, falls alle f_i verträglich sind mit \theta.

Anwendung[Bearbeiten]

Aus einer algebraischen Struktur \mathbf{A} und einer Kongruenzrelation \theta auf dieser algebraischen Struktur kann eine neue algebraische Struktur \mathbf{A} / \theta gewonnen werden, die sogenannte Faktorstruktur, Faktoralgebra oder Quotientenstruktur, dabei ist die Grundmenge von \mathbf{A} / \theta gerade die Faktormenge A / \theta und die für jede n-stellige Operation f_{\mathbf{A}}: A^n \rightarrow A von \mathbf{A} wird eine neue Operation f_{\mathbf{A} / \theta}: (\mathbf{A} / \theta)^n \rightarrow \mathbf{A} / \theta auf \mathbf{A} / \theta definiert durch

f_{\mathbf{A} / \theta}([a_1]_\theta, \dots, [a_n]_\theta):=[f_{\mathbf{A}}(a_1, \dots, a_n)]_\theta

Beispiele[Bearbeiten]

  1. Für alle algebraischen Strukturen sind \Delta_A = \{ (a, a) | a \in A \} (genannt Diagonale oder Identität) und \nabla_A = A^2 (genannt Allrelation) immer Kongruenzrelationen.
  2. Ist \varphi : \mathbf{A} \rightarrow \mathbf{B} ein Homomorphismus zwischen den beiden algebraischen Strukturen \mathbf{A} und \mathbf{B}. Definiere \mbox{Kern} \varphi := \{(a,b) \in A^2 | \varphi a = \varphi b \} . Dann ist \mbox{Kern} \varphi eine Kongruenzrelation auf A.
  3. Sei \mathbf{G} = (G, \cdot, ^{-1}, e) eine Gruppe, N ein Normalteiler dieser Gruppe. \theta_N sei diejenige Äquivalenzrelation auf G mit den Äquivalenzklassen aN, \quad a \in G, dann ist \theta_N eine Kongruenzrelation auf \mathbf{G}. Man kann sogar zeigen, dass N \mapsto \theta_N eine bijektive Abbildung zwischen den Normalteilern und den Kongruenzrelationen einer Gruppe ist. Bei einer Gruppe entsprechen also Kongruenzrelationen genau den Normalteilern.
  4. Die analoge Aussage wie oben gilt auch für Ideale von Ringen und für Unterräume von Vektorräumen. (Sprich: Die von Idealen bzw. Unterräumen bestimmten Äquivalenzklassen entsprechen genau den von Kongruenzrelationen bestimmten Klassen).
  5. Infolgedessen gibt es für Algebren und Kongruenzen auch einen Homomorphiesatz sowie die beiden Isomorphiesätze. Sie stellen eine Verallgemeinerung der von Gruppen (und Ringen bzw. Vektorräumen) bekannten Sätze dar, sodass der Homomorphiesatz bei den Gruppen in größerem Kontext gesehen werden kann.

Homomorphiesatz (für Algebren): Sind \mathbf{A} und \mathbf{B} zwei Algebren gleichen Typs (d.h. gibt es zu jeder n-stelligen Funktion f:\mathbf{A}^n\to\mathbf{A} genau eine "passende" n-stelligen Funktion g:\mathbf{B}^n\to\mathbf{B}) und ist \varphi:\mathbf{A}\to\mathbf{B} ein Algebrenhomomorphismus mit Kern \theta_\varphi, so gilt: \mathbf{A} / \theta_\varphi\simeq\varphi(\mathbf{A})

Ebenso könnte man die Isomorphiesätze formulieren, für die man zuerst geeignet den Begriff der Faktorkongruenz benötigt.