Fourier-Transformation

aus Wikipedia, der freien Enzyklopädie
Wechseln zu: Navigation, Suche
Dieser Artikel beschäftigt sich mit der Fourier-Transformation für aperiodische Funktionen. Oftmals versteht man unter Fourier-Transformation auch das Bilden der Fourier-Koeffizienten einer Fourier-Reihe.

Die Fourier-Transformation (genauer die kontinuierliche Fourier-Transformation; Aussprache: [fuʁie]) ist eine Methode der Fourier-Analysis, die es erlaubt, kontinuierliche, aperiodische Signale in ein kontinuierliches Spektrum zu zerlegen. Die Funktion, die dieses Spektrum beschreibt, nennt man auch Fourier-Transformierte oder Spektralfunktion. Diese Integraltransformation ist benannt nach dem Mathematiker Jean Baptiste Joseph Fourier, der im Jahr 1822 die Fourier-Reihen einführte, ein Analogon der kontinuierlichen Fourier-Transformation für periodische Signale.

Definition[Bearbeiten | Quelltext bearbeiten]

Sei eine integrierbare Funktion. Die (kontinuierliche) Fourier-Transformierte von ist definiert durch

wobei ein n-dimensionales Volumenelement sowie die imaginäre Einheit ist und mit das Standardskalarprodukt der Vektoren und gemeint ist. Die Normierungskonstante ist in der Literatur nicht einheitlich. In der Theorie der Pseudodifferentialoperatoren und in der Signalverarbeitung ist es üblich, den Faktor wegzulassen, sodass die Rücktransformation den Vorfaktor erhält. Die Transformation lautet dann:

Dies hat den Nachteil, dass im Satz von Parseval ein Vorfaktor auftaucht, was bedeutet, dass die Fouriertransformation dann keine unitäre Abbildung mehr auf ist. Mit anderen Worten: Die Signalleistung ändert sich dann durch die Fouriertransformation. In der Literatur zu Signalverarbeitung und Systemtheorie findet man auch folgende Konvention, die ohne Vorfaktoren auskommt:

Die reelle Form der Fourier-Transformation wird als Hartley-Transformation bezeichnet. Für reelle Funktionen kann die Fourier-Transformation durch die Sinus- und Kosinus-Transformation substituiert werden.

Beispiel[Bearbeiten | Quelltext bearbeiten]

Als Beispiel soll das Frequenzspektrum einer gedämpften Schwingung mit ausreichend schwacher Dämpfung untersucht werden. Diese kann durch folgende Funktion beschrieben werden:

oder in komplexer Schreibweise:

Hier ist die Amplitude und die Kreisfrequenz der Schwingung, die Zeit nach der die Amplitude auf abgefallen ist und die Heaviside-Funktion. Das heißt, die Funktion ist nur für positive Zeiten nicht null.

Man erhält

Eigenschaften[Bearbeiten | Quelltext bearbeiten]

Linearität[Bearbeiten | Quelltext bearbeiten]

Die Fourier-Transformation ist ein linearer Operator. Das heißt, es gilt .

Stetigkeit[Bearbeiten | Quelltext bearbeiten]

Die Fourier-Transformation ist ein stetiger Operator vom Raum der integrierbaren Funktionen in den Raum der Funktionen , die im Unendlichen verschwinden. Mit ist die Menge der stetigen Funktionen bezeichnet, welche für verschwinden. Die Tatsache, dass die Fourier-Transformierten im Unendlichen verschwinden, ist auch als Lemma von Riemann-Lebesgue bekannt. Außerdem gilt die Ungleichung

.

Differentiationsregeln[Bearbeiten | Quelltext bearbeiten]

Sei eine Schwartz-Funktion und ein Multiindex. Dann gilt

  • und .
  • .

Fixpunkt[Bearbeiten | Quelltext bearbeiten]

Die Dichtefunktion

mit der (-dimensionalen) Gauß'schen Normalverteilung ist ein Fixpunkt der Fourier-Transformation. Das heißt, es gilt für alle die Gleichung

.

Insbesondere ist also eine Eigenfunktion der Fourier-Transformation zum Eigenwert . Mit Hilfe des Residuensatzes oder mit Hilfe partieller Integration und Lösen einer gewöhnlichen Differentialgleichung kann in diesem Fall das Fourier-Integral bestimmt werden.

Spiegelsymmetrie[Bearbeiten | Quelltext bearbeiten]

Für gilt für alle die Gleichung

.

Äquivalent lässt sich dies auf dem Schwartzraum als Operatorgleichung

schreiben, wobei

den Paritätsoperator bezeichnet.

Rücktransformationsformel[Bearbeiten | Quelltext bearbeiten]

Sei eine integrierbare Funktion derart, dass auch gilt. Dann gilt die Rücktransformation

Diese wird auch Fouriersynthese genannt. Auf dem Schwartz-Raum ist die Fouriertransformation ein Automorphismus.

Faltungstheorem[Bearbeiten | Quelltext bearbeiten]

Das Faltungstheorem für die Fourier-Transformation besagt, dass die Faltung zweier Funktionen durch die Fourier-Transformation in ihrem Bildraum in eine Multiplikation reeller Zahlen überführt wird. Für gilt also

.

Die Umkehrung des Faltungssatzes besagt[1]

.

Fourier-Transformation von L2-Funktionen[Bearbeiten | Quelltext bearbeiten]

Definition[Bearbeiten | Quelltext bearbeiten]

Für eine Funktion ist die Fouriertransformation mittels eines Dichtheitsargumentes definiert durch

.

Die Konvergenz ist im Sinne von zu verstehen und ist die Kugel um den Ursprung mit Radius . Für Funktionen stimmt diese Definition mit der aus dem ersten Abschnitt überein. Da die Fouriertransformation bezüglich des -Skalarproduktes unitär ist (s. u.) und in dicht liegt, folgt, dass die Fouriertransformation ein isometrischer Automorphismus des ist. Dies ist die Aussage des Satzes von Plancherel.

Hausdorff-Young-Ungleichung[Bearbeiten | Quelltext bearbeiten]

Seien und . Für ist und es gilt

.

Die Fourier-Transformation hat also eine Fortsetzung zu einem stetigen Operator , der durch

beschrieben wird. Der Grenzwert ist hier im Sinne von zu verstehen.

Differentiationsregel[Bearbeiten | Quelltext bearbeiten]

Falls die Funktion schwach differenzierbar ist, gibt es eine Differentiationsregel analog zu denen für Schwarzfunktionen. Sei also eine k-mal schwach differenzierbare L2-Funktion und ein Multiindex mit . Dann gilt

.

Unitäre Abbildung[Bearbeiten | Quelltext bearbeiten]

Die Fourier-Transformation ist bezüglich des komplexen -Skalarproduktes ein unitärer Operator, das heißt es gilt

Damit liegt das Spektrum der Fourier-Transformation auf der Einheitskreislinie. Im eindimensionalen Fall () bilden ferner die Hermite-Funktionen im Raum ein vollständiges Orthonormalsystem von Eigenfunktionen zu den Eigenwerten .[2]

Fourier-Transformation im Raum der temperierten Distributionen[Bearbeiten | Quelltext bearbeiten]

Hauptartikel: Temperierte Distribution

Sei eine temperierte Distribution, die Fourier-Transformierte ist für alle definiert durch

.

Stattet man den Raum mit der schwachen Topologie aus, dann ist die Fourier-Transformation eine stetige, bijektive Abbildung auf . Ihre Umkehrabbildung lautet

.

Fourier-Transformation von Maßen[Bearbeiten | Quelltext bearbeiten]

Die Fourier-Transformation wird allgemein für endliche Borel-Maße auf definiert:

heißt inverse Fourier-Transformierte des Maßes. Die charakteristische Funktion ist dann die inverse Fourier-Transformierte einer Wahrscheinlichkeitsverteilung.

Partielle Differentialgleichungen[Bearbeiten | Quelltext bearbeiten]

In der Theorie der partiellen Differentialgleichungen spielt die Fourier-Transformation eine wichtige Rolle. Mit ihrer Hilfe kann man Lösungen bestimmter Differentialgleichungen finden. Die Differentiationsregel und das Faltungstheorem sind dabei von essentieller Bedeutung. Am Beispiel der Wärmeleitungsgleichung wird nun gezeigt, wie man mit der Fourier-Transformation eine partielle Differentialgleichung löst. Das Anfangswertproblem der Wärmegleichung lautet

Hierbei bezeichnet den Laplace-Operator, der nur auf die -Variablen wirkt. Anwenden der Fourier-Transformation auf beide Gleichungen bezüglich der -Variablen und Anwenden der Differentiationsregel ergibt

Hierbei handelt es sich nun um eine gewöhnliche Differentialgleichung, die die Lösung

hat. Daraus folgt und aufgrund des Faltungstheorems gilt

mit Daraus folgt

Das ist die Fundamentallösung der Wärmegleichung. Die Lösung des hier betrachteten Anfangswertproblems hat daher die Darstellung

Tabelle wichtiger Fourier-Transformations-Paare[Bearbeiten | Quelltext bearbeiten]

In diesem Kapitel folgt eine Zusammenstellung wichtiger Fourier-Transformations-Paare.

Signal Fouriertransformierte
Kreisfrequenz
Fouriertransformierte
Frequenz
Hinweise
Zeitverschiebung
Frequenzverschiebung
Frequenzskalierung
Hier ist eine natürliche Zahl und g eine Schwartz-Funktion. bezeichnet die -te Ableitung von g.

Quadratisch integrierbare Funktionen[Bearbeiten | Quelltext bearbeiten]

Signal Fouriertransformierte
Kreisfrequenz
Fouriertransformierte
Frequenz
Hinweise
Die Gaußsche Funktion ergibt fouriertransformiert wieder dieselbe Funktion. Für die Integrierbarkeit muss sein.
Die Rechteckfunktion und die sinc-Funktion ().
Die Rechteckfunktion ist ein idealisierter Tiefpassfilter, und die si-Funktion ist die akausale Stoßantwort eines solchen Filters.
Die FT der um den Ursprung exponentiell abfallenden Funktion ist eine Lorentzkurve.

Distributionen[Bearbeiten | Quelltext bearbeiten]

Signal Fouriertransformierte
Kreisfrequenz
Fouriertransformierte
Frequenz
Hinweise
Hier ist eine natürliche Zahl und die -te Ableitung der Delta-Distribution.
ist der Einheitssprung (Heaviside-Funktion).
Das Signal heißt Dirac-Kamm.

Siehe auch[Bearbeiten | Quelltext bearbeiten]

Literatur[Bearbeiten | Quelltext bearbeiten]

Weblinks[Bearbeiten | Quelltext bearbeiten]

Einzelnachweise[Bearbeiten | Quelltext bearbeiten]

  1. Beweis mittels Einsetzen der inversen Fouriertransformierten. Z.B. wie in Fouriertransformation für Fußgänger, Tilman Butz, Ausgabe 7, Springer DE, 2011, ISBN 978-3-8348-8295-0, S. 53, Google Books
  2. Helmut Fischer, Helmut Kaul: Mathematik für Physiker, Band 2: Gewöhnliche und partielle Differentialgleichungen, mathematische Grundlagen der Quantenmechanik. 2. Aufl., B.G. Teubner, Wiesbaden 2004. ISBN 3-519-12080-1, §12 Abschn. 4.2, S. 300–301.