Integritätsring

aus Wikipedia, der freien Enzyklopädie
(Weitergeleitet von Integritätsbereich)
Wechseln zu: Navigation, Suche

In der Algebra ist ein Integritätsring oder Integritätsbereich ein vom Nullring verschiedener nullteilerfreier kommutativer Ring mit einem Einselement.

Alternativ kann man einen Integritätsring definieren als einen kommutativen Ring mit 1, in dem das Nullideal ein Primideal ist, oder als einen Teilring eines Körpers. Es gibt auch eine abgeschwächte Definition, in der kein Einselement gefordert wird, sondern nur, dass es wenigstens ein von Null verschiedenes Element in dem Ring gibt. Viele Sätze über Integritätsringe benötigen jedoch eine Eins, deshalb wird diese Eigenschaft meist mit in die Definition aufgenommen.

Beispiele[Bearbeiten | Quelltext bearbeiten]

  • Das bekannteste Beispiel ist der Ring der ganzen Zahlen.
  • Jeder Körper ist ein Integritätsring. Umgekehrt ist jeder artinsche Integritätsring ein Körper. Insbesondere ist jeder endliche Integritätsring ein endlicher Körper.
  • Ein Polynomring ist genau dann ein Integritätsring, wenn die Koeffizienten aus einem Integritätsring stammen. Zum Beispiel ist der Ring der Polynome mit ganzzahligen Koeffizienten ein Integritätsring, ebenso wie der Ring der reellen Polynome in zwei Variablen.
  • Der Ring aller reellen Zahlen der Form mit ganzen Zahlen ist ein Integritätsring, da er Teilring von ist. Allgemein ist der Ganzheitsring eines Algebraischen Zahlkörpers immer ein Integritätsring.
  • Ist ein kommutativer Ring mit 1, so ist der Faktorring genau dann ein Integritätsring, wenn ein Primideal in ist. So ist der Restklassenring genau dann ein Integritätsring wenn eine Primzahl ist.
  • Ist ein Gebiet (eine zusammenhängende offene Teilmenge) in den komplexen Zahlen, so ist der Ring der holomorphen Funktionen ein Integritätsring.
  • Zu einem Integritätsring und einer natürlichen Zahl ist der Matrizenring genau dann ein Integritätsring, wenn gilt.

Teilbarkeit[Bearbeiten | Quelltext bearbeiten]

Hauptartikel: Teilbarkeit

Sind und Elemente des Integritätsrings , dann nennt man einen Teiler von und ein Vielfaches von (und sagt auch: teilt ), wenn es ein Element in gibt, so dass . Man schreibt dann , andernfalls .

Es gelten die folgenden Teilbarkeitsregeln:

  • Gilt und , dann folgt daraus .
  • Gilt , dann gilt auch für jedes , insbesondere auch .
  • Gilt und , dann gilt auch und .

Die erste Regel besagt, dass Teilbarkeit transitiv ist. Die zweite und dritte Regel besagen, dass die Menge der Vielfachen eines Elementes ein Ideal in bildet; dieses wird auch als notiert.

Einheiten[Bearbeiten | Quelltext bearbeiten]

Hauptartikel: Einheiten

Ringelemente, die Teiler der 1 sind, heißen Einheiten von . Die Einheiten sind identisch mit den invertierbaren Elementen und teilen alle anderen Elemente. Die Menge der Einheiten von wird mit bezeichnet und bildet zusammen mit der Ringmultiplikation als Verknüpfung eine abelsche Gruppe – die sogenannte Einheitengruppe von . Ein Ringelement, das keine Einheit ist, heißt Nichteinheit.

Assoziierte Elemente[Bearbeiten | Quelltext bearbeiten]

Hauptartikel: Assoziierte Elemente

Gelten und , dann heißen und zueinander assoziiert. Zwei Ringelemente und sind genau dann assoziiert, wenn es eine Einheit gibt, sodass .

Irreduzibilität[Bearbeiten | Quelltext bearbeiten]

Ein Element heißt reduzibel, wenn es eine Einheit oder ein Produkt zweier (nicht notwendig verschiedener) Nichteinheiten ist, andernfalls heißt es irreduzibel.

Primelemente[Bearbeiten | Quelltext bearbeiten]

Hauptartikel: Primelement

Ein Element heißt Primelement (oder kurz prim), falls weder 0 noch eine Einheit ist und außerdem gilt: Aus folgt oder . Das Hauptideal ist dann ein Primideal. Ist andersherum das Hauptideal einer von Null verschiedenen Nichteinheit ein Primideal, so ist prim. (Das Nullideal ist in Integritätsringen ein Primideal, die Hauptideale von Einheiten sind schon der gesamte Ring.)

Zusammenhang zwischen primen und irreduziblen Elementen[Bearbeiten | Quelltext bearbeiten]

Jedes Primelement ist irreduzibel (für diese Aussage wird die Nullteilerfreiheit des Rings benötigt), aber nicht immer ist jedes irreduzible Element prim. Im Ring sind , , und irreduzibel, aber nicht prim: zum Beispiel teilt weder noch , aber deren Produkt.

In Hauptidealringen und allgemeiner in faktoriellen Ringen stimmen jedoch beide Begriffe überein. So werden in die Primzahlen üblicherweise nur als positive, irreduzible Elemente von definiert. Diese Elemente sind jedoch auch Primelemente, da faktoriell und somit jedes irreduzible Element prim ist. Es sind jedoch auch noch die negativen Pendants der Primzahlen Primelemente, woran man sieht, dass der Begriff des Primelements allgemeiner gefasst ist als der Begriff der Primzahl.

Quotientenkörper[Bearbeiten | Quelltext bearbeiten]

Hauptartikel: Quotientenkörper

Ist ein Integritätsring, dann existiert ein kleinster Körper der als Teilring enthält. Der Körper ist bis auf Isomorphie eindeutig bestimmt und heißt Quotientenkörper von . Seine Elemente haben die Form mit Der Quotientenkörper ist ein Beispiel einer Konstruktion mit einem Integritätsring, in dem keine Eins (in der Definition des Integritätsringes) benötigt wird, sondern lediglich irgendein von Null verschiedenes Element.

Der Quotientenkörper des Rings der ganzen Zahlen ist der Körper der rationalen Zahlen. Der Quotientenkörper eines Körpers ist der Körper selbst.

Alternativ kann man Quotientenkörper über Lokalisierungen von nach dem Nullideal konstruieren.

Abstrakt definiert man Quotientenkörper durch folgende universelle Eigenschaft:

Ein Quotientenkörper eines Ringes ist ein Paar aus einem Körper K und einem Ringhomomorphismus von nach mit der Eigenschaft, dass es für jeden Körper mit Ringhomomorphismus genau einen Körperhomomorphismus mit gibt.

Charakteristik[Bearbeiten | Quelltext bearbeiten]

Die Charakteristik eines Integritätsrings ist entweder 0 oder eine Primzahl, denn besitzt ein Ring eine Charakteristik , dann folgt , woraus (aufgrund der Nullteilerfreiheit) entweder oder folgt. Dies ist aber bereits die Definition der Charakteristik (kleinstes mit ), weshalb entweder oder ist und somit prim ist. Man beachte, dass für diesen Beweis nicht unbedingt ein Integritätsring (genauer: die Kommutativität eines Ringes) notwendig ist, ein nullteilerfreier Ring mit 1 reicht bereits.

Ist ein Integritätsring mit der Primzahl-Charakteristik , dann ist die Abbildung ein injektiver Ringhomomorphismus und heißt Frobeniushomomorphismus. Ist der betrachtete Ring endlich, so ist sogar bijektiv, also ein Automorphismus.

Literatur[Bearbeiten | Quelltext bearbeiten]