Botulinumtoxin

aus Wikipedia, der freien Enzyklopädie
Zur Navigation springen Zur Suche springen
Botulinumtoxin Serotyp A (Clostridium botulinum)
Botulinumtoxin Serotyp A (Clostridium botulinum)
Bändermodell nach PDB 3BTA

Vorhandene Strukturdaten: siehe UniProt-Eintrag

Masse/Länge Primärstruktur 447+848 AS (L+S)
Sekundär- bis Quartärstruktur Heterodimer L+S
Kofaktor Zn2+
Präkursor 1296 Aminosäuren; 146 kDa
Bezeichner
Gen-Name(n) BoNT/A
Externe IDs
Arzneistoffangaben
ATC-Code M03AX01
DrugBank DB00083
Wirkstoffklasse Muskelrelaxans
Transporter-Klassifikation
TCDB 1.C.8
Bezeichnung Botulinum/Tetanus Toxinfamilie
Enzymklassifikation
EC, Kategorie 3.4.24.69Metalloprotease
MEROPS M27.002
Reaktionsart Hydrolyse
Substrat Proteine der Neuroexozytose, Synaptobrevine, Syntaxine
Produkte Spaltprodukte
Vorkommen
Homologie-Familie Botulinumtoxin
Übergeordnetes Taxon Clostridium

Botulinumtoxin (BTX), auch Botulinum-Neurotoxin (BoNT), Botulismustoxin, Botulinustoxin, Botulin, Handelsname für BTX-A zum Beispiel Botox, ist ein Sammelbegriff für mehrere sehr ähnliche neurotoxische Proteine. Die Neurotoxine werden von verschiedenen Stämmen der Bakterienspezies Clostridium botulinum, Clostridium butyricum, Clostridium baratii sowie Clostridium argentinense[1] ausgeschieden und sind damit Exotoxine.[2] Die Giftwirkung dieser Proteine beruht auf der Hemmung der Erregungsübertragung von Nervenzellen, was neben Störungen des vegetativen Nervensystems insbesondere eine Muskelschwäche bis hin zum Stillstand der Lungenfunktion zur Folge haben kann. Botulinumtoxin ist für höhere Lebewesen das mit erheblichem Abstand tödlichste bekannte Gift. Die LD50-Werte für Mäuse betragen 30 pg/kg (0,03 ng/kg) bei intravenöser Gabe bis 4 ng/kg bei subkutaner Aufnahme.[3] Bei Inhalation sind bereits 3 ng/kg tödlich.[4]

Während früher das C. botulinum als Verursacher der Lebensmittelvergiftung Botulismus sehr gefürchtet war, werden die von ihm erzeugten Proteine seit den 1980er-Jahren auch zu medizinischen Zwecken eingesetzt, vorwiegend zur Behandlung neurologischer Bewegungsstörungen (Dystonie). Die Verwendung in der kosmetischen Medizin zur vorübergehenden Abschwächung von Falten (Wirkungsdauer 3–6 Monate) ist wegen der dadurch bedingten massiven Zunahme von Tierversuchen heftig kritisiert worden.[5][6][7] Außerdem besteht das Risiko gravierender Nervenschäden ohne medizinische Notwendigkeit für den Eingriff.

C. botulinum kommt ubiquitär vor allem im Erdboden vor. Strukturell ähnlich aufgebaut ist das Tetanustoxin, welches von Clostridium tetani produziert wird.

Geschichte[Bearbeiten | Quelltext bearbeiten]

Der Botulismus wurde im Februar 1815 vom württembergischen Arzt und Dichter Justinus Kerner das erste Mal wissenschaftlich beschrieben. Kerner erkannte 1820 den Wirkungsmechanismus des Toxins als Hemmung der Nervenleitung und schlug 1822 das Gift, das er als „Fettgift“ und „Fettsäure“ bezeichnete,[8] in extrem niedrigen Dosen als Arzneistoff für verschiedene nervöse Störungen vor.[9] Die Mediziner Rupprecht und Müller bezeichneten 1868 die Vergiftung erstmals als Botulismus.[10]

Das für die Vergiftungen verantwortliche Bakterium wurde 1895–1897 von Emile van Ermengem, einem belgischen Bakteriologen, bei der Untersuchung von Schinken, der für drei Todesfälle verantwortlich war, isoliert. Van Ermengem nannte den Mikroorganismus Bacillus botulinus. Schon 1897 stellte Walter Kemper das erste Antiserum gegen Botulinustoxin A her.[8]

Nachdem ab den 1920er-Jahren Botulinumtoxine in größeren Mengen gewonnen werden konnten, gelang 1946 Carl Lammanna in Fort Detrick (Maryland) am USAMRIID die Reindarstellung des Toxintyps A. Dabei wurde der schon früher vermutete Aufbau aus zwei verschiedenen Proteinketten verifiziert. 1949 wiesen Burgen, Dickens und Zatman in London die Hemmung der Acetylcholinsekretion als Ursache der Muskellähmung durch Botulinumtoxin A nach.[11] Bis um 1970 wurden insgesamt acht verschiedene Toxintypen (A, B, C1, C2, D, E, F und G) isoliert, wobei die Typen C1 und C2 serologisch nicht unterscheidbar sind.

1973–1978 wurde das Protein erstmals unter Schantz nach einem durch die FDA zugelassenen Verfahren an Freiwilligen als Arzneistoff getestet und 1980 durch Scott erstmals zur Medikation von Strabismus (Schielen) eingesetzt. Innerhalb weniger Jahre kamen als weitere Indikationen Nystagmus, Spastik der Gesichtsmuskulatur, Beinspastik, Torticollis spasmodicus (Zervicale Dystonie) und Blepharospasmus hinzu.[8]

1992 veröffentlichten J. und A. Carruthers einen Bericht[12] über einen vorübergehenden abschwächenden Effekt von Botulinustoxin A auf Hautfalten (Wirkungsdauer 3–6 Monate).[13] Seither wurde das Toxin im kosmetischen Bereich off-label eingesetzt. Eine Zulassung für diese Verwendung erhielten Präparate erst ab 2002.[5]

Seit 2001 wird auch Botulinumtoxin B zur Behandlung der Zervicalen Dystonie verwendet.[11] 2013 wurde ein weiterer Toxintyp entdeckt und als Typ H bezeichnet.[14]

Etymologie[Bearbeiten | Quelltext bearbeiten]

Die Namen für das Bakterium und das Toxin sind von dem lateinischen Wort botulus ‚Wurst‘ abgeleitet, ebenso wie die schon zuvor eingeführte Bezeichnung Botulismus für das Krankheitsbild bei einer Wurstvergiftung. Der Grund ist, dass Vergiftungen mit dem Botulinumtoxin früher häufig im Zusammenhang mit Wurst oder Wurstkonserven standen. Darauf beruht auch die historische Bezeichnung Wurstgift (englisch sausage poison).[15]

Das hauptsächlich den Botulismus verursachende Bakterium Clostridium botulinum ist ubiquitär als Spore anzutreffen. Das Bakterium benötigt nichtsaure, extrem sauerstoffarme Milieubedingungen, um auszukeimen und das Toxin zu produzieren. Solche Bedingungen sind in Wurst- und Gemüsekonserven sowie vakuumverpackten Lebensmitteln meist gegeben; zudem gilt die anaerobe Kernzone von Fleisch und Wurst meist als exzellentes Substrat für das Wachstum von Clostridium.[16]

Chemischer Aufbau[Bearbeiten | Quelltext bearbeiten]

Oberflächenmodell von Botulinumtoxin A mit leichter, neurotoxischer Kette (grün) und schwerer Kette (blau).
Botulinustoxin-Typen[14][17][18]
Typ Betroffene Spezies /
Gruppe
Verbreitung Toxisch f.
Menschen
A Mensch
Küken
USA ja
B Mensch
„Kinder-Botulismus“
Pferde, Rinder
Europa ja
C1
Wasservögel weltweit nein
C2
Rinder, Pferde, Nerze weltweit nein
D Rinder, Geflügel weltweit nein
E Mensch weltweit ja
F Mensch weltweit ja
G Vergiftungsfälle
bisher unbekannt
von Clostridium argentinense
nein
H Mensch bisher nur ein
Fall in den USA
ja

Botulinumtoxine sind hochmolekulare Proteinkomplexe, die aus zwei Teilen bestehen: dem leichten, eigentlichen, lähmend (paralytisch) wirkenden Neurotoxin sowie meist dem schweren, einem nichttoxischen Komplexprotein (Hüllprotein). Über eine Disulfidbrücke sind die Bestandteile miteinander verbunden. Der leichtere neurotoxische Teil ist eine zinkhaltige Endopeptidase. Das komplexe Hüllprotein bindet an die präsynaptische Membran von Nervenzellen.[16]

Das Hüllprotein schützt das Neurotoxin vor dem proteolytischen Abbau im sauren Milieu des Magens nach oraler Applikation, so dass das Toxin biologisch verfügbar bleibt und Vergiftungen auslösen kann. Der Komplex dissoziiert jedoch bei neutralem pH-Wert des Gewebes und ist nicht mehr stabil. Ebenfalls instabil wird das Protein bei längerem Erhitzen.
Bei der therapeutischen Applikation des Botulinumtoxins haben die Komplexproteine daher keine wesentliche Funktion und tragen nicht zur Wirksamkeit bei. Diskutiert wird allerdings, ob Unterschiede in der klinischen Wirksamkeit der zugelassenen Medikamente (zum Beispiel die Diffusionskapazität/Wanderungsfähigkeit) auf die unterschiedlichen Arten der vorhandenen Hüllproteine zurückzuführen sein können.

Man unterscheidet bisher die Serotypen A bis H, von denen A und B medizinisch genutzt werden. Lediglich die Typen A, B, E, F und H[14] sind toxisch für den Menschen.[18] Die Botulinumtoxine besitzen eine große Ähnlichkeit in Bezug auf ihre Struktur und biochemische Wirkung mit dem ebenfalls von Clostridien (Clostridium tetani) gebildeten Tetanustoxin.[17]

Wirkungsmechanismus[Bearbeiten | Quelltext bearbeiten]

Verschiedene Subtypen von Botulinumtoxin zerstören unterschiedliche Funktionsproteine, die an der Erregungsübertragung beteiligt sind.[19]

Botulinumtoxin hemmt die Erregungsübertragung von Nervenzellen auf andere Zellen, insbesondere an den Synapsen zu Muskelzellen, wodurch eine Kontraktion des Muskels schwächer wird oder ganz ausfällt. Botulinumtoxine sind Proteine, die im Bakterium zunächst als lange Polypeptidketten hergestellt und durch Proteasen gespalten aktiviert werden. Sie bestehen dann aus zwei Protein-Untereinheiten, leichte (L-, ca. 50 kDA) bzw. schwere (S-, ca. 100 kDa) Kette genannt.[18]

Von Strukturmerkmalen der schweren Kette hängt die Gewebespezifität des Giftes ab. Denn hiermit bindet sich Botulinumtoxin an den präsynaptischen Teil eines Neurons, das Acetylcholin als Neurotransmitter verwendet – wie an einer neuromuskulären Endplatte. Anteile der schweren Kette vermitteln auch, dass das Gift durch Endocytose in die präsynaptische Endigung aufgenommen wird.

Die in den Zellinnenraum der Nervenzelle gelangte leichte Kette ist der aktive Teil des Toxins. Denn sie trägt Strukturmerkmale mit katalytischer Aktivität und wirkt nun als Zink-Endopeptidase. Damit ist sie in der Lage, bestimmte Funktionsproteine der Zelle zu zerlegen, die für die synaptische Vesikelfusion gebraucht werden. Durch diese Wirkung behindert das Gift die Exozytose als den Vorgang, mit dem der in Vesikeln enthaltene Botenstoff in den synaptischen Spalt abgegeben wird. Die Übertragung von neuronalen Signalen auf Muskelzellen wird somit blockiert.

Das Membranprotein Synaptobrevin (VAMP2), das ein wesentlicher Bestandteil von sekretorischen Vesikel ist, wird bereits durch die Anwesenheit weniger Botulinumtoxinmoleküle der Typen B, D, F und G aufgrund der katalytischen Wirkung aufgespalten, ohne dass sich das Botulinumtoxin dabei selbst verbraucht. Die Botulinumtoxine A und E spalten das Synaptisch-assoziierte Protein SNAP-25; der Serotyp C zerstört Syntaxine.[20]

Wenn synaptische Vesikel nicht mehr mit der Membran fusionieren können, wird ihr Transmitter Acetylcholin nicht mehr in den synaptischen Spalt ausgeschüttet. Die betroffene Nervenzelle kann somit die zugeordnete Muskelfaser nicht mehr hinreichend erregen und es kommt dadurch zu einer Lähmung des Muskels, an dem das Gift wirkt.[21] Bei der Reaktivierung der unterbrochenen neuromuskulären Transmission übernehmen zunächst neuauswachsende präsynaptische Endigungen vorübergehend die Funktion der gestörten Axonterminalen des Nervenzellfortsatzes.[22]

Vergiftung[Bearbeiten | Quelltext bearbeiten]

Jährlich werden in Deutschland 20–40 Fälle von Botulismus gemeldet, von denen 1–2 tödlich enden.[18] Selten tritt der „viszerale Botulismus“ auf, der als „Säuglingsbotulismus“ oder „infantiler Botulismus“ bei Säuglingen[23] und als „adulter infektiöser Botulismus“ bei Erwachsenen mit seltener Prädisposition als Infektion vorkommt. Dabei entwickelt sich das Bakterium aus über die Nahrung aufgenommenen Sporen im Dünndarm und produziert dort die Toxine.[24] Als Antidot für alle Formen des Botulismus – außer dem neuen Typ H – kommt entweder ein trivalentes (Typen A, B, E) oder ein polyvalentes Antiserum (Typen A–G) zum Einsatz,[18] in den USA auch das Heptavalent Botulism Antitoxin. Alle drei werden aus Pferden gewonnen.

Die DNA-Struktur eines – 2013 in den USA in der Stuhlprobe eines Kindes neu gefundenen – Botulinumtoxins „Typ H“ wurde trotz ihrer Entschlüsselung zunächst geheim gehalten;[25] es existiert derzeit noch kein Antiserum.[14][26]

Gefährdete Lebensmittel[Bearbeiten | Quelltext bearbeiten]

In erster Linie sind Lebensmittel gefährdet, die unter anaeroben Bedingungen gelagert sind und deren Milieu nur schwach sauer oder neutral ist (pH > 4,5). Begünstigt werden kann die Bildung des Toxins durch geringen Salzgehalt und Lagertemperaturen über 10 °C, wobei Letzteres bei Konserven oft gegeben ist. C. botulinum stellt zudem hohe Nährstoffansprüche und benötigt daher ein komplexes Nährmedium. Klassischerweise gefährdet sind demnach Fleisch- und Fischkonserven, Mayonnaise, aber auch schwachsaure Frucht- oder Gemüsekonserven. Nicht gefährdet sind bei den Fleischprodukten hingegen (stark) gepökelte Produkte, da das im Pökelsalz enthaltene Nitrit C. botulinum im Wachstum hemmt.

Kennzeichen kontaminierter Produkte[Bearbeiten | Quelltext bearbeiten]

Ein wichtiges Indiz bei Konserven ist die Bombage (bzw. Bombierung), die Wölbung der Konservendeckel nach außen durch den entstehenden Innendruck.[17] Entweichende Gase beim Öffnen eingemachter Produkte deuten ebenfalls auf eine Kontamination hin; in den meisten Fällen sind sie mit einem unangenehmen Geruch verbunden. Solche Konserven müssen sofort entsorgt werden. Besteht Unsicherheit, ob die beschriebenen Kennzeichen zutreffen, ist es empfehlenswert, aus Sicherheitsgründen den Konserveninhalt einige Minuten (5 Minuten bei 100 °C sind sicher[18]) durchzukochen. Als hitzelabiles Protein wird das Botulinumtoxin dadurch denaturiert und unwirksam.

Symptome beim Menschen[Bearbeiten | Quelltext bearbeiten]

Die ersten Erscheinungen der als Botulismus bezeichneten Vergiftung treten nach 12 bis 40 Stunden auf und umfassen in der Regel Kopf- und Magenschmerzen, Übelkeit und Erbrechen[17] sowie Schluck-, Sprech- und Sehstörungen, gefolgt von Muskellähmungen.[18] Insbesondere die Lähmung der Augenmuskulatur (Doppelsehen)[20] und die Lähmung der Nackenmuskulatur (Halssteifigkeit) sind deutliche Hinweise auf Botulismus. In diesem Stadium der Vergiftung kann eine Bekämpfung mit Antitoxin noch möglich sein. Ohne Behandlung tritt in 50 % der Fälle nach 3–6 Tagen der Tod durch Atemlähmung ein.[18]

Vorbeugende Maßnahmen[Bearbeiten | Quelltext bearbeiten]

Bei Durchführung geeigneter Maßnahmen kann die Vermehrung des Bakteriums (und damit das Auftreten von Botulismus) zuverlässig verhindert werden.

Sterilisierung[Bearbeiten | Quelltext bearbeiten]

Da früher die Sterilisierungstechnik nicht weit entwickelt war, kam es immer wieder vor, dass Sporen von Clostridum botulinum das „Konservieren“, also Erhitzen der Konserven überlebten und während der Lagerung der Konserve mit entsprechenden Folgen auskeimten. Heute wird bei kritischen Produkten der sogenannte „Botulinum-Cook“ durchgeführt;[27] die Lebensmittel werden erhitzt und für 3 Minuten bei 121 °C gehalten (3-facher F0-Wert). Damit werden auch Sporen zuverlässig abgetötet.

Haushalt (Herstellung von Konserven, Einmachen)[Bearbeiten | Quelltext bearbeiten]

  • Produkt ausreichend säuern (pH < 4,5)
  • Produkt salzen und pökeln[18]
  • Konserven bei tiefen Temperaturen lagern (optimal bei < 5 °C)
  • Ausreichend lange einkochen oder sterilisieren, möglicherweise zweimal erhitzen

Insbesondere die Säuerung ist ein wichtiges Mittel, um C. botulinum zu inaktivieren. Mit einer sorgfältig und ausreichend lange durchgeführten Sterilisation können die Sporen ebenfalls sicher abgetötet werden.

Industrie[Bearbeiten | Quelltext bearbeiten]

  • Allgemeine Regeln der Arbeitshygiene beachten
  • Möglichst wenig verunreinigte Rohware verwenden
  • Umsetzung des 3F-Konzepts (Sterilisation 3 Minuten bei 121 °C, F0-Wert) oder 5-minütiges Erhitzen bei 100 °C.[18]

In der Industrie werden bei der Zubereitung gefährdeter Lebensmittel durch entsprechend langes Erhitzen bei Temperaturen über 100 °C das Bakterium und seine Sporen abgetötet und das Toxin inaktiviert.

Therapeutische Anwendung[Bearbeiten | Quelltext bearbeiten]

Indikationen und Wirksamkeit[Bearbeiten | Quelltext bearbeiten]

In der Neurologie wird Botulinumtoxin seit Anfang der 1980er-Jahre als zugelassenes Arzneimittel primär in der Behandlung von speziellen Bewegungsstörungen, den sog. fokalen Dystonien, eingesetzt. Dies sind Erkrankungen wie der Blepharospasmus (Lidkrampf), die oromandibuläre Dystonie (Mund- Zungen-, Schlundkrampf), der Torticollis spasmodicus (Schiefhals) und andere zervikale Dystonien, der Graphospasmus (Schreibkrampf) und die spasmodische Dysphonie (Stimmbandkrampf). Weiterhin sind auch bei segmentalen oder sekundären Dystonien und Spastiken die Fokalsymptome mit Botulinumtoxin behandelbar.[28] Hierzu zählen etwa der Spasmus hemifacialis, Bewegungsstörungen nach peripherer Affektion des Nervus facialis sowie bestimmte spastische Syndrome bei Erwachsenen und Kindern, beispielsweise bei spastischem Spitzfuß, bei Patienten mit Zerebralparese, bei der Armspastik nach Schlaganfall bzw. bei fokaler Spastik von Hand und Handgelenk nach Schlaganfall. Bei diesen Indikationen wird immer intramuskulär oder subkutan injiziert. Ein Behandlungserfolg mit Besserung bis zum zeitweiligen Verlust der Symptome liegt beim Lidkrampf bei etwa 90 %, beim Schiefhals zwischen 60 und 80 %.[29]

Weitere Anwendungsgebiete:

Zertifizierte ärztliche Ausbildungen werden u. a. vom Arbeitskreis Botulinumtoxin der Deutschen Gesellschaft für Neurologie (DGN) und von der Sektion Schmerz (IGOST) der Deutschen Gesellschaft für Orthopädie und Orthopädische Chirurgie (DGOOC) angeboten.

Wirkmechanismus[Bearbeiten | Quelltext bearbeiten]

Botulinumtoxine sind von Bakterien produzierte Exotoxine. Werden sie in einen Muskel gespritzt, so blockieren sie dort gezielt durch Zerstörung von Proteinkomplexen die Freisetzung des Neurotransmitters Acetylcholin. Dadurch kann der entsprechende Muskel nicht mehr wie gewohnt angespannt werden. Andere Nervenfunktionen – wie das Fühlen oder Tasten – werden nicht beeinflusst. Nach einer therapeutischen Injektion baut sich die Wirkung langsam auf und erreicht – je nach Indikation und Dosis – nach etwa zehn Tagen ihren Höhepunkt. Nach zwei bis sechs Monaten ist die Neuaussprossung der Nervenenden beendet, wodurch die Muskeln wieder aktiviert werden können. Die Injektion kann mit gleichzeitiger Messung eines Elektromyogrammes (EMG) im Muskel, der sogenannten Stimulationstechnik, ultraschallgesteuert oder nach anatomischer Kenntnis erfolgen. Es gibt eine Anzahl von Patienten mit Nerven-Muskelkrankheiten, bei denen der Körper nach vorhergehender langer und hochdosierter Anwendung neutralisierende Antikörper gegen den Subtyp A bildet; die Wirksamkeit der Medikamente nimmt dadurch ab oder geht ganz verloren. Seit 2001 sind auch Subtyp-B-Präparate (Neurobloc bzw. Myobloc, Zulassung 2001 gegen Schiefhalssyndrom) verfügbar. Diese besitzen allerdings eine deutlich kürzere Wirkungsdauer.

Überdosierung, Nebenwirkungen und weitere Nachteile[Bearbeiten | Quelltext bearbeiten]

Die therapeutische Breite des Toxins ist bei einem durch Versuche mit Affen ermittelten LD50-Wert von etwa 2000 ng bei intraorbitaler (in die Augenhöhle) Injektion groß; dies entspricht etwa 50 Ampullen Botox.[38] Bei einer Überdosierung, oder wenn das Toxin in die Blutbahn gelangt, steht ein polyvalentes Botulismus-Antitoxin vom Pferd zur Verfügung. Es gehört in größeren Krankenhäusern zum Notfalldepot. Meist erfolgt die intravenöse Injektion aber zu spät und der Patient kann sich nicht sofort vollständig erholen. Eine künstliche Beatmung über längere Zeit ist unabdingbar.

Als Nebenwirkungen bei subkutaner oder intramuskulärer Injektion werden relativ häufig eine Ptosis (beim Lidkrampf), vorübergehende Muskelschwäche, lokale, aus der Injektion resultierende Schmerzen, Mundtrockenheit, Störungen der Akkommodation des Auges sowie Hämatome genannt.[38]

Bei kosmetischer Verwendung wurden am häufigsten Schluckstörungen (Dysphagie) und in Einzelfällen unter anderem Sarkoidose (eine Erkrankung des Bindegewebes) an der Injektionsstelle sowie Blutergüsse durch arterielle Schäden (Pseudoaneurysma) berichtet.[39] In einer systematischen Übersichtsarbeit von 2015 über bekannte Komplikationen bei kosmetischer Verwendung von Botulinumtoxin wurde gefordert, die Patienten vor einem Eingriff über folgende mögliche, ernste Nebenwirkungen aufzuklären: Syndrom des trockenen Auges (Keratoconjunctivitis sicca), Schielen (Strabismus), Doppelsehen (Diplopie), Pseudoaneurysma der oberflächlichen Schläfenarterie (Arteria temporalis superficialis), Nackenschwäche (neck weakness), Stimmstörung (Dysphonie) und Schluckstörungen.[40]

Die lokale Injektion vermindert die Gefahr von Nebenwirkungen (im Gegensatz zu einer wenig sinnvollen systemischen Behandlung), verlangt aber dennoch einen hohen Kenntnisstand beim Anwendenden. Oft wird eine sogenannte Titrierung angewandt, d. h., es wird zunächst eine zu geringe Dosis injiziert, die in zwei- bis dreiwöchigem Abstand durch eine jeweils höhere Menge ergänzt wird.[29]

Nachteilig ist zunächst auch, dass die Wirkung im günstigsten Fall nach etwa 24 Stunden, im Normalfall nach zwei bis zehn Tagen eintritt, dann aber – je nach Dosierung und Indikation – zwei bis sechs Monate anhält.[29]

Lähmt Botulinumtoxin die emotionale Mimik, dann schränken auch gefühlsverarbeitende Hirnregionen – wie die linke Amygdala – ihre Aktivität ein. Dies verhindert das mimische Nachspielen und damit das Verstehen von Emotionen („embodied emotion“, „verkörpertes Gefühl“).[41]

Nachgewiesen ist die systemische Ausbreitung von Botulinumtoxin von der Stelle der lokalen Anwendung in andere Bereiche des Körpers, insbesondere im Nervensystem. Obwohl dieser Ausbreitung bereits Störungen und Schädigungen zugeordnet wurden, sind die zugrundeliegenden Mechanismen der Ausbreitung und ihrer Folgen bisher (Stand 2016) nahezu unerforscht.[39]

Zahnmedizin[Bearbeiten | Quelltext bearbeiten]

Vor der Anwendung von Botulinumtoxin zur Behandlung von Bruxismus (Zähneknirschen), der kraniomandibulären Dysfunktion (Kiefergelenksbeschwerden) sowie zur optischen Verschlankung des Gesichts wird gewarnt, da sie zu massiven Schäden am Kieferknochen führen kann. Botulinumtoxin wird hierzu in den Musculus masseter gespritzt, der die Muskelspannung reduzieren soll. Eine Zeitspanne von drei Monaten zwischen den Injektionen, die üblicherweise eingehalten wird, reiche nicht aus, den verloren gegangenen Knochen wieder zu regenerieren. Teilweise zeigen die Ergebnisse, dass der Kieferknochen auch längerfristig nicht mehr regeneriert. Der Knochenabbau kann zur Zahnlockerung – bis hin zum Zahnverlust – führen und erhöht die Frakturgefahr des Kieferknochens. Die amerikanische Food and Drug Administration (FDA) hat bislang (Stand Januar 2017) die Anwendung von Botulinumtoxin in diesem Bereich nicht zugelassen.[42][43]

Faltenunterspritzungen im Stirn-, Augen- und Halsbereich, zur Lippen- und Faltenunterfüllung und zur Therapie der Migräneerkrankung sind approbierten Ärzten und Heilpraktikern erlaubt, Zahnärzten und anderen Heilberufsangehörigen sowie Laien hingegen untersagt.

In einem Fall jahrelanger Verstöße gegen das Verbot der Faltenunterspritzung für Zahnärzt bejahte das Oberverwaltungsgericht für das Land Nordrhein-Westfalen die für den Approbationsentzug vorausgesetzte Unzuverlässigkeit eines Zahnarztes.[44] Man hielt dem Zahnarzt sein langjähriges und hartnäckiges Verhalten vor, was er nur durch einen ernsthaften Einstellungswandel hätte beseitigen können.

Zugelassene Medikamente mit Botulinumtoxin als Wirkstoff[Bearbeiten | Quelltext bearbeiten]

Das Botulinumtoxin wird als Medikament von verschiedenen Firmen hergestellt:

Botulinustoxin-Medikamente[5]
Bezeichnung Wirkstoff Hersteller Zulassung für / in
Botox Toxin A Allergan Medizinische Anwendungen
Botox Cosmetics (USA)
Vistabel (Europa)
Toxin A Allergan Kosmetische Anwendungen (Glabella-Falte zwischen den Augenbrauen und Krähenfüße)
Dysport Toxin A Ipsen Medizinische Anwendungen (Dystonien)
Azzalure Toxin A Galderma Kosmetische Anwendungen (Glabella-Falte zwischen den Augenbrauen)
Xeomin Toxin A Merz Schiefhals (Torticollis) und Lidkrampf (Blepharospasmus)
Bocouture Toxin A Merz Kosmetische Anwendungen (Glabella-Falte zwischen den Augenbrauen, Stirnfalten und Lachfalten)
Myobloc (USA)
Neurobloc (Europa)
Toxin B Elan
Eisai
Medizinische und kosmetische Anwendungen (nicht in Deutschland zugelassen)

Seit April 2009 müssen alle in den USA verkauften Botulinumtoxinpräparate – nach Festlegung durch die FDA aufgrund von Berichten über Nebenwirkungen – einen Warnhinweis tragen. Für jedes zugelassene Produkt ist weiterhin eine Risk Evaluation and Mitigation Strategy (REMS) notwendig. Die betroffenen Präparate sind Botox und Botox Cosmetic, Myobloc und Dysport.[45]

Der Hersteller Eisai warnt vor Off-Label-Anwendung von „Neurobloc“ (Toxin B), da dies zu Schluckstörungen und Atembeschwerden führen könne, wenn sich das Nervengift auf benachbarte Strukturen ausbreite.[46]

Jede Charge von Produktionseinheiten eines Botulinumtoxin-Medikaments muss auf Grund der hohen Giftigkeit routinemäßig einer Prüfung unterzogen werden. Hierbei ist der klassische LD50-Test zugelassen, bei dem mindestens 100 Mäusen das Gift in das Abdomen injiziert wird. Nach 3 bis 4 Tagen wird der LD50-Wert über die Anzahl der getöteten Tiere ermittelt. Die Tiere erleiden Muskellähmungen, Sehstörungen und Atemnot, bevor sie ersticken. Weltweit werden jedes Jahr rund 600.000 Mäuse dazu verwendet.[47][48]

Im Europäischem Arzneibuch sind folgende alternative Testverfahren beschrieben:[49]

  • Ein Nervus-phrenicus-Zwerchfell-Präparat, bei dem Nerven aus zuvor getöteten Mäusen oder Ratten herauspräpariert (ex vivo) und als Testobjekt verwendet werden.
  • Der Endopeptidase-Test, ein molekularbiologisches in-vitro-Verfahren, bei dem das Gift ein synthetisches Protein SNAP-25 spaltet.
  • Eine lokale Muskellähmung, bei der das Gift den Mäusen in die Hautfalte zwischen Bauch und Hinterbein gespritzt und das Ausmaß der Lähmungen des Hinterbeins beurteilt wird (Bestimmung der Wirksamkeit an der Maus mit paralytischem Endpunkt).
  • Bestimmung in Zellkulturen

Weitere Verfahren sind:[5]

  • Zellkulturtests mit einer Zelllinie aus Mäusekrebszellen (Neuroblastoma)
  • Der immunchemische ELISA-Test mit Antikörpern aus Versuchstieren[30]

Das Tierversuchsverbot für Kosmetika greift nicht, da Botulinumtoxin-Produkte als Medikamente zugelassen sind sowie für die Anwendung injiziert und nicht bloß aufgetragen werden.[5]

Bei Tierversuchen mit Mäusen und Ratten wurde festgestellt, dass sich Botulinumtoxin im Zentralnervensystem verbreitet.[50][51]

Gewinnung und Lagerung[Bearbeiten | Quelltext bearbeiten]

Botulinumtoxin A wird aus Kulturen von Clostridium botulinum gewonnen. Bei einem pH-Wert von 3,5 wird das Protein aus dem Kulturmedium ausgefällt; durch eine Abfolge mehrerer Zentrifugations-, Fällungs- und Adsorptionsschritte wird das Toxin gereinigt. Die Gewinnung weiterer Botulinumtoxine erfolgt analog aus anderen Clostridium-Arten und -Stämmen. Das gereinigte Toxin kann bei −70 °C für längere Zeit gelagert und ohne Aktivitätsverlust aufgetaut werden. Eine aus dem festen Protein und steriler isotonischer Kochsalzlösung hergestellte Injektionslösung kann im Kühlschrank für maximal vier Stunden aufbewahrt werden.[30]

Einsatz als Kampfstoff[Bearbeiten | Quelltext bearbeiten]

Aufgrund der hohen Letalität bei verhältnismäßig einfacher Herstellung und Transport besteht die Gefahr, dass Botulinumtoxin als Biologische Waffe eingesetzt wird.[52] Es wird durch das CDC als Stoff eingestuft von dem eine hohe Gefahr durch Verwendung bei Bioterrorismus ausgeht.[53] Botulinumtoxin könnte dabei in Lebensmitteln, als Aerosol oder über die Trinkwasserversorgung verbreitet werden.[54] Gelöst in Wasser ist das Toxin farblos, geruchlos und geschmacklos.[55]

Im Rahmen der UNSCOM-Inspektionen nach dem 2. Golfkrieg stieß man im Irak auf Programme zur Herstellung von biologischen Waffen, u. a. auch Botulinumtoxin.[56] In Deutschland unterliegt Botulinumtoxin dem Kriegswaffenkontrollgesetz.[57]

Nachweis[Bearbeiten | Quelltext bearbeiten]

Der Nachweis des Toxins wurde früher meist aufwendig über eine Kulturbestimmung des Bakteriums C. botulinum (Erregerisolierung aus Stuhl oder Wundmaterial) durchgeführt; eine schnellere Nachweismethode ist die RT-PCR[58]. Ein direkter Nachweis des Botulinumtoxins aus Blut, Stuhl, Mageninhalt oder Erbrochenem ist über Bioassay-Methoden (ELISA oder Maus-Bioassay) möglich, das heißt, es wird die Wirkung von Proben auf Labortiere wie Mäuse bestimmt[59].

Dokumentarfilm[Bearbeiten | Quelltext bearbeiten]

  • Antje Christ: Botox – ein Gift macht Karriere. D, 2010, 55 Minuten[60]

Literatur[Bearbeiten | Quelltext bearbeiten]

Weblinks[Bearbeiten | Quelltext bearbeiten]

 Wiktionary: Botulinumtoxin – Bedeutungserklärungen, Wortherkunft, Synonyme, Übersetzungen

Einzelnachweise[Bearbeiten | Quelltext bearbeiten]

  1. E. J. Schantz, E. A. Johnson: Properties and use of botulinum toxin and other microbial neurotoxins in medicine. In: Microbiol Rev. 1992;56, S. 80–99.
  2. Kent R. Olson: Poisoning & drug overdose. 4. Auflage, McGraw-Hill Professional, 2004, ISBN 0-8385-8172-2, S. 136–138.
  3. Eintrag zu Botulinumtoxin in der ChemIDplus-Datenbank der United States National Library of Medicine (NLM).
  4. Diane O. Fleming, Debra Long Hunt: Biological Safety: Principles and Practices. ASM Press, 2000, S. 267.
  5. a b c d e Botox – Tierqual für eine fragwürdige Schönheit. In: Ärzte gegen Tierversuche.
  6. K. Botrill: Growing old disgracefully: The cosmetic use of botulinum toxin. In: ATLA. 31 2003, S. 381–391.
  7. M. Balls: Botulinum toxin testing in animals: the questions remain unanswered. In: Alternatives to laboratory animals: ATLA. Band 31, Nummer 6, Dezember 2003, S. 611–615, PMID 15560750 (Review).
  8. a b c Boris Sommer, Gerhard Sattler: Botulinumtoxin in der ästhetischen Medizin. 3. Auflage, Georg Thieme Verlag, 2006, ISBN 3-13-137673-2, S. 1–2.
  9. Peter Moore, Markus Naumann: Handbook of botulinum toxin treatment. 2. Auflage, Wiley-Blackwell, 2003, ISBN 0-632-05957-5, S. 3.
  10. Aus der Natur: die neuesten Entdeckungen auf dem Gebiet der Naturwissenschaften. Band 31–34, 1868, S. 346.
  11. a b Peter Moore, Markus Naumann: Handbook of botulinum toxin treatment. 2. Auflage, Wiley-Blackwell, 2003, ISBN 0-632-05957-5, S. 4.
  12. J. Carruthers, A. Carruthers: Treatment of Glabellar Frown Lines with C. Botulinum-A Exotoxin. In: J. Dermatol. Surge Oncol. 18:(1992), S. 17–21.
  13. J. E. Frampton, S. E. Easthope: Botulinum toxin A (Botox Cosmetic): a review of its use in the treatment of glabellar frown lines. In: American journal of clinical dermatology. Band 4, Nummer 10, 2003, S. 709–725, PMID 14507232 (Review).
  14. a b c d Jason R. Barash, Stephen S. Arnon: A Novel Strain of Clostridium botulinum That Produces Type B and Type H Botulinum Toxins. J Infect Dis. (2013), 7. Oktober 2013, doi:10.1093/infdis/jit449.
  15. Frank J. Erbguth, Markus Naumann: Historical aspects of botulinum toxin: Justinus Kerner (1786–1862) and the "sausage poison". In: Neurology. Vol. 53, Issue 8, 1. November 1999, S. 1850.
  16. a b Eintrag zu „Botulismus“ im Lexikon der Ernährung. Wissenschaft-Online-Lexika, abgerufen am 11. Dezember 2009.
  17. a b c d Eintrag zu „Botulinustoxin“ im Lexikon der Biologie. Wissenschaft-Online-Lexika, abgerufen am 11. Dezember 2009.
  18. a b c d e f g h i j G. Eisenbrand (Hrsg.), P. Schreier (Hrsg.): RÖMPP Lexikon Lebensmittelchemie. 2. Auflage, Thieme-Verlag, 2006, ISBN 3-13-736602-X, S. 148–149.
  19. Amber Scarlatos, Bruce A. Welt, Brian Y. Cooper, Douglas Archer, Thomas DeMarse, Khe V. Chau: Methods for Detecting Botulinum Toxin with Applicability to Screening Foods Against Biological Terrorist Attacks. In: Journal of Food Science. Band 70, Nr. 8, 2005, S. 121–130, doi:10.1111/j.1365-2621.2005.tb11525.x.
  20. a b Eintrag zu „Botulismus“ im Lexikon der Neurologie. Wissenschaft-Online-Lexika, abgerufen am 11. Dezember 2009.
  21. S. Krupa, G. Gopinathrao: Botulinum neurotoxicity.@1@2Vorlage:Toter Link/www.reactome.org (Seite nicht mehr abrufbar, Suche in Webarchiveni Info: Der Link wurde automatisch als defekt markiert. Bitte prüfe den Link gemäß Anleitung und entferne dann diesen Hinweis. In: reactome.
  22. Anton de Paiva, Frédéric A. Meunier, Jordi Molgó, K. Roger Aoki, J. Oliver Dolly: Functional repair of motor endplates after botulinum neurotoxin type A poisoning: Biphasic switch of synaptic activity between nerve sprouts and their parent terminals. In: PNAS. 1999, Vol. 96, S. 3200–3205. PMID 10077661
  23. Werner Köhler, Rainer Ansorg: Medizinische Mikrobiologie. 8. Auflage, Elsevier, Urban&Fischer, 2001, ISBN 3-437-41640-5, S. 402.
  24. Stellungnahme der „DVG-Fachgruppe Rinderkrankheiten“ zur Diskussion um das Thema „viszeraler Botulismus“ als Ursache von Bestandserkrankungen bei Rindern. DVG (PDF; 55 kB)
  25. Marieke Degen: Gift ohne Gegengift, DLF – Forschung aktuell, 6. November 2013.
  26. Botox: Neues Toxin mit Publikationsverbot belegt. In: Deutsches Ärzteblatt, 14. Oktober 2013.
  27. Eintrag zu „botulinum cook“. In: businessdictionary.com, abgerufen am 11. Dezember 2009.
  28. Michael Abele, Andres Ceballos-Baumann: Bewegungsstörungen. 2. Auflage, Georg Thieme Verlag, 2005, ISBN 3-13-102392-9, S. 156–171.
  29. a b c Peter Berlit: Klinische Neurologie. Springer, 1999, ISBN 3-540-65281-7, S. 902–903.
  30. a b c F. von Bruchhausen, S. Ebel, E. Hackenthal, U. Holzgrabe: Hagers Handbuch der pharmazeutischen Praxis. Band 4: Stoffe A–K. 5. Auflage, Springer, 1999, ISBN 3-540-62644-1, S. 164–165.
  31. Deutsche Gesellschaft für Neurologie: Migräne: Bakteriengift hilft chronisch Kranken. Deutsche Gesellschaft für Neurologie, Pressemitteilung vom 25. September 2009 beim Informationsdienst Wissenschaft (idw-online.de), abgerufen am 15. September 2015.
  32. Hartmut Göbel: Die Kopfschmerzen: Ursachen, Mechanismen, Diagnostik und Therapie in der Praxis. 2. Auflage, Springer, 2003, ISBN 3-540-03080-8, S. 481–483.
  33. Boris Sommer, Gerhard Sattler: Botulinumtoxin in der ästhetischen Medizin. 3. Auflage, Georg Thieme Verlag, 2006, ISBN 3-13-137673-2, S. 68–73.
  34. Hamid Abdolvahab-Emminger: Exaplan, Band 2. 5. Auflage, Elsevier, Urban&Fischer, 2008, ISBN 978-3-437-42462-5, S. 2064.
  35. Gudrun Bartolome, Heidrun Schröter-Morasch: Schluckstörungen: Diagnostik und Rehabilitation. 3. Auflage, Elsevier, Urban&Fischer, 2006, ISBN 3-437-47160-0, S. 215–216.
  36. Franziska Kaestner, Justine Warzok, Christian Zechmann: Crashkurs innere Medizin: Repetitorium zum Gegenstandskatalog 3 mit Einarbeitung der wichtigsten Prüfungsfakten. Elsevier, Urban&Fischer, 2004, ISBN 3-437-43510-8, S. 166.
  37. a b c d S. Kahl, G. Kähler, A. Dormann: Interventionelle Endoskopie. Lehrbuch und Atlas. Elsevier, Urban&Fischer, 2006, ISBN 3-437-23620-2, S. 249.
  38. a b Boris Sommer, Gerhard Sattler: Botulinumtoxin in der ästhetischen Medizin. 3. Auflage, Georg Thieme Verlag, 2006, ISBN 3-13-137673-2, S. 15.
  39. a b E. Yiannakopoulou: Serious and long-term adverse events associated with the therapeutic and cosmetic use of botulinum toxin. In: Pharmacology. Band 95, Nummer 1–2, 2015, S. 65–69, doi:10.1159/000370245, PMID 25613637 (freier Volltext) (Review).
  40. E. P. Sorensen, C. Urman: Cosmetic complications: rare and serious events following botulinum toxin and soft tissue filler administration. In: Journal of drugs in dermatology: JDD. Band 14, Nummer 5, Mai 2015, S. 486–491, PMID 25942667 (Review).
  41. Andreas Hennenlotter, Christian Dresel, Florian Castrop, Andres O. Ceballos-Baumann, Afra M. Wohlschläger, Bernhard Haslinger: The Link between Facial Feedback and Neural Activity within Central Circuitries of Emotion—New Insights from Botulinum Toxin–Induced Denervation of Frown Muscles. Cereb. Cortex, Band 19, Heft 3, S. 537–542; doi:10.1093/cercor/bhn104.
  42. K. G. Raphael, A. Tadinada u. a.: Osteopenic consequences of botulinum toxin injections in the masticatory muscles: a pilot study. In: Journal of Oral Rehabilitation. 41, 2014, S. 555, doi:10.1111/joor.12180.
  43. Is Botox Safe and Effective for TMD? The TMJ Association, Abgerufen am 13. Juni 2016.
  44. Beschluss vom 17. Mai 2017 – Az.: 13 A 168/16. Oberverwaltungsgericht Nordrhein-Westfalen
  45. FDA Requires Boxed Warning for All Botulinum Toxin Products. FDA News & Events, 30. April 2009.
  46. Mitteilung an die Angehörigen von Heilberufen zu Risiken bei der „Off-Label“ Anwendung von NeuroBloc (Botulinumtoxin Typ B). In: akdae.de, 25. Februar 2013.
  47. S. Bitz: The Botulinum Neurotoxin LD50 Test. Problems and Solutions. (Memento des Originals vom 7. April 2014 im Internet Archive) i Info: Der Archivlink wurde automatisch eingesetzt und noch nicht geprüft. Bitte prüfe den Link gemäß Anleitung und entferne dann diesen Hinweis.@1@2Vorlage:Webachiv/IABot/www.altex.ch (PDF; 212 kB) Altex 27, 2/2010, S. 114–116.
  48. Botox-Mäuse: Qualvoller Tod für weniger Falten. In: Kassensturz, Sendung vom 20. November 2007.
  49. Europäisches Arzneibuch, 8. Ausgabe, Grundwerk 2014, S. 2538 f., Monographie Botulinum-Toxin Typ A zur Injektion
  50. Study Finds Botulinum Toxin Spreads to CNS Tissue in Mice. In: journals.lww.com
  51. Gisela Telis : Have Botox, Will Travel. (Memento des Originals vom 13. September 2011 im Internet Archive) i Info: Der Archivlink wurde automatisch eingesetzt und noch nicht geprüft. Bitte prüfe den Link gemäß Anleitung und entferne dann diesen Hinweis.@1@2Vorlage:Webachiv/IABot/news.sciencemag.org In: sciencemag.org, 2. April 2008.
  52. Botulinum Toxin (Botulism). Abgerufen am 7. März 2018 (englisch).
  53. Biological and Chemical Terrorism:Strategic Plan for Preparedness and Response. Abgerufen am 7. März 2018.
  54. Prof. Bernd D. Domres, Andreas Manger, Rainer Wenke, Stefan Brockmann, Mike Kay, Dr. rer. nat. Horst Miska: GEMAESS - CBRN-Gefahrenlagen. Hrsg.: Johanniter-Unfall-Hilfe e.V. 2010, S. 89 (johanniter.de [PDF]).
  55. John Pike: Botulinum Toxins- Biological Weapons. Abgerufen am 7. März 2018 (englisch).
  56. H. Russmann: Toxine. In: Bundesgesundheitsblatt - Gesundheitsforschung - Gesundheitsschutz. Band 46, Nr. 11, 1. November 2003, ISSN 1436-9990, S. 989–996, doi:10.1007/s00103-003-0716-0 (labor-spiez.ch [PDF]).
  57. Kriegswaffenkontrollgesetz, Anlage (zu § 1 Abs. 1), II. Biologische Waffen, 3.1 c) Clostridium botulinum 3.1 d) Clostridium-botulinum-Toxine (eingesehen am 24. November 2009).
  58. U. Messelhäusser, R. Zucker, H. Ziegler, D. Elmer-Englhard, W. Kleih, C. Höller, U. Busch: Nachweis von Clostridium botulinum Typ A, B, E und F mittels real-time-PCR. (Abstract). In: Journal für Verbraucherschutz und Lebensmittelsicherheit, Mai 2007, Vol. 2, Iss. 2, S. 198-201; doi:10.1007/s00003-007-0174-y.
  59. Clostridium botulinum (Botulismus). Landeszentrum Gesundheit Nordrhein-Westfalen, abgerufen am 5. März 2013.
  60. Botox – Ein Gift macht Karriere. Dokumentation Deutschland 2010.
Gesundheitshinweis Dieser Artikel behandelt ein Gesundheitsthema. Er dient nicht der Selbstdiagnose und ersetzt keine Arztdiagnose. Bitte hierzu den Hinweis zu Gesundheitsthemen beachten!