„Brennstoffzelle“ – Versionsunterschied

aus Wikipedia, der freien Enzyklopädie
Zur Navigation springen Zur Suche springen
[gesichtete Version][ungesichtete Version]
Inhalt gelöscht Inhalt hinzugefügt
K Änderungen von 195.37.69.166 (Diskussion) rückgängig gemacht und letzte Version von Pittimann wiederhergestellt
Zeile 5: Zeile 5:


== Einordnung ==
== Einordnung ==
Die Gewinnung von [[Elektrische Energie|elektrischer Energie]] aus chemischen Energieträgern erfolgt heute zumeist durch [[Verbrennung (Chemie)|Verbrennung]] und Nutzung der entstehenden heißen Gase in einer [[Wärmekraftmaschine]], welche einen [[Generator]] antreibt. Das geschieht durch die Umwandlung der [[Thermische Energie|thermischen]] Energie in mechanische [[Arbeit (Physik)|Arbeit]]. Die Brennstoffzelle ist geeignet, die Umformung ohne die Umwandlung in Wärme und Kraft zu erreichen und damit potenziell effizienter zu sein. Unter dem Aspekt der [[Thermodynamik]] stellt sie somit eine [[Verbrennungskraftmaschine]] (VKM) dar, die chemische Energie in elektrische Energie umwandelt, wobei diese genauso wie mechanische Arbeit einen [[Exergie]]anteil von 100 % hat. Der Energiewirkungsgrad von Brennstoffzellen ist durch die [[Enthalpie]] bestimmt, ihr [[Exergie]]wirkungsgrad durch die [[freie Enthalpie]] der chemischen Reaktion. Er kann besser werden als der [[Exergie]]wirkungsgrad von [[Wärmekraftmaschine]]n (WKM), deren prinzipielle Grenze der [[Carnot-Wirkungsgrad]] ist. In der Praxis sind die von Brennstoffzellen erzielten Wirkungsgrade bei der Erzeugung von elektrischer Energie höher als die von [[Verbrennungsmotor|Otto- oder Dieselmotoren]], aber nicht wesentlich besser als die von modernen [[Gasturbine]]n, die mit höheren Temperaturen operieren.
Justin Bieber ist toll und Ardian Bujupi auch und The Black Pony auch aaaaah xd Die Gewinnung von [[Elektrische Energie|elektrischer Energie]] aus chemischen Energieträgern erfolgt heute zumeist durch [[Verbrennung (Chemie)|Verbrennung]] und Nutzung der entstehenden heißen Gase in einer [[Wärmekraftmaschine]], welche einen [[Generator]] antreibt. Das geschieht durch die Umwandlung der [[Thermische Energie|thermischen]] Energie in mechanische [[Arbeit (Physik)|Arbeit]]. Die Brennstoffzelle ist geeignet, die Umformung ohne die Umwandlung in Wärme und Kraft zu erreichen und damit potenziell effizienter zu sein. Unter dem Aspekt der [[Thermodynamik]] stellt sie somit eine [[Verbrennungskraftmaschine]] (VKM) dar, die chemische Energie in elektrische Energie umwandelt, wobei diese genauso wie mechanische Arbeit einen [[Exergie]]anteil von 100 % hat. Der Energiewirkungsgrad von Brennstoffzellen ist durch die [[Enthalpie]] bestimmt, ihr [[Exergie]]wirkungsgrad durch die [[freie Enthalpie]] der chemischen Reaktion. Er kann besser werden als der [[Exergie]]wirkungsgrad von [[Wärmekraftmaschine]]n (WKM), deren prinzipielle Grenze der [[Carnot-Wirkungsgrad]] ist. In der Praxis sind die von Brennstoffzellen erzielten Wirkungsgrade bei der Erzeugung von elektrischer Energie höher als die von [[Verbrennungsmotor|Otto- oder Dieselmotoren]], aber nicht wesentlich besser als die von modernen [[Gasturbine]]n, die mit höheren Temperaturen operieren.


Besonders intensiv erforscht ist die Wasserstoff-Sauerstoff-Brennstoffzelle. [[Wasserstoff]] kommt in der Natur nur in gebundener Form vor und muss daher erst erzeugt werden, wobei dies zwangsläufig mit hohem [[Wasserstoffwirtschaft#Umwandlungsverluste| Energieeinsatz]] geschieht.
Besonders intensiv erforscht ist die Wasserstoff-Sauerstoff-Brennstoffzelle. [[Wasserstoff]] kommt in der Natur nur in gebundener Form vor und muss daher erst erzeugt werden, wobei dies zwangsläufig mit hohem [[Wasserstoffwirtschaft#Umwandlungsverluste| Energieeinsatz]] geschieht.

Version vom 19. Mai 2011, 15:05 Uhr

Mit Methanol betriebene Brennstoffzelle

Eine Brennstoffzelle ist eine galvanische Zelle, die die chemische Reaktionsenergie eines kontinuierlich zugeführten Brennstoffes und eines Oxidationsmittels in elektrische Energie wandelt. Im Sprachgebrauch steht Brennstoffzelle meist für die Wasserstoff-Sauerstoff-Brennstoffzelle.

Eine Brennstoffzelle ist kein Energiespeicher oder gar ein Energieerzeuger, sondern ein Wandler. Die Energie zur Stromproduktion wird in chemisch gebundener Form mit den Brennstoffen zugeführt.

Einordnung

Justin Bieber ist toll und Ardian Bujupi auch und The Black Pony auch aaaaah xd Die Gewinnung von elektrischer Energie aus chemischen Energieträgern erfolgt heute zumeist durch Verbrennung und Nutzung der entstehenden heißen Gase in einer Wärmekraftmaschine, welche einen Generator antreibt. Das geschieht durch die Umwandlung der thermischen Energie in mechanische Arbeit. Die Brennstoffzelle ist geeignet, die Umformung ohne die Umwandlung in Wärme und Kraft zu erreichen und damit potenziell effizienter zu sein. Unter dem Aspekt der Thermodynamik stellt sie somit eine Verbrennungskraftmaschine (VKM) dar, die chemische Energie in elektrische Energie umwandelt, wobei diese genauso wie mechanische Arbeit einen Exergieanteil von 100 % hat. Der Energiewirkungsgrad von Brennstoffzellen ist durch die Enthalpie bestimmt, ihr Exergiewirkungsgrad durch die freie Enthalpie der chemischen Reaktion. Er kann besser werden als der Exergiewirkungsgrad von Wärmekraftmaschinen (WKM), deren prinzipielle Grenze der Carnot-Wirkungsgrad ist. In der Praxis sind die von Brennstoffzellen erzielten Wirkungsgrade bei der Erzeugung von elektrischer Energie höher als die von Otto- oder Dieselmotoren, aber nicht wesentlich besser als die von modernen Gasturbinen, die mit höheren Temperaturen operieren.

Besonders intensiv erforscht ist die Wasserstoff-Sauerstoff-Brennstoffzelle. Wasserstoff kommt in der Natur nur in gebundener Form vor und muss daher erst erzeugt werden, wobei dies zwangsläufig mit hohem Energieeinsatz geschieht.

Brennstoffzellen werden bereits als Energiewandler in der Raumfahrt (Apollo, Space Shuttle) und für U-Boot-Antriebe verwendet.

Die häufig diskutierte Verdrängung des Verbrennungsmotors als Automobilantrieb durch Brennstoffzellentechnologie ist derzeit (Stand 2009) kaum erkennbar (siehe Mobiler Einsatz). Außerdem kämen hierfür auch andere Alternativen in Frage.

Geschichte

Eine einfache Brennstoffzelle wurde 1838 von Christian Friedrich Schönbein erstellt, indem er zwei Platindrähte in Salzsäure mit Wasserstoff bzw. Sauerstoff umspülte und zwischen den Drähten eine elektrische Spannung bemerkte. Ein Jahr später veröffentlichte Schönbein diese Ergebnisse. Sir William Grove schrieb noch im selben Jahr eine Notiz über das sogenannte „batterisierte Knallgas“. Zusammen mit Schönbein erkannte er die Umkehrung der Elektrolyse und das Erzeugen von Strom in diesem Phänomen und wandte diese Erkenntnisse in mehreren Versuchen an.

1870 schrieb Jules Verne über die Brennstoffzelle:

Das Wasser ist die Kohle der Zukunft. Die Energie von morgen ist Wasser, das durch elektrischen Strom zerlegt worden ist. Die so zerlegten Elemente des Wassers, Wasserstoff und Sauerstoff, werden auf unabsehbare Zeit hinaus die Energieversorgung der Erde sichern.

Wegen der Erfindung des elektrischen Generators, damals Dynamomaschine genannt, durch Werner von Siemens geriet die als „Galvanische Gasbatterie“ bezeichnete Erfindung zunächst in Vergessenheit. Die Dynamomaschine war in Verbindung mit der Dampfmaschine bezüglich Brennstoff und Materialien relativ einfach und unkompliziert und wurde daher zu dieser Zeit der komplexen Brennstoffzelle vorgezogen.

Besondere Ereignisse

Die ersten produktiven Einsätze hatte die Brennstoffzelle in der US-amerikanischen Raumfahrttechnik der 1960er Jahre. In den Apollo-Mondmissionen diente sie als meist zuverlässiger Energielieferant. Als aber am 11. April 1970 die Rakete der Apollo-13-Mission mit drei Mann Besatzung nach problemlosem Start das All erreichte, explodierte eine der Brennstoffzellen und brachte die Sauerstofftanks ebenfalls zur Explosion. Als Folge hatte das sogenannte Servicemodul der Raumfähre keinen Strom mehr, weswegen die Mannschaft im Mondlandemodul ohne Heizung bei –200 °C Umgebungstemperatur 142 h und 40 min ausharren musste. Das Lebenserhaltungssystem des Mondlandemoduls war nicht dafür ausgelegt, drei Personen über einen so langen Zeitraum am Leben zu erhalten. Bei diesem Vorfall wurde der berühmte Satz „Houston, we've had a problem here.“ („Houston, wir hatten hier ein Problem“) geprägt. Durch einen Übersetzungsfehler hat sich im Deutschen aber der Satz "Houston, wir haben ein Problem" eingebürgert.

Aufbau

Schematische Darstellung der Funktion einer PEMFC / DMFC / (PAFC) Brennstoffzelle

Eine Brennstoffzelle besteht aus Elektroden, die durch eine Membran oder Elektrolyt (Ionenleiter) voneinander getrennt sind.

Die Elektrodenplatten/Bipolarplatten bestehen meist aus Metall oder Kohlenstoffnanoröhren. Sie sind mit einem Katalysator beschichtet, zum Beispiel mit Platin oder mit Palladium. Als Elektrolyten können beispielsweise gelöste Laugen oder Säuren, Alkalicarbonatschmelzen, Keramiken oder Membranen dienen.

Die Energie liefert eine Reaktion von Sauerstoff mit dem Brennstoff, der Wasserstoff sein kann, jedoch ebenso aus organischen Verbindungen wie z.B. Methan und Methanol bestehen kann. Beide Reaktionspartner werden über die Elektroden kontinuierlich zugeführt. Die gelieferte Spannung liegt theoretisch bei 1,23 V für die Wasserstoff-Sauerstoff-Zelle bei einer Temperatur von 25 °C. In der Praxis werden jedoch nur Spannungen von 0,5–1 V (experimentell auch darüber) erreicht. Die Spannung ist vom Brennstoff, von der Qualität der Zelle und von der Temperatur abhängig. Um eine höhere Spannung zu erhalten, werden mehrere Zellen zu einem Stack (engl. für 'Stapel') in Reihe geschaltet. Unter Last bewirken die chemischen und elektrischen Prozesse ein Absinken der Spannung (nicht bei der Hochtemperatur-Schmelzkarbonatbrennstoffzelle, MCFC).

Bei der Niedertemperatur-Protonenaustauschmembran-Brennstoffzelle (Proton Exchange Membrane Fuel Cell, PEMFC; oder Polymer Electrolyte Fuel Cell, PEFC) ist der Aufbau wie folgt:

  1. Bipolarplatte als Elektrode mit eingefräster Gaskanalstruktur, beispielsweise aus leitfähigen Kunststoffen (durch Zugabe zum Beispiel von Carbon-Nanoröhrchen elektrisch leitend gemacht);
  2. poröse Carbon-Papiere;
  3. Reaktivschicht, meist auf die Ionomermembran aufgebracht. Hier stehen die vier Phasen Katalysator (Pt), Elektronenleiter (Ruß oder Carbon-Nanomaterialien), Protonenleiter (Ionomer) und Porosität miteinander in Kontakt;
  4. protonenleitende Ionomermembran: gasdicht und nicht elektronenleitend.

Brennstoffzellentypen

Verschiedene Typen der Brennstoffzelle[1]
Bezeichnung Elektrolyt Mobiles
Ion
Brennstoff(Anode) Gas der Kathode Leistung (kW) Temperatur (°C) el. Wirkungs-
grad (%)
Stand
Alkalische Brennstoffzelle (AFC) KOH OH- H2 O2 10–100 < 80 45–60 kommerzielle Entwicklung
Polymerelektrolyt-
Brennstoffzelle
(PEMFC)
Polymer-
Membran
H+ H2 O2 0,1–500 10–100 35 [2] kommerzielle Entwicklung
Direktmethanol-
Brennstoffzelle
(DMFC)
Polymer-
Membran
H+ CH3OH O2 < 0,001–100 60–130 [3] 40 [3] kommerzielle Entwicklung
Ameisensäure-
Brennstoffzelle
Polymer-
Membran
H+ HCOOH O2 < 0,001–100 30 Entwicklung
Phosphorsäure-
Brennstoffzelle
(PAFC)
H3PO4 H3O+ H2 O2 < 10.000 200 38 [2] kommerzielle Entwicklung
Schmelzkarbonat-
Brennstoffzelle
(MCFC)
Alkali-
Carbonat-
Schmelzen
CO32- H2, CH4, Kohlegas O2 100.000 650 48 [2] kommerzielle Entwicklung
Festoxid-
Brennstoffzelle
(SOFC)
oxid-
keramischer
Elektrolyt
O2- H2, CH4, Kohlegas O2 (Luft) < 100.000 800–1000 47 [2] Entwicklung
Direktkohlenstoffbrennstoffzelle (SOFC, MCFC) O2- C O2 (Luft) 650 < 60 [4] Entwicklung MTU_Friedrichshafen
Magnesium-Luft Brennstoffzelle (MAFC) O2- Mg O2 (Luft) 55 < 90 [5] Entwicklung MagPower Systems

Reversible Brennstoffzelle

Eine Weiterentwicklung der herkömmlichen Polymerelektrolytbrennstoffzellen auf Wasserstoff-Sauerstoff-Basis ist die Reversible Brennstoffzelle (en. reversible fuel cell, RFC), die ursprünglich aus der Kombination einer Wasserstoff-Brennstoffzelle mit einem Elektrolyseur bestand. Neuere Modelle kombinieren den Verbrennungs- und den Elektrolyse-Prozess, um Gewicht zu sparen und die Komplexität zu vermindern. Damit eignen sich reversible Brennstoffzellen als Energiespeicher und zum Einsatz etwa als Akkumulator.[6]

Chemische Reaktion

Das Prinzip der Brennstoffzelle wurde 1838 von Christian Friedrich Schönbein anhand der Reaktion

erfunden. Viele Brennstoffzellentypen nutzen heutzutage diese Reaktion als „kalte Verbrennung“ zur Gewinnung elektrischer Energie.

Ein wichtiges Beispiel ist die Protonenaustauschermembran-Brennstoffzelle (PEMFC). Eine solche Brennstoffzelle verwendet in der Regel Wasserstoff als Energieträger und erreicht einen Wirkungsgrad von etwa 60 %. Andere Konstruktionen arbeiten mit Methanol oder Methan und erzeugen daraus den Wasserstoff mittels Dampfreformierung. Das Kernstück der PEMFC ist eine Polymermembran, die ausschließlich für Protonen durchlässig ist (also nur für H+-Ionen), die so genannte proton exchange membrane (PEM). Das Oxidationsmittel, für gewöhnlich Luftsauerstoff, ist dadurch räumlich vom Reduktionsmittel getrennt.

Der Brennstoff, hier Wasserstoff, wird an der Anode katalytisch unter Abgabe von Elektronen zu Wasserstoffionen oxidiert. Diese gelangen durch die Ionen-Austausch-Membran in die Kammer mit dem Oxidationsmittel. Die Elektronen werden aus der Brennstoffzelle abgeleitet und fließen über einen elektrischen Verbraucher, z.B. eine Glühlampe, zur Kathode. An der Kathode wird das Oxidationsmittel, hier Sauerstoff, durch Aufnahme der Elektronen zu Anionen reduziert, die unmittelbar mit den Wasserstoffionen zu Wasser reagieren.

Brennstoffzellen mit einem solchen Aufbau heißen Polymermembran-Brennstoffzellen, PEMFC (für Polymer Electrolyte Membrane Fuel Cell) oder auch PEFC (für Proton Exchange Membrane Fuel Cell). Die verwendeten Membranen sind saure Elektrolyten.

Redox-Reaktionsgleichungen für eine PEMFC:

Saurer Elektrolyt Gleichung
Anode
Oxidation / Elektronenabgabe
Kathode
Reduktion / Elektronenaufnahme
Gesamtreaktion
Redoxreaktion / Zellreaktion

Es gibt auch alkalische Wasserstoff-Brennstoffzellen. Sie arbeiten jedoch nur mit hochreinem Wasserstoff und Sauerstoff. In ihnen werden die Gase durch poröse, katalytisch wirksame Elektroden in eine basische Lösung eingeleitet.

Die dort ablaufenden Redox-Reaktionen lauten:

Basischer Elektrolyt Gleichung
Anode
Oxidation / Elektronenabgabe
Kathode
Reduktion / Elektronenaufnahme
Gesamtreaktion
Redoxreaktion / Zellreaktion

Elektrischer Wirkungsgrad, Kosten, Lebensdauer

Am Institut für Energieforschung am Forschungszentrum Jülich wurden für Brennstoffzellensysteme folgende Messergebnisse erzielt (Stand 2003):[2]

Typ Beschreibung Leistung Elektrischer Wirkungsgrad Stand der Technik Kosten €/kW
PEFC[7] 70 °C, fester Elektrolyt 250 kW 35 % Feldtest < 10.000
PAFC 250 °C 200 kW 38 % Serie > 5.000
MCFC 650 °C, für stationäre Anwendung 280 kW 48 % Feldtest < 8.000
SOFC[8] 900 °C, für stationäre Anwendung 100 kW 47 % Feldtest 20.000

Zum Vergleich:

Typ Leistung Wirkungsgrad Kosten €/kW
konventionelle KWK bis 100 kWe 25 % (el.) 1000
konventionelle KWK ab 1000 kWe 35 % (el.) < 500
Stadtbus (Dieselmotor) 300 kW 30 % < 275
LKW, Reisebus 500 kW 30 % < 100
PKW (Ottomotor) 100 kW 15–20 % 50
Gasturbinen 1 kW – 300 MW 25–46 %[9][10] ?

Die Lebensdauer einer PAFC-Brennstoffzelle liegt zwischen 40.000 Betriebsstunden für stationäre und 5.000 Betriebsstunden für mobile Systeme[11] (40.000 Betriebsstunden entsprechen 1666 Dauerbetriebstagen oder 4,6 Dauerbetriebsjahren). Die Lebensdauer einer Festoxid-SOFC-Brennstoffzelle ist derzeit noch auf einige Monate beschränkt bei Herstellungskosten in der Größenordnung von rund 100.000 Franken (62.000 Euro) (Stand: 13. März 2006)[12].

Zur Erhöhung des Wirkungsgrades von Hochtemperaturbrennstoffzellen können diese mit einer Mikrogasturbine gekoppelt werden, so dass sie kombiniert Wirkungsgrade von über 60 % erreichen.[13]

Energiewirtschaft

Hauptartikel: Wasserstoffwirtschaft sowie Methanolwirtschaft

Die Wasserstoff-Sauerstoff-Brennstoffzelle ist ökologisch umstritten: Wasserstoff kann zwar durch Einsatz von Elektrizität aus erneuerbaren Energien klimaneutral gewonnen werden, jedoch sind die Verluste bei Herstellung und Transport zu berücksichtigen. So hat etwa die Kette Erdgas → Wasserstoff → Brennstoffzellen-PKW einen Wirkungsgrad von 30 %, die Kette H2 über Elektrolyse aus Windenergie oder aus dem Stromnetz (EU-Mix) → Brennstoffzellen-PKW ca. 29 % bzw. 12 %. Zum Vergleich: Die Kette Erdöl→Benzin→VKM-PKW liegt bei ca. 20 % Wirkungsgrad[14]. Anders als beim bisherigen Einsatz fossiler Energieträger, bei dem die energetische Effizienz nur geringe ökonomische Bedeutung hatte, wird zudem argumentiert, dass die Energiekosten in Zukunft eine ausschlaggebende Rolle spielen werden und ein direkter Einsatz von Strom in den meisten Fällen erheblich wirtschaftlicher sei[15].

Die Infrastruktur für Lagerung und Transport von Wasserstoff stellt eine hohe technische, organisatorische und ökonomische Herausforderung dar. Die Wasserstofftanks haben entweder mehrere hundert bar Druck oder sehr tiefe Temperaturen für den flüssigen Zustand. Das große Gewicht solcher Tanks, bezogen auf die gespeicherte Energiemenge, ist ein wesentliches Hindernis für den Einsatz in Fahrzeugen. Die Forschung über geschlossene, nachhaltige Energiekreisläufe wird mit öffentlichen Geldern unterstützt. Als mögliche Alternative gilt die Verwendung von elektrisch synthetisiertem Methanol, dessen Eigenschaften sehr ähnlich denen von Benzin oder Ethanol sind und das problemlos in Tanks gespeichert und transportiert werden kann (Methanolwirtschaft). Die Aufgabe einer effizienten, klimaneutralen Methanolsynthese, die als Ausgangsprodukt Kohlendioxid benötigt, ist jedoch noch nicht vollständig gelöst.

Am 12. September 2005 verabschiedete das Europäische Parlament das Wasserstoffmanifest, worin eine grüne Wasserstoffwirtschaft in kürzestmöglicher Zeit gefordert wird. Europa könne damit, falls kostengünstige Verfahren entwickelt werden, die Energiepreise für Strom, Wärme und Verkehr deutlich reduzieren und wäre energieautark, also unabhängig von den Lieferanten fossiler Rohstoffe.

Anwendungen

Die ersten Anwendungen von Brennstoffzellen ergaben sich in Bereichen wie Militär und Raumfahrt, in denen die Kosten eine sehr geringe Rolle spielten und die spezifischen Vorteile die Kosten-Vorteile der Dieselgeneratoren überwogen. Brennstoffzellen sind leichter als Akkumulatoren und zuverlässiger und leiser als Generatoren. Die geringen Geräuschemissionen und die Möglichkeit, Brennstoffzellen nach sehr langer Inaktivität zuverlässig zu betreiben, trugen zu einer anfangs oft militärischen Nutzung sowie einem Einsatz in Notstromversorgungen bei. Zudem vertreten die Hersteller von Brennstoffzellen die Auffassung, dass Brennstoffzellen in Kombination mit einem Elektromotor Bewegungsenergie in verschiedenen Einsatzbereichen effizienter erzeugen können als Verbrennungsmotoren.

Die besondere Stärke von Brennstoffzellen ist jedoch die hohe Energiedichte, wodurch sich das frühzeitige Interesse des Militärs und der Raumfahrt an dieser Technik erklärt.

Stationärer Einsatz

Der stationäre Einsatzbereich eines Brennstoffzellensystems erstreckt sich über einen weiten Leistungsbereich, angefangen bei kleinen Systemen mit einer Leistung von zwei bis fünf Kilowatt elektrischer Leistung – z.B. als Hausenergie-Versorgung – bis hin zu Systemen mit mehreren hundert Kilowatt. Größere Systeme werden in Krankenhäusern, Schwimmbädern oder für die Versorgung von kleinen Kommunen eingesetzt.

Eine stromerzeugende brennstoffzellenbasierte HyO-Heizanlage („Hy“ = Hydrogenium = Wasserstoff und „O“ = Oxygenium = Sauerstoff; Mini-Blockheizkraftwerk = Mini-BHKW) besteht aus mehreren Komponenten. Im Idealfall des Bezugs von – möglichst klimaneutral erzeugtem – Wasserstoff wird eine gering-aufwändig herstellbare PEM-BZ (Polymer-Elektrolyt-Membran-Brennstoffzelle) eingesetzt. Solange noch kein (Bio-)Wasserstoff als Brennstoff zur Verfügung steht, sondern stattdessen fossiles oder biogenes Methan („Erdgas“ oder gar „BioErdgas“), ist eine teure und aufwändige Reformer-Einheit erforderlich, die das Methan umwandelt in Wasserstoff zum Betrieb der brennstoffzellenbasierte HyO-Anlage und CO2 als Abgas für den Schornstein. Die zweite Komponente ist die HyO-Anlage im engeren Sinne (Brennstoffzelle=BZ), die zur Oxydation des zugeführten Wasserstoffs zu H2O, Sauerstoff („O“)aus der Umgebungsluft verwendet. Hinzu kommen noch die elektrische Leistungselektronik und die dazugehörige Regelung der Betriebsführung. Zur Deckung von thermischen Lastspitzen sind meist zusätzlich konventionelle Wärmeerzeuger installiert.

Für den stationären Anwendungsbereich kommen alle Typen von Brennstoffzellen in Betracht. Aktuelle Entwicklungen beschränken sich auf die SOFC, MCFC und die PEMFC. Die SOFC und die MCFC haben den Vorteil, dass bedingt durch die hohen Temperaturen Erdgas direkt als Brenngas eingesetzt werden kann. Der Reformierungsprozess läuft dabei in der Brennstoffzelle intern ab, was auch bei Erdgasbezug einen Reformer weitgehend überflüssig macht. Die Niedertemperatur-PEMFC benötigt dagegen bei Erdgasbezug für die Umwandlung von Methan in Wasserstoff eine Reformereinheit mit einer aufwändigen Gasreinigungsstufe, weil das Reformat weitgehend von CO befreit werden muss. CO entsteht nämlich bei jeder Reformierung von Kohlenwasserstoffen. CO ist bei diesem BZ-Typ ein Katalysatorgift und reduziert sowohl die Leistung als auch die die Lebensdauer der Zelle signifikant.

Beim Betrieb der Hochtemperaturzellen SOFC und MCFC kann die heiße Abluft zur Sterilisation von Gegenständen genutzt werden. Als Notstromerzeuger sind sie wegen der längeren Anfahrphase ungeeignet. Ein Niedertemperatur-PEMFC-System hingegen kann sich bei plötzlichem Notstrombedarf sehr zügig in Betrieb setzen.

Betriebsweise

Bei der stationären BZ-Anwendung steht die Wärmeproduktion gegenüber der Stromproduktion im Vordergrund. Diese Systeme werden deshalb meist wärmebedarfsgeführt betrieben. Das bedeutet, dass die Systemleistung nach der benötigten Wärmemenge geregelt wird, wobei der erzeugte elektrische Strom in das öffentliche Stromnetz eingespeist wird. Stationäre BZ-Systeme werden am besten mit einer geringen Leistungsmodulation betrieben. Idealerweise wird der Wärmegrundlastbedarf komplett über das BZ-BHKW gedeckt. (Wärme-)Lastspitzen werden über konventionelle Heizgeräte abgedeckt. Auf diese Weise arbeitet das stationäre BZ-System bei lediglich einem einzigen konstanten Lastpunkt. Dadurch kann der Wirkungsgrad des Systems optimal ausgelegt werden. Die Lebensdauer einer BZ ist in erster Annäherung durch die Anzahl der Start-Stopp-Zyklen bestimmt, da diese die größte Auswirkung auf die Katalysatoren im Inneren zeigen. Für eine PEM-Brennstoffzelle mit geschlossener Kathode gilt, dass sie in ausgeschaltetem Zustand beidseitig – also auch sauerstoffseitig – abgedichtet werden sollte. Das vereinfacht einen erneuten Start, da die für den Betrieb notwendige Feuchtigkeit beibehalten wird, und sich keine schädlichen Gase ansammeln können. Sofern die Lagerung bei Temperaturen unter dem Gefrierpunkt erfolgen soll, muss die Brennstoffzelle komplett ausgetrocknet werden, um Schäden durch Eisbildung zu verhindern.

Reformer

Jedes BZ-System kann direkt mit Wasserstoff als Brenngas betrieben werden. Bedingt durch die bereits verfügbare Infrastruktur werden die BZ-BHKWs jedoch nicht direkt mit Wasserstoff, sondern mit Erdgas (oder Flüssiggas) betrieben. Je nach BZ-Typ (siehe oben) muss das Erdgas vor der Umsetzung in der Brennstoffzelle erst in Wasserstoff (PEMFC) bzw. in ein Wasserstoff-/Kohlenmonoxid-/Methan-Gemisch (SOFC) umgewandelt werden. Das geschieht in einem sogenannten Reformer. In dem Reformer wird Erdgas (oder allgemein kohlenwasserstoffhaltige Gase oder Flüssigkeiten) über einen Katalysator bei erhöhter Temperatur in ein wasserstoffreiches Gas (Reformat) umgewandelt, wobei CO2 entsteht.

Mobiler Einsatz

Straßenverkehr

Hauptartikel: Brennstoffzellenfahrzeug
Methanolbrennstoffzelle im Mercedes-Benz NECAR 3

Mehrere Automobilfirmen (u.a. BMW, Volkswagen, Toyota, Daimler, Ford, Honda, General Motors/Opel) forschen seit zum Teil zwanzig Jahren an Automobilen, deren Treibstoff Wasserstoff ist, und die zur Energieumwandlung Brennstoffzellen sowie einen Elektromotor zum Antrieb nutzen. Ein Beispiel sind die Fahrzeuge NECAR 1 bis NECAR 5 sowie Mercedes-Benz F-Cell von Daimler. Das schweizerische Hy-Light-Fahrzeug rückte 2004 ins Licht der Öffentlichkeit. Derzeit gehen einige MAN-Brennstoffzellen-Stadtbusse in Berlin für die BVG in Betrieb.[16] Bei BMW ist die Brennstoffzelle nicht originär zur Erzeugung elektrischer Antriebsenergie gedacht. Das Konzept sieht hier vor, im von einem Verbrennungsmotor angetriebenen Wasserstoff-Fahrzeug (z.B. 7er Baureihe, Typ E68) das permanent aus dem Wasserstofftank abdampfende Gas in einer Brennstoffzelle zur Stromversorgung des Fahrzeuges zu nutzen, anstatt den Wasserstoff ins Freie entweichen zu lassen.

Förderlich für die erheblichen Anstrengungen in der Forschung war in den USA insbesondere der Zero emission act bzw. das Zero Emission Vehicle mandate (ZEV), die vorsehen, dass Autos zukünftig abgasfrei fahren sollen. Für das Jahr 2003 war vorgesehen, dass 10 % aller neu zugelassenen Fahrzeuge in Kalifornien diesem Gesetz unterliegen sollten[17]. Kurz vorher, nach massivem Druck der amerikanischen Automobilindustrie, wurde das ZEV jedoch gekippt, wenn es auch weiterhin diskutiert wird.

Durch den verstärkten Einsatz von emissionsfreien Fahrzeugen in Ballungszentren und Großstädten wird eine Verbesserung der dortigen Luftqualität erwartet. Ein Nebeneffekt wäre allerdings, dass die Emissionen vom Ort der Fahrzeugnutzung dorthin verlagert werden, wo der Wasserstoff hergestellt wird, soweit das nicht aufgrund klimaneutraler Verfahren erfolgt. Für die Wasserstoffherstellung gibt es mehrere Möglichkeiten mit unterschiedlicher Effizienz.

Für den breiten Einsatz der mobilen Wasserstoffanwendungen ist der gleichzeitige Aufbau von Wasserstofftankstellen erforderlich. Am sinnvollsten geschieht das durch den Umbau der Energiewirtschaft zu einer Wasserstoffwirtschaft. Für die Mitnahme von Wasserstoff in Fahrzeugen kommen neben Druckbehältern auch andere Formen der Wasserstoffspeicherung in Frage, beispielsweise in Metallhydriden oder unter hohem Druck und niedriger Temperatur als flüssiger Wasserstoff.

Trotz des hohen Wirkungsgrads der Brennstoffzelle gestaltet sich die Abfuhr der Abwärme auf dem vergleichsweise niedrigen Temperaturniveau der PEM-Brennstoffzelle von etwa 80 °C als problematisch, denn im Gegensatz zum Verbrennungsmotor beinhaltet das relativ kalte Abgas (Wasserdampf) nur eine vergleichsweise geringe Wärmemenge. Demzufolge ist man bestrebt, die Betriebstemperatur der PEM-Brennstoffzelle auf über 100 °C anzuheben, um leistungsstärkere Brennstoffzellen-Automobile mit mehr als 100 kW realisieren zu können.

Bei Temperaturen unterhalb des Gefrierpunkts kann die Startfähigkeit der Brennstoffzelle aufgrund gefrierenden Wassers beeinträchtigt sein. Es muss sichergestellt sein, dass die elektrochemische Reaktion, insbesondere die Diffusion der Brenngase, nicht durch Eisbildung behindert wird. Das kann beispielsweise durch eine geeignete Elektrodenstruktur erzielt werden. Verschiedene Hersteller haben 2003 und 2004 bereits nachgewiesen, dass der Gefrierstart von PEM-Brennstoffzellen bei Temperaturen von bis zu –20 °C möglich ist; die Startzeiten seien mit denen von Verbrennungsmotoren vergleichbar.

Die schon seriennah verfügbaren Prototypen kleinerer Fahrzeuge haben zum Ziel, die Größe, das Gewicht und die Kosten der Brennstoffzelle und eine geeignete Speicherung des Wasserstoffes zu erproben. So hat Daimler Fahrzeuge der A-Klasse mit Brennstoffzellen vorgestellt. In Hamburg und Stuttgart werden Busse mit Wasserstoffantrieb im normalen Linienbetrieb getestet. Seit dem 16. Juni 2008 liefert Honda in begrenztem Rahmen den PKW FCX Clarity aus, der ausschließlich mit Brennstoffzellentechnik betrieben wird.

Seit 2007 fahren im Fuhrpark des Bundesverkehrsministeriums die ersten Kfz mit Brennstoffzellen-Antrieb.

Ebenfalls etwa seit 2007 gibt es auch Hybrid-Fahrräder[18] und Motorräder[19] mit Brennstoffzellenantrieb.

Mögliche Alternativen zur direkten Wasserstoffspeicherung sind Treibstoffe wie Ethanol, Methanol oder andere Kohlenwasserstoffe, von denen kurz vor Gebrauch der Wasserstoff durch katalytische Verfahren gewonnen wird. Diese Verfahren tragen jedoch in nicht unerheblichem Maße durch CO2-Ausstoß zur Umweltbelastung bei, was die ansonsten perfekte Umweltverträglichkeit der Brennstoffzelle einschränkt. Das ist jedoch dann nicht der Fall, wenn die Treibstoffe aus regenerativ erzeugter Biomasse stammen. Ethanol und Methanol können auch aus Wasser und Kohlendioxid synthetisiert werden, wobei jedoch wiederum die Gewinnung von Kohlendioxid, das in der Luft nur in sehr geringer Konzentration vorkommt, energieaufwendig sein kann. Die Wirtschaftlichkeit dieser Verfahren krankt heute zudem an den Katalysatoren, deren beste Varianten Platin enthalten. Eine breite Verwendung von Platinkatalysatoren würde zudem zu einer Verteuerung des Platins führen, welches ein seltenes und teures Edelmetall ist.

Ende Oktober 2006 erklärte VW den endgültigen Durchbruch bei der Herstellung von kostengünstigen, leistungsfähigen Brennstoffzellen im Hochtemperaturbereich. Probleme werden weniger beim Durchbruch der Brennstoffzellentechnik auf der Fahrzeugseite, sondern mehr in der kostengünstigen und dabei umweltschonenden Gewinnung von Wasserstoff gesehen.[20]

Der Autohersteller Ford gab am 24. Juni 2009 bekannt, dass die Arbeit an Brennstoffzellen eingestellt wird. Ford setzt stattdessen lieber auf Batterien und den Elektromotor.[21].

Luftfahrt

Seit Mitte 2005 sind Brennstoffzellen auch in der Luftfahrt anzutreffen. Eine erste Drohne, deren Elektromotoren von einer Brennstoffzelle angetrieben werden, startete in Yuma, Arizona. Das DLR arbeitet zur Zeit an der Integration der Brennstoffzellentechnik in das unbemannte Forschungsflugzeug „HyFish“, welches im März 2007 in der Nähe von Bern erfolgreich seinen Erstflug absolvierte.[22] Auch an anderer Stelle sind Forschungsaktivitäten in der Luftfahrt im Gange. Zu Beginn des Jahres 2008 wurde in einem Testflug ein umgebauter Airbus A320 mit einer Brennstoffzelle als Backup-System für die Energieversorgung an Bord getestet. Als erfreulicher Nebeneffekt kann das erzeugte Wasser für die Bordversorgung eingesetzt werden, so dass das Abfluggewicht gesenkt werden kann.[23]

Am 3. März 2008 betrieb Boeing zum ersten Mal ein kleines Flugzeug, eine Dimona von Diamond Aircraft, mit einem Hybridantrieb: Elektromotor mit Lithium-Ionen-Akkus und Brennstoffzelle. Nach dem Aufstieg mit beiden Energiequellen auf 1000 Meter Höhe wurde der Akku abgetrennt und der Pilot flog die ersten 20 Minuten der Fluggeschichte mit Brennstoffzelle. Entwickelt wurde der Antrieb von Boeing Research & Technology Europe (BR&TE) in Madrid mit europäischen Industriepartnern.[24]

Eine Lange Antares 20E des DLR, in der die elektrische Energie mittels Wasserstoff über eine Brennstoffzelle erzeugt wird

Der erste (öffentliche) vollständige Flug (Start - Platzrunde - Landung) eines pilotengesteuerten und ausschließlich mit Brennstoffzellen angetriebenen Flugzeuges fand am 7. Juli 2009 in Hamburg statt. Bei dem Flugzeug handelte es sich um den Motorsegler Antares DLR-H2, mit 20 Metern Spannweite, der vom Deutschen Zentrum für Luft- und Raumfahrt (DLR) sowie den Projektpartnern Lange Aviation, BASF Fuel Cells und Serenergy (Dänemark) sowie in enger Zusammenarbeit mit Airbus in 15 Monaten entwickelt und hergestellt wurde.[25][26]

Raumfahrt

Die amerikanischen Space Shuttle verwenden Brennstoffzellen mit einer maximalen Dauerleistung von 3 × 7 kW für die Stromversorgung des Orbiters. Das bei den Brennstoffzellen anfallende Wasser kann im Lebenserhaltungssystem verwendet werden.

Schifffahrt

Das weltweit erste Brennstoffzellenboot war die Hydra, die im Jahr 1999 vom Germanischen Lloyd für den öffentlichen Personenverkehr zertifiziert wurde. Dafür wurde eine Alkalische Brennstoffzelle (AFC) ausgewählt, da diese Technologie einfach verfügbar war und für Einsatzfälle auf hoher See mit der salzigen Seeluft besser umgehen kann als die PEM-Brennstoffzellen. Außerdem konnte das Brennstoffzellensystem auch bei Temperaturen unter dem Gefrierpunkt starten, da Kalilauge erst bei ca. –77 °C gefriert und der Wirkungsgrad der AFC-Technologie noch etwa 5 % höher als der der PEM liegt. Die Hydra hat eine Zulassung für zwanzig Passagiere und hat in den Jahren 1999/2000 rund 2.000 Personen befördert. Der Wasserstoff wird im Bug in Metallhydridspeichern bevorratet und reicht für einen 2-Tage-Betrieb bei 8 h Betriebsdauer.

Vorteil der Bevorratung des Wasserstoffs in Metallhydridspeichern ist außerdem die sehr kompakte Lagerung und die Möglichkeit, das Brennstoffzellensystem beim Betanken bereits durch die Abwärme der Metallhydridspeicher vorzuwärmen, um nach dem Tanken mit voller Leistung losfahren zu können.

Das Brennstoffzellensystem basiert auf den Brennstoffzellenstacks und war eine komplette Neuentwicklung mit unter den Stacks liegendem KOH-Vorratsbehälter (drain-system). Die Hydra ist seit 2001 nicht mehr in Betrieb, existiert aber noch im Raum Bonn und hat weltweit erstmalig bewiesen, dass es technologisch möglich ist, mit Brennstoffzellen ein Passagierschiff anzutreiben.

Bei U-Booten ist Deutschland der einzige Anbieter eines serienmäßig hergestellten Modells mit Brennstoffzellen-Zusatzantrieb. Die HDW Kiel in Kooperation mit Siemens und Nordseewerke Emden liefert seit 2005 die U-Boot-Klasse 212 mit einem solchen Antrieb (AIP: air independent propulsion) aus. Er leistet etwa 300 kW (408 PS) und ermöglicht eine Schleichfahrt ohne den 1050-kW-Dieselgenerator. Ebenso hat die U-Boot-Klasse 214 (vom selben Hersteller) Brennstoffzellen an Bord. In Bau befindet sich derzeit die spanische S-80-Klasse, die ebenfalls über einen außenluftunabhängigen Brennstoffzellen-Antrieb verfügt. Die erste Einheit soll laut Planung 2013 in Dienst gestellt werden.

Ende 2009 wurde eine Schmelzkarbonat-Brennstoffzelle (MCFC) mit 320 kW zur elektrischen Energieversorgung des Bordnetzes auf dem norwegischen Bohrinselversorger Viking Lady installiert, um Erfahrungen im Schiffsbetrieb zu sammeln.

Siehe auch

Literatur

  • Peter Kurzweil: Brennstoffzellentechnik. Vieweg, 2003, ISBN 3-528-03965-5
  • Sven Geitmann: Wasserstoff & Brennstoffzellen – Die Technik von morgen. 2. Auflage. Hydrogeit Verlag, Kremmen 2004, ISBN 3-937863-04-4
  • Krewitt, Pehnt, Fischedick, Temming: Brennstoffzellen in der Kraft-Wärme-Kopplung – Ökobilanzen, Szenarien, Marktpotenziale. Erich Schmidt Verlag, Berlin 2004, ISBN 3-503-07870-3
  • CMT – Center of Maritime Technologies e.V.: Zukünftige Energieversorgung und Mobilität. In: Schiff & Hafen, Heft 9/2009, S. 72–73, Seehafen-Verlag, Hamburg 2009, ISSN 0938-1643
  • U.S. Dept. of Energy, Office of Fossil Energy, National Energy Technology Laboratory: Fuel Cell Handbook, Sixth Edition. EG&G Technical Services Inc., Science Applications International Corp., Under Contract No. DE-AM26-99FT40575, Morgantown, W. Virginia, November 2002
  • Peter Gerigk, Detlef Bruhn, Dietmar Danner, Leonhard Endruschat, Jürgen Göbert, Heinrich Gross, Dietrich Kruse, Christian Rasmussen, Rainer Schopf: Kraftfahrzeugstechnik, 5. Auflage. Westermann Verlag, Braunschweig 1997, ISBN 3-14-231800-3
  • Wie funktioniert das? – Technik heute. Meyers Lexiconverlag, Mannheim 1998, ISBN 3-411-08854-0
Commons: Brennstoffzelle – Album mit Bildern, Videos und Audiodateien

Einzelnachweise

  1. Craig Morris: Brennstoffzelle ist nicht gleich Brennstoffzelle. In: Telepolis. 17. November 2004, abgerufen am 29. Januar 2011.
  2. a b c d e Brennstoffzellensysteme in der Entwicklung. Institut für Energie- und Klimaforschung (IEF) am Forschungszentrum Jülich, abgerufen am 29. Januar 2011.
  3. a b Die Direct-Methanol Brennstoffzelle (DMFC). In: dieBrennstoffzelle.de. Abgerufen am 29. Januar 2011.
  4. Fuel Cell types. Abgerufen am 7. Februar 2011.
  5. MAFC verses HFC (Hydrogen Fuel Cell). Abgerufen am 7. Februar 2011.
  6. Reversible Brennstoffzellen - Langzeitspeicher für elektrische Energie. Fraunhofer ISE, 16. März 2009, abgerufen am 29. Januar 2011.
  7. IEF: Polymer-Elektrolyt-Brennstoffzellen (PEFC)
  8. IEF: Die Festoxid-Brennstoffzelle (SOFC, Solid Oxide Fuel Cell)
  9. Mit Kraft-Wärme-Kopplung beträgt der Gesamtwirkungsgrad bis zu 90 %. Siehe englischsprachigen Artikel zu Gasturbinen (insbesondere den Abschnitt zu Mikrogasturbinen und Einsatz in Fahrzeugen)
  10. LMS100 von General Electric, Mechanical Engineering "Power & Energy," June 2004 - "A Year of Turbulence," Feature Article
  11. Kenngrößen von Brennstoffzellen
  12. Rémy Nideröst: Internationale Expertinnen und Experten für Brennstoffzellen treffen sich in Dübendorf In: Informationsdienst Wissenschaft, Empa. Materialforschung und Technologie, 13. März 2006. Abgerufen am 29. Januar 2011 
  13. iwr.de: DLR entwickelt Brennstoffzelle für dezentrales Hybridkraftwerk
  14. http://ies.jrc.ec.europa.eu/WTW
  15. http://www.fv-sonnenenergie.de/fileadmin/publikationen/Workshopbaende/ws2006/ws_2006_07.pdf
  16. http://www.fuelcellbus.com
  17. http://www.arb.ca.gov/msprog/zevprog/factsheets/2003zevchanges.pdf
  18. http://www.horizonfuelcell.com Horizon fuel cell vehicles
  19. http://de.youtube.com/watch?v=B_Whbb_hlPs Hydrogen Fuel Cell electric bike
  20. http://www.sueddeutsche.de/automobil/artikel/302/90212/
  21. Autobranche kippt Zukunftstechnologie
  22. http://www.dlr.de/desktopdefault.aspx/tabid-13/135_read-8329/
  23. http://www.eads.com/1024/de/pressdb/pressdb/20080219_airbus_emission_free.html
  24. http://www.boeing.com/news/releases/2008/q2/080403a_nr.html
  25. Meilenstein in der Brennstoffzellentechnologie: Erstflug eines Brennstoffzellen-Flugzeugs auf dem Hamburger Flughafen, NonstopNews, 7. Juli 2009. Abgerufen am 29. Januar 2011 
  26. Brennstoffzellen-Flugzeug über Hamburg - Flüsterleise und sauber dazu, Hamburger Abendblatt, 7. Juli 2009. Abgerufen am 29. Januar 2011