Palladium

aus Wikipedia, der freien Enzyklopädie
Zur Navigation springen Zur Suche springen
Eigenschaften
[Kr] 4d10 5s0
46Pd
Allgemein
Name, Symbol, Ordnungszahl Palladium, Pd, 46
Elementkategorie Übergangsmetalle
Gruppe, Periode, Block 10, 5, d
Aussehen silbrig, weiß, metallisch
CAS-Nummer 7440-05-3
Massenanteil an der Erdhülle 0,011 ppm[1]
Atomar [2]
Atommasse 106,42(1)[3] u
Atomradius (berechnet) 140 (169) pm
Kovalenter Radius 139 pm
Van-der-Waals-Radius 163 pm
Elektronenkonfiguration [Kr] 4d10 5s0
1. Ionisierungsenergie 804,4 kJ·mol−1
2. Ionisierungsenergie 1870 kJ·mol−1
3. Ionisierungsenergie 3177 kJ·mol−1
Physikalisch [2]
Aggregatzustand fest
Kristallstruktur kubisch flächenzentriert
Dichte 11,99 g/cm3 (20 °C)[4]
Mohshärte 4,75
Magnetismus paramagnetisch (Χm = 8,0 · 10−4)[5]
Schmelzpunkt 1828,05 K (1554,9 °C)
Siedepunkt 3233 K[6] (2960 °C)
Molares Volumen 8,56 · 10−6 m3·mol−1
Verdampfungswärme 380 kJ/mol[6]
Schmelzwärme 16,7 kJ·mol−1
Schallgeschwindigkeit 3070 m·s−1
Elektrische Leitfähigkeit 9,26 · 106 A·V−1·m−1
Wärmeleitfähigkeit 72 W·m−1·K−1
Chemisch [2]
Oxidationszustände 0, +2, +4
Oxide (Basizität) PdO (leicht basisch)
Normalpotential 0,915 V
(Pd2+ + 2 e → Pd)
Elektronegativität 2,20 (Pauling-Skala)
Isotope
Isotop NH t1/2 ZA ZE (MeV) ZP
102Pd 1,02 % Stabil
103Pd {syn.} 16,991 d ε 0,543 103Rh
104Pd 11,14 % Stabil
105Pd 22,33 % Stabil
106Pd 27,33 % Stabil
107Pd {syn.} 6,5 · 106 a β 0,033 107Ag
108Pd 26,46 % Stabil
109Pd {syn.} 13,7012 h β 1,116 109Ag
110Pd 11,72 % Stabil
Weitere Isotope siehe Liste der Isotope
NMR-Eigenschaften
  Spin-
Quanten-
zahl I
γ in
rad·T−1·s−1
Er (1H) fL bei
B = 4,7 T
in MHz
105Pd 5/2 1,23 · 107 0,000253 4,58
Sicherheitshinweise
GHS-Gefahrstoffkennzeichnung [7]

Pulver

02 – Leicht-/Hochentzündlich

Gefahr

H- und P-Sätze H: 228
P: 210​‐​280​‐​240​‐​241​‐​370+378 [7]
Soweit möglich und gebräuchlich, werden SI-Einheiten verwendet.
Wenn nicht anders vermerkt, gelten die angegebenen Daten bei Standardbedingungen.

Palladium ist ein chemisches Element mit dem Elementsymbol Pd und der Ordnungszahl 46. Das seltene, silberweiße Übergangsmetall zählt zu den Platinmetallen, im Periodensystem steht es in der 5. Periode und der 10. Gruppe (früher Teil der 8. Nebengruppe) oder Nickelgruppe. Es ähnelt in seinem chemischen Verhalten dem Platin. Das Metall wurde 1802 durch William Hyde Wollaston entdeckt, der Verfahren zur Verarbeitung von Platinerzen untersuchte. Er benannte es nach dem damals gerade entdeckten Asteroiden Pallas, der zu dieser Zeit für einen Planeten gehalten wurde. Dieser wiederum wurde nach dem Beinamen der griechischen Göttin Athene benannt.

Palladium wird in großen Mengen für die Produktion von Drei-Wege-Katalysatoren genutzt sowie in der Elektronik, der Zahnmedizin, in Brennstoffzellen und vielen weiteren Anwendungen, etwa in der Schmuckindustrie, wo es mit Gold zu Weißgold legiert wird. Umfangreiche Vorkommen wurden in Südafrika im Bushveld-Komplex gefunden, im Stillwater-Komplex in Montana sowie in Ontario, Russland und den Philippinen, wo es gediegen als Begleiter von Gold und Platinmetallen vorkommt.

Geschichte[Bearbeiten | Quelltext bearbeiten]

William Hyde Wollaston, etwa 1820–1824.

Palladium wurde 1802 von William Hyde Wollaston entdeckt. Wollaston fand das Element in einem südamerikanischen Platinerz, das er in Königswasser auflöste. Nach der Neutralisation der Lösung mit Natriumhydroxid konnte er das Platin mit Ammoniumchlorid als Ammoniumhexachloroplatinat fällen und abtrennen. Durch Zugabe von Quecksilbercyanid zur übrig gebliebenen Lösung erhielt Wollaston Palladiumcyanid, aus welchem er durch Erhitzen metallisches Palladium erhielt.[8][9]

Thomas Graham, Lithographie von Rudolf Hoffmann, 1856.

Bereits 1866 bemerkte Thomas Graham die erstaunliche Speicherfähigkeit des feinverteilten Palladiums für Wasserstoff, das bei Raumtemperatur und Atmosphärendruck etwa das 900-fache seines eigenen Volumens an Wasserstoffgas aufnehmen kann.[10] Dies führte zu der Vermutung, Wasserstoff sei ein sehr leichtflüchtiges Metall und dass es sich bei dem Palladium mit dem eingeschlossenen Wasserstoff um eine Legierung dieses flüchtigen Metalls handele.[10]

Francis Clifford Phillips, ein US-amerikanischer Chemiker, entdeckte 1894 die stöchiometrische Oxidation von Ethen zu Acetaldehyd mittels Palladium(II)-chlorid als er die Oxidation natürlich vorkommender Kohlenwasserstoffe untersuchte.[11] Gegen Ende der 1950er Jahre überführte die Wacker-Chemie die von Phillips gefundene stöchiometrische Reaktion im Wacker-Hoechst-Verfahren in eine katalytische Variante.[12] In dem Verfahren, mit dem pro Jahr Millionen Tonnen von Acetaldehyd und seinem Folgeprodukt Essigsäure produziert wurden, setzte die chemische Industrie erstmals einen Palladiumkatalysator in einer großtechnischen Anwendung ein. Außerdem handelte es sich um das erste großtechnische homogenkatalytische Verfahren.

Ab Ende der 1960er Jahre wurden Palladiumsalze für Kupplungsreaktionen eingesetzt. Daraus entwickelten sich für die organische Chemie wichtige Reaktionen wie die Heck-Reaktion, die Stille-Kupplung, die Suzuki-Kupplung oder die Negishi-Kupplung. Drei der daran beteiligten Forscher, Richard F. Heck, Ei-ichi Negishi und Akira Suzuki, erhielten dafür 2010 den Nobelpreis für Chemie.[13]

Elektrochemische Adsorptionsexperimente im Jahr 1989 durch Martin Fleischmann und Stanley Pons mit dem System Palladium-Deuterium wurden unter dem Begriff „kalte Fusion“ bekannt und gelangten weltweit in die Schlagzeilen. Die vermeintlich durch Palladium ausgelöste „kalte Fusion“ von Deuterium galt für kurze Zeit als wissenschaftliche Sensation mit der Hoffnung, dass dies eine praktisch unerschöpfliche Energiequelle zur Verfügung stellen könnte.[14][15]

Vorkommen[Bearbeiten | Quelltext bearbeiten]

Palladiumfördermengen 2005

Metallisches Palladium und palladiumhaltige Legierungen finden sich hauptsächlich in Flusssedimenten als geologische Seifen im Ural, Australien, Äthiopien und in Nord- und Südamerika. Sie sind aber seit Jahrzehnten weitestgehend ausgebeutet.

Heute wird es meist aus Nickel- und Kupfererzen gewonnen. Im Jahr 2011 stammten etwa 41 Prozent (85.000 kg) aus russischer Förderung, gefolgt von Südafrika mit etwa 37,5 Prozent (78.000 kg). Mit großem Abstand folgten Kanada mit knapp 9 Prozent (18.000 kg) sowie die USA mit 6 Prozent (12.500 kg). In der „Platinmetallgruppe“ (Platin, Palladium, Iridium, Osmium, Rhodium und Ruthenium) verfügt Südafrika mit 63 Millionen Kilogramm von weltweit 66 Millionen Kilogramm Reserven über mehr als 95 Prozent der weltweiten Reserven.

Mit der Altwagenentsorgung wird der Anteil des recycelten Palladiums aus den Abgaskatalysatoren ansteigen. Durch Di-n-hexylsulfid kann Palladium selektiv von anderen Metallen aus salzsauren Lösungen abgetrennt werden.

Platinmetalle/Tabellen und Grafiken

Eigenschaften[Bearbeiten | Quelltext bearbeiten]

Palladium, 99,99 % rein

Physikalische Eigenschaften[Bearbeiten | Quelltext bearbeiten]

Palladium ist ein Metall und das zweite Element der Nickelgruppe. Es hat unter den Platinmetallen den niedrigsten Schmelzpunkt und ist auch am reaktionsfreudigsten. Bei Raumtemperatur reagiert es jedoch nicht mit Sauerstoff. Es behält an der Luft seinen metallischen Glanz und läuft nicht an. Bei Erhitzung auf etwa 400 °C läuft es aufgrund der Bildung einer Oxidschicht aus Palladium(II)-oxid stahlblau an. Bei etwa 800 °C zersetzt sich das Oxid wieder, wobei die Oberfläche wieder blank wird. Im geglühten Zustand ist es weich und duktil, bei Kaltverformung steigt die Festigkeit und Härte aber schnell an (Kaltverfestigung). Es ist dann deutlich härter als Platin. Bei Temperaturen über 500 °C reagiert Palladium empfindlich auf Schwefel und Schwefelverbindungen (z. B. Gips). Es bildet sich Palladium(II)-sulfid, das zur Versprödung von Palladium und Palladiumlegierungen führt.[16]

Chemische Eigenschaften[Bearbeiten | Quelltext bearbeiten]

Palladium ist ein Edelmetall, auch wenn es deutlich reaktiver ist als das verwandte Element Platin: Es löst sich in Salpetersäure, wobei Palladium(II)-nitrat Pd(NO3)2 gebildet wird. Es löst sich ebenfalls in Königswasser und in heißer konzentrierter Schwefelsäure. In Salzsäure löst es sich bei Luftzutritt langsam auf unter Bildung von PdCl42−. Der Edelmetallcharakter von Palladium ist dem des benachbarten Silbers vergleichbar: In Salzsäure verhält es sich aufgrund der Bildung leichtlöslicher Palladiumchloridverbindungen unedel. In feuchter Atmosphäre bei Anwesenheit von Schwefel wird die Oberfläche von Palladium getrübt.

Palladium besitzt die höchste Absorptionsfähigkeit aller Elemente für Wasserstoff. Diese grundlegende Entdeckung geht auf Thomas Graham im Jahre 1869 zurück. Bei Raumtemperatur kann es das 900fache, Palladiummohr (feinverteiltes schwarzes Palladiumpulver) das 1200fache und kolloidale Palladiumlösungen das 3000fache des eigenen Volumens binden. Man kann die Wasserstoffaufnahme als Lösen von Wasserstoff im Metallgitter und als Bildung eines Palladiumhydrids mit der ungefähren Zusammensetzung Pd2H beschreiben.[17]

Gewöhnlich nimmt es die Oxidationsstufen +2 und +4 an. Bei Verbindungen der scheinbaren Oxidationsstufe +3 handelt es sich um Pd(II)/Pd(IV)-Mischverbindungen. In neueren Untersuchungen konnte auch sechswertiges Palladium dargestellt werden. Es sind aber auch die Oxidationsstufen 0 [Pd(PR3)4], +1 oder +5 möglich.

Sicherheitshinweise[Bearbeiten | Quelltext bearbeiten]

Palladium ist in kompakter Form nicht brennbar, jedoch als Pulver oder Staub leicht entzündlich.[7]

Verwendung[Bearbeiten | Quelltext bearbeiten]

Feinverteilt ist Palladium ein exzellenter Katalysator zur Beschleunigung von chemischen Reaktionen, insbesondere Hydrierungen und Dehydrierungen (Addition und Eliminierung von Wasserstoff) sowie zum Cracken von Kohlenwasserstoffen.[18]

Verwendung als Katalysator[Bearbeiten | Quelltext bearbeiten]

Verwendung in der Schmuckindustrie[Bearbeiten | Quelltext bearbeiten]

Verwendung in der chemischen Industrie[Bearbeiten | Quelltext bearbeiten]

  • Platintiegel (80 % Pt, 20 % Pd)
  • Durch heißes Palladiumblech diffundiert Wasserstoff fast ohne Widerstand, wodurch man es zum Reinigen von Wasserstoff oder Abtrennung von Wasserstoff aus Gasgemischen[22] verwenden kann. In heißem Palladium besitzt Wasserstoff ein hohes Diffusionsvermögen.[23]
  • Speichermedium für Wasserstoff, da es sehr große Mengen Wasserstoff absorbieren kann. Aus diesem Grund wurde es auch als Kathodenmaterial in den notorischen Experimenten von Fleischmann und Pons zur Kalten Fusion (und zahlreichen Nachfolgeexperimenten) verwendet.

Medizinische Verwendung[Bearbeiten | Quelltext bearbeiten]

Sonstige Verwendung[Bearbeiten | Quelltext bearbeiten]

  • Kontaktwerkstoffe für Relais in Kommunikationsanlagen
  • Elektrodenwerkstoffe für Brennstoffzellen und Zündkerzen (Luftfahrt)
  • Pd/Ni-Legierungen als Ersatz für Gold in der Elektroindustrie (z. B. bei der galvanischen Beschichtung von Kontakten)
  • Nanotechnologie (dient als Katalysator, um z. B. molekulare Verbindungen herzustellen)[23]
  • p-Kontakt für galliumnitridbasierte Halbleiterbauelemente
  • zum Legieren des Werkstoffes Titan, als Grade 7- und Grade 11-Legierung[25]
  • in GASFET-Sensoren als Gate
  • In der Leiterplattenbeschichtung: Der Kunststoff, teils auch nur Bohrungen (Bekeimung), wird mit Palladium beschichtet, um darauf eine Nickel- oder Kupferschicht aufzubringen.
  • 2011 wurde ein extrem widerstandsfähiges, amorphes Material – sogenanntes Metallisches Glas – mit dem Hauptbestandteil (etwa 40 %) Palladium hergestellt, das die für diese Materialklasse typische Sprödigkeit nicht aufweist.[26]
  • Hydrodechlorierung von chlororganischen Verbindungen im Grundwasser[27]

Palladiumpreis[Bearbeiten | Quelltext bearbeiten]

Sowjetische Palladiummünzen

Die Bezeichnung für Palladium, das an der Börse gehandelt wird, ist XPD. Die Internationale Wertpapierkennnummer ist ISIN XC0009665529.

Verbindungen[Bearbeiten | Quelltext bearbeiten]

Von Palladium sind Verbindungen mit der Oxidationszahl des Metalls von 0, +2, +4 und +5 bekannt. Wie auch von Nickel und Platin sind eine Reihe von Verbindungen (häufig Komplexe) bekannt, in denen das Metall quadratisch-planar von vier Liganden koordiniert ist.[28]

Kategorie:Palladiumverbindung

Philatelistisches[Bearbeiten | Quelltext bearbeiten]

Mit dem Erstausgabetag 6. Juni 2019 gab die Deutsche Post AG in der Serie Mikrowelten ein Postwertzeichen im Nennwert von 85 Eurocent heraus. Das Markenbild zeigt eine Mikrofotografie mit 230facher Vergrößerung des kristallinen Palladiums. Der Entwurf stammt von der Grafikerin Andrea Voß-Acker aus Wuppertal.[29]

Siehe auch[Bearbeiten | Quelltext bearbeiten]

Weblinks[Bearbeiten | Quelltext bearbeiten]

 Commons: Palladium – Album mit Bildern, Videos und Audiodateien
WiktionaryWiktionary: Palladium – Bedeutungserklärungen, Wortherkunft, Synonyme, Übersetzungen

Einzelnachweise[Bearbeiten | Quelltext bearbeiten]

  1. Harry H. Binder: Lexikon der chemischen Elemente. S. Hirzel Verlag, Stuttgart 1999, ISBN 3-7776-0736-3.
  2. Die Werte für die Eigenschaften (Infobox) sind, wenn nicht anders angegeben, aus www.webelements.com (Palladium) entnommen.
  3. CIAAW, Standard Atomic Weights Revised 2013.
  4. N. N. Greenwood, A. Earnshaw: Chemie der Elemente. 1. Auflage. VCH, Weinheim 1988, ISBN 3-527-26169-9, S. 1469.
  5. Robert C. Weast (Hrsg.): CRC Handbook of Chemistry and Physics. CRC (Chemical Rubber Publishing Company), Boca Raton 1990, ISBN 0-8493-0470-9, S. E-129 bis E-145. Werte dort sind auf g/mol bezogen und in cgs-Einheiten angegeben. Der hier angegebene Wert ist der daraus berechnete maßeinheitslose SI-Wert.
  6. a b Yiming Zhang, Julian R. G. Evans, Shoufeng Yang: Corrected Values for Boiling Points and Enthalpies of Vaporization of Elements in Handbooks. In: Journal of Chemical & Engineering Data. 56, 2011, S. 328–337, doi:10.1021/je1011086.
  7. a b c Eintrag zu Palladium in der GESTIS-Stoffdatenbank des IFA, abgerufen am 25. April 2017 (JavaScript erforderlich).
  8. William Hyde Wollaston: On a New Metal, Found in Crude Platina. In: Phil. Trans. R. Soc. Lond. 94, 1. Januar 1804, S. 419–430; doi:10.1098/rstl.1804.0019 (Volltext).
  9. William Hyde Wollaston: On the Discovery of Palladium; With Observations on Other Substances Found with Platina. In: Phil. Trans. R. Soc. Lond. 95, 1. Januar 1805, S. 316–330; doi:10.1098/rstl.1805.0024 (Volltext).
  10. a b Thomas Graham: On the relation of hydrogen to palladium. In: Proceedings of the Royal Society of London. 17, 1869, S. 212–220, doi:10.1098/rspl.1868.0030 .
  11. Francis C. Phillips, Am. Chem. J., 1894, 16, S. 255–277.
  12. Reinhard Jira: Acetaldehyd aus Ethylen – ein Rückblick auf die Entdeckung des Wacker-Verfahrens. In: Angewandte Chemie. 121, 2009, S. 9196–9199, doi:10.1002/ange.200903992 .
  13. The Nobel Prize in Chemistry 2010 was awarded jointly to Richard F. Heck, Ei-ichi Negishi and Akira Suzuki "for palladium-catalyzed cross couplings in organic synthesis.", Informationen der Nobelstiftung zur Preisverleihung 2010.
  14. Frank Close: Das heisse Rennen um die kalte Fusion. Springer, Basel, 1990, ISBN 978-3-0348-6141-0, S. 90–156.
  15. John R. Huizenga: Cold Fusion. The Scientific Fiasco of the Century. Oxford University Press, Oxford 1993, ISBN 0-19-855817-1.
  16. Günther Rau, Reinhold Ströbel: Die Metalle: Werkstoffkunde mit ihren chemischen und physikalischen Grundlagen. 1999, ISBN 3-929360-44-6, S. 66.
  17. J. G. Aston, Paul Mitacek, Jr.: Structure of hydrides of palladium. In: Nature. (London, United Kingdom), 195, 1962, S. 70–71.
  18. Jie Jack Li, Gordon W. Gribble: Palladium in Heterocyclic Chemistry: A Guide for the Synthetic Chemist. 2007, ISBN 978-0-08-045117-6.
  19. Guido Kickelbick: Chemie für Ingenieure. Pearson Deutschland, 2008, ISBN 978-3-8273-7267-3, S. 155 (eingeschränkte Vorschau in der Google-Buchsuche).
  20. Karl W. Rosenmund: Über eine neue Methode zur Darstellung von Aldehyden. 1. Mitteilung. In: Berichte der deutschen chemischen Gesellschaft. 51, 1918, S. 585–593, doi:10.1002/cber.19180510170 .
  21. Khaled Belkacemi, Safia Hamoudi: Low Trans and Saturated Vegetable Oil Hydrogenation over Nanostructured Pd/Silica Catalysts: Process Parameters and Mass-Transfer Features Effects. In: Industrial & Engineering Chemistry Research. 48, 2009, S. 1081–1089, doi:10.1021/ie800559v .
  22. Volker Höllein: Palladiumbasierte Kompositmembranen zur Ethylbenzol- und Propan-Dehydrierung (PDF; 7,7 Mb). Dissertation. Friedrich-Alexander-Universität Erlangen-Nürnberg, 2004.
  23. a b Helmholtz-Zentrum für Umweltforschung – UFZ: Chancen und Risiken von nanoskaligen Katalysatoren zur Wasserreinigung. (PDF; 102 kB), Januar 2009.
  24. gbu-net.de: Palladium als Zahnfüllungsmaterial (Memento des Originals vom 2. November 2012 im Internet Archive) i Info: Der Archivlink wurde automatisch eingesetzt und noch nicht geprüft. Bitte prüfe Original- und Archivlink gemäß Anleitung und entferne dann diesen Hinweis.@1@2Vorlage:Webachiv/IABot/www.gbu-net.de.
  25. metaltec.de: Titanlegierung Ti Grade 7, abgerufen am 27. Mai 2013.
  26. nextbigfuture.com: Metallic Glass stronger and tougher than steel follow up., 10. Januar 2011.
  27. Detlev Fritsch, Karsten Kuhr, Katrin Mackenzie, Frank-Dieter Kopinke: Hydrodechlorination of chloroorganic compounds in ground water by palladium catalysts. In: Catalysis Today. 82, 2003, S. 105–118, doi:10.1016/S0920-5861(03)00208-6 .
  28. Holleman-Wiberg, Lehrbuch der Anorganischen Chemie, 101. Auflage, de Gruyter Verlag 1995 ISBN 3-11-012641-9
  29. Mikrowelten Palladium, Mitteilung des Bundesfinanzministeriums.