Polyvinylchlorid

aus Wikipedia, der freien Enzyklopädie
Wechseln zu: Navigation, Suche
Dieser Artikel oder nachfolgende Abschnitt ist nicht hinreichend mit Belegen (beispielsweise Einzelnachweisen) ausgestattet. Die fraglichen Angaben werden daher möglicherweise demnächst entfernt. Bitte hilf der Wikipedia, indem du die Angaben recherchierst und gute Belege einfügst. Näheres ist eventuell auf der Diskussionsseite oder in der Versionsgeschichte angegeben. Bitte entferne zuletzt diese Warnmarkierung.
Strukturformel
Struktur von Polyvinylchlorid
Allgemeines
Name Polyvinylchlorid
Andere Namen
CAS-Nummer 9002-86-2
Monomer Vinylchlorid
Summenformel der Wiederholeinheit C2H3Cl
Molare Masse der Wiederholeinheit 62,50 g·mol−1
Art des Polymers

Thermoplast

Kurzbeschreibung

weißes Pulver[1]

Eigenschaften
Aggregatzustand

fest

Sicherheitshinweise
GHS-Gefahrstoffkennzeichnung [1]
keine GHS-Piktogramme
H- und P-Sätze H: keine H-Sätze
P: keine P-Sätze [1]
Soweit möglich und gebräuchlich, werden SI-Einheiten verwendet. Wenn nicht anders vermerkt, gelten die angegebenen Daten bei Standardbedingungen.

Polyvinylchlorid (Kurzzeichen PVC) ist ein thermoplastisches Polymer, dass durch Kettenpolymerisation aus dem Monomer Vinylchlorid hergestellt wird. PVC ist nach Polyethylen und Polypropylen das drittwichtigste Polymer für Kunststoffe.

Die PVC-Kunststoffe werden in Hart- und Weich-PVC unterteilt. Hart-PVC wird beispielsweise zur Herstellung von Fensterprofilen, Rohren, sowie für Schallplatten verwendet. Weich-PVC enthält hingegen Weichmacher, die zu einem elastischem Verhalten des Materials führen. Sie werden beispielsweise für Kabelummantelungen und Bodenbeläge verwendet.

Geschichte[Bearbeiten | Quelltext bearbeiten]

Der französische Chemiker Henri Victor Regnault war 1835 der erste, der im Gießener Laboratorium von Justus von Liebig Vinylchlorid herstellte und bemerkte, dass sich daraus bei längerer Einwirkung von Sonnenlicht ein weißes Pulver – Polyvinylchlorid – bildete, konnte die Bedeutung seiner Entdeckung jedoch nicht erkennen.

1912 erhielt der deutsche Chemiker Fritz Klatte (gemeinsam mit Emil Zacharias und Adolf Rollett) von der Chemischen Fabrik Griesheim-Elektron (Griesheim bei Frankfurt), später ein Produktionsort der Firma Hoechst, den Auftrag, für den in großen Mengen vorhandenen Rohstoff Ethen (Ethylen) neue Umsetzungsprodukte zu finden. Auch er setzte für seine Versuche, wie zuvor Regnault, Glasgefäße mit Vinylchlorid und verschiedenen Zusätzen dem Sonnenlicht aus. Seine Forschungen führten 1912 zur Synthese von Vinylchlorid aus Ethin und Chlorwasserstoff. 1913 erhielt Klatte das Patent auf die „Polymerisation von Vinylchlorid und Verwendung als Hornersatz, als Filme, Kunstfäden und für Lacke“.

Er legte damit die Grundsteine für die Herstellung von PVC, das vorerst nur die Bindung von Chlor ermöglichte und so die Lagerung in großen Mengen gestattete. Mit der Rohstoffknappheit während und nach dem Ersten Weltkrieg wurden die Anstrengungen verstärkt, PVC als Rohstoff zu nutzen, um teure Rohstoffe durch kostengünstige Materialien zu ersetzen. Es kam jedoch erst Ende der 1920er Jahre zu weiteren Anwendungen. 1928 erfolgte die großtechnische Ausweitung durch Produktion in den USA und 1930 in Rheinfelden (Baden) durch die BASF; 1935 nahm die I.G. Farben die PVC-Produktion auf.

1935 gelang in Bitterfeld die Plastifikation von Hart-PVC bei Temperaturen von 160 °C. Erste Produkte waren Folien und Rohre. Letztere wurden 1935 in Bitterfeld und Salzgitter verlegt. Eine Produktmarke dieser Zeit, die umgangssprachlich auch das Ende der im Namen enthaltenen IG-Farben noch eine Zeitlang überlebte, war das Igelit. Nach 1945 war PVC der meistproduzierte Kunststoff der Welt. Im Jahr 1948 wurden schließlich Schallplatten aus PVC hergestellt, das den Schellack endgültig ablöste. Daher rührt auch die heutige Bezeichnung Vinylplatte.

Mit dem Aufblühen der chemischen Industrie wurde der Rohstoff Natronlauge in immer größeren Mengen hergestellt. Er wurde mit Hilfe elektrolytischer Zersetzung aus Kochsalz (Natriumchlorid) gewonnen, übrig blieben dabei Chlor und Wasserstoff. Die Entwicklung der Chlorchemie beruht auf der leichten Zugänglichkeit chlorierter Paraffine, was dementsprechend auch die großtechnische und kommerzielle Erschließung des thermoplastischen Materials PVC begünstigte.

In den Vereinigten Staaten wurde der Werkstoff in den 1960er Jahren zu chloriniertem bzw. nachchloriertem PVC weiterentwickelt, welches nach DIN mit "PVC-C", im Ausland auch mit "CPVC" abgekürzt wird. Der Massenanteil von Chlor in PVC-C liegt über den 56,7 % von PVC und kann bis 74 % aufweisen. Bei höheren Temperaturen ist es korrosionsbeständiger und hat bessere mechanische Eigenschaften als PVC, sodass es sich auch zur Herstellung von Rohren für die Warmwasserversorgung und mit Einschränkungen sogar für Heizungskreisläufe eignet. Handelsnamen sind beispielsweise Corzan, Trovidur und (ehemals) Glastoferan.

Herstellung[Bearbeiten | Quelltext bearbeiten]

Kalottenmodell von Polyvinylchlorid

Polyvinylchlorid wird durch radikalische Kettenpolymerisation aus dem Monomer Vinylchlorid (H2C=CHCl) erzeugt:

Vinylchlorid zu Polyvinylchlorid

Im Wesentlichen sind drei verschiedene Polymerisationsverfahren bekannt. Das historisch gesehen älteste Verfahren ist die Emulsionspolymerisation (erstmals 1929). Die Initiatoren (zum Beispiel Peroxide und andere Perverbindungen) sind in diesem Falle wasserlöslich. Man erhält das sogenannte E-PVC. Wird das Vinylchlorid durch intensives Rühren im Wasser verteilt und ist der Initiator (zum Beispiel organische Peroxide, Azobis(isobutyronitril) [AIBN]) im Monomeren löslich, so spricht man von der Suspensionspolymerisation, das zum S-PVC führt. Wird kein Wasser während der Polymerisation genutzt, so spricht man von Block- oder Masse-PVC, auch M-PVC genannt. Dabei ist der Initiator im monomeren Vinylchlorid gelöst.

Hart-PVC und Weich-PVC[Bearbeiten | Quelltext bearbeiten]

PVC ist ein thermoplastisches Polymer, der normalerweise im Temperaturbereich von 160 bis 200 °C verarbeitet wird. PVC wird in Hart-PVC (Kurzzeichen PVC-U, wobei U für unplasticized steht) und Weich-PVC, (Kurzzeichen PVC-P, wobei P für plasticized steht) unterteilt. Aus Hart-PVC werden Rohre und Profile, zum Beispiel für Fenster hergestellt, ferner Pharmazie-Folien. Weich-PVC enthält bis zu 40 Prozent Weichmacher; Hart-PVC enthält grundsätzlich keinen Weichmacher. Weich-PVC spielt in Kabelanwendungen eine große Rolle und findet auch in Fußbodenbelägen, Schläuchen, Schuhsohlen, Dachabdichtungen, „Gummi“-Handschuhen seine Anwendung.

Additive[Bearbeiten | Quelltext bearbeiten]

Das an sich spröde und harte PVC wird mit Additiven, in erster Linie Stabilisatoren, Schlagzäh-Modifier an die verschiedensten Einsatzgebiete angepasst. Die Additive verbessern die physikalischen Eigenschaften wie die Temperatur-, Licht- und Wetterbeständigkeit, die Zähigkeit und Elastizität, die Kerbschlagzähigkeit, den Glanz und dienen der Verbesserung der Verarbeitbarkeit. An die verwendeten PVC-Additive werden hohe Anforderungen gestellt: Sie müssen in möglichst geringer Konzentration eine hohe Wirkung erzielen, die durch die unterschiedlichen Herstellungsprozesse für das Kunststoffformteil nicht beeinträchtigt werden darf. Sie müssen eine gute Verarbeitbarkeit garantieren und dem Formteil während dessen Gebrauchsdauer die gewünschten Eigenschaften verleihen. Sie sollen auch aus Konsumentensicht sicher anwendbar sein.

Durch sogenannte Schlagzähmodifier werden Eigenschaften wie die Kerbschlagzähigkeit verbessert. Solche Modifier bestehen in der Regel aus speziellen Acrylatpolymeren oder chloriertem Polyethylen. Durch Modifier wird auch die Verarbeitung von PVC verbessert, so wird eine schnellere Plastifizierung von PVC erreicht.

Der Zusatz von Thermostabilisatoren ist notwendig, wenn Verarbeitungen bei Temperaturen zwischen 160 und 200 °C stattfinden. Bei diesen Temperaturen beginnt ansonsten der Zersetzungsprozesse unter Abspaltung von Chlorwasserstoff (HCl). Wenn das PVC bei der Weiterverarbeitung erhöhten Temperaturen ausgesetzt ist (zum Beispiel durch Heizelementschweißen bei 260 °C), muss das Additivpaket darauf abgestimmt sein.

Weichmacher[Bearbeiten | Quelltext bearbeiten]

Der Zusatz von Weichmachern verleiht dem von Natur aus harten Werkstoff plastische Eigenschaften, wie Nachgiebigkeit und Weichheit. Als Weichmacher werden vor allem Phthalsäureester eingesetzt. Weniger Bedeutung haben Chlorparaffine,[2] Adipinsäureester und Phosphorsäureester. Die Weichmacher lagern sich bei der thermoplastischen Verarbeitung zwischen die Molekülketten des PVC ein und lockern dadurch das Gefüge. Diese Einlagerung ist eine physikalische Aufdehnung der Struktur, sodass trotz der geringen Flüchtigkeit eine Migration und Gasabgabe erfolgt. Dadurch kommt es je nach Anwendungszweck zu einer sorbierten Oberflächenschicht oder auch zur Wanderung des Weichmachers in angrenzende Materialien oder auch durch den Luftraum in benachbarte Substanzen. Weichmacher auf der Basis Dioctylphthalat (DOP) migrieren. Produkte auf anderer Basis, die auf Grund wesentlich niedrigerer Dampfdrücke langsamer migrieren, sind deutlich teurer, werden aber zunehmend zumindest in Europa eingesetzt.

Dry-Blends sind spezielle Mischungen mit PVC-Pulver.

Eigenschaften[Bearbeiten | Quelltext bearbeiten]

PVC lässt sich gut einfärben und nimmt kaum Wasser auf, es ist beständig gegen einige Säuren und Laugen und bedingt beständig gegen Ethanol, Öl und Benzin. Angegriffen wird PVC von Aceton, Ether, Benzol, Chloroform und konzentrierter Salzsäure. Hart-PVC lässt sich gut, Weich-PVC schlecht spanabhebend verarbeiten. Bei Temperaturen von 120 bis 150 °C kann es spanlos verformt werden. Verbindungen können mit Klebstoffen (Lösungsmittelklebstoffe, Zweikomponentenklebstoffe) oder durch Schweißen (verschiedene manuelle und maschinelle Schweißverfahren) hergestellt werden.

PVC brennt mit gelber, stark rußender Flamme und erlischt ohne weitere externe Beflammung schnell. Aufgrund des hohen Chlorgehalts ist PVC im Gegensatz zu anderen technischen Kunststoffen wie beispielsweise Polyethylen oder Polypropylen schwer entflammbar. Bei Bränden von PVC-Kunststoffen entstehen allerdings Chlorwasserstoff, Dioxine und auch Aromate.

PVC ist ein guter Isolator. Die Ausbildung von Dipolen und deren ständige Neuausrichtung im elektrischen Wechselstrom-Feld führt im Vergleich zu den meisten anderen Isolatoren zu hohen Dielektrizitätsverlusten. Wegen der hohen Festigkeit des Kabelmantels und der guten Isoliereigenschaften sind PVC-Niederspannungskabel für die Verlegung unter Putz oder im Freien sehr gut geeignet.

Mechanische und elektrische Eigenschaften
Eigenschaft Hart-PVC (PVC-U) Weich-PVC (PVC-P) Chloriertes PVC (PVC-C)
Dichte in g/cm3 1,38...1,40 1,20...1,35 1,51 [3]...1,64 [4]
Wärmeausdehnungskoeffizient in 10−6 K−1 k. A. k. A. 60 [5]...70 [3]
Schmelzpunkt Zersetzung oberhalb +180 °C [1] Zersetzung oberhalb +180 °C [1] +395 °C [6]
Glastemperatur +79 °C [7] k. A.
Schlagzähigkeit in kJ/m2 (nach DIN 53453) gering [8], >20 o. k. A.
Kerbschlagzähigkeit in kJ/m2 (nach DIN 53453) 2...75 o. Br. 12 [3][5]
Elastizitätsmodul in MPa
Zug-E-Modul (nach DIN 53457)
1000...3500 k. A. 2800 [5]
Elastizitätsmodul in MPa
Biege-E-Modul bei 23 °C
k. A. k. A. 2800 [3]
Wasseraufnahme in 24 Stunden gering [8] gering [8] 0,04 % [9]
Löslichkeit praktisch unlöslich in Wasser [1]
löslich in organischen Lösungs-
mitteln (Aceton sowie Ester und
Fleckenreinigungsmittel), wenn
Molgewicht ≤30 kDa [8]
wie PVC-U ähnlich PVC-U
Chemische Beständigkeit beständig gegen konzentrierte
und verdünnte Alkalien, Öle,
aliph. Kohlenwasserstoffe,
Zersetzung durch oxidierende
Mineralsäuren [8]
wie PVC-U beständig gegen konzentrierte
und verdünnte Säuren, Alkalien,
Öle, aliph. Kohlenwasserstoffe,
nicht beständig gegen Ester,
Ketone, chlorierte Kohlenwasser-
stoffe, starke Oxidationsmittel. [3]
Wärmeleitfähigkeit in W/(m·K) gering [8] gering [8] 0,15[3][5]
Zugfestigkeit in N/mm2 (nach DIN 53455) 50...75 10...25 k. A.
Reißdehnung/Reißfestigkeit
(nach DIN 53455)
10...50 % 170...400 % k. A.
Streckspannung in MPa bei 23 °C k. A. k. A. 55 [3]...60 [5]
Kugeldruckhärte in MPa
(10-Sekunden-Wert nach DIN 53456)
75...155 k. A. 110 [5]
spezifischer Durchgangswiderstand
(nach DIN 5348)
>1015 Ω >1011 Ω k. A.
Oberflächenwiderstand (nach DIN 53482) 1013 Ω 1011 Ω 1013 Ω
Gebrauchstemperatur −50 °C bis +60 °C k. A. bis +80 °C [5]...+93 °C [9],
kurzzeitig +100 °C [5]
Dielektrizitätszahl (nach DIN 53483)
   bei 50 Hz
   bei 1 MHz

3,5
3,0

4...8
4...4,5

k. A.
k. A.

Verwendung[Bearbeiten | Quelltext bearbeiten]

Der Vorteil von PVC ist seine Haltbarkeit. Sonnenlicht zersetzt es nicht, die mechanischen Eigenschaften werden nicht beeinträchtigt. Wasser (auch salziges Meerwasser) und Luft können PVC wenig bis gar nicht zerstören. Deshalb kommt PVC vor allem bei langlebigen Produkten zum Einsatz.

PVC wird überwiegend als Grundstoff für Fensterprofile, Rohre, Fußbodenbeläge und Dachbahnen im Bausektor eingesetzt. Rohre setzen sich aufgrund der glatten Innenfläche weniger zu, Fensterprofile sind pflegeleicht, wartungsarm und witterungsbeständig, sie sind in den verschiedensten Farben und Dekors herstellbar. PVC wird für schwerentflammbare Kabel-Ummantelung eingesetzt. PVC-Folien haben verschiedene Anwendungen, z. B. für Wasserkerne von Wasserbetten und als Kunstleder.

PVC wird oft als Isolationsmaterial für Elektro-Kabel, als Elektro-Schalterdose und als Einziehrohr für Kabel verwendet. Kreditkarten u. ä. bestehen meist aus PVC. PVC-Hartschaum findet in der Faserverbundtechnologie Verwendung als Sandwichwerkstoff. Anwendungsgebiete sind Sportboote und der Waggonbau. Geschäumtes PVC in Plattenform wird als Trägermaterial für Werbemedien, wie ausgeplottete Schriftzüge, Bilder und Grafiken verwendet, vor allem wegen des geringen Gewichts und der einfachen Verarbeitung. Spezielle Präparationen finden ihren Einsatz bei künstlerischen Installationen und Events. Stark weichgemachte PVC-Folien werden als rutschfeste Unterlagen angeboten.

In einigen Anwendungsbereichen werden auch andere Kunststoffe wie Polypropylen (PP) und Polyethylen (PE) mit dem Vorteil eingesetzt, dass die aus Weich-PVC ausdünstenden (typischer Plastik-Geruch) und gesundheitsschädlichen Stoffe wegfallen. Auch die dem PVC zugeschriebene Säure-, Öl- und Seewasser-Beständigkeit sind oft nicht erforderlich. Einige Umweltverbände raten, den Einsatz von PVC auf wenige Spezialanwendungen einzuschränken.

Wirtschaft[Bearbeiten | Quelltext bearbeiten]

Vorwiegend werden Fenster mit PVC-Rahmen exportiert. Häufig wird PVC für Rohre in Kabeltrassen und für Membrandächer eingesetzt, auch für Bodenbeläge. Im Jahr 2001 erbrachten in Deutschland 150.000 Beschäftigte in 5.000 Unternehmen einen Umsatz von 20 Milliarden Euro, das ist etwa ein Viertel der gesamten Kunststoffbranche.

Umweltaspekte, Entsorgung und Recycling[Bearbeiten | Quelltext bearbeiten]

Deponierung[Bearbeiten | Quelltext bearbeiten]

Bis zum Jahr 1989 deponierte man etwa 70 Prozent des Abfallvorkommens. Hart-PVC vergeht nicht und schadet auch weder Wasser noch Luft, allerdings nimmt es gerade deswegen auf der Müllhalde viel Platz ein. Weiterhin kann keine Prognose getroffen werden, ob das Hart-PVC nicht doch irgendwann durch Mikroorganismen oder chemische Vorgänge angegriffen werden kann. Von den Inhaltsstoffen des Weich-PVC kann man aber mit großer Sicherheit annehmen, dass diese aufgrund ihres Weichmacheranteils das Sickerwasser und somit die Umwelt verschmutzen. Die Deponierung von Siedlungsabfällen mit Brennwert ist in mehreren europäischen Ländern, wie beispielsweise Deutschland, Österreich und der Schweiz nicht mehr zulässig.

Energetische Verwertung[Bearbeiten | Quelltext bearbeiten]

Aus dem Verbrennungsprozess lässt sich Energie gewinnen. Der Brennwert mit 26,9 MJ/kg ist im Vergleich zu anderen Kunststoffen, wie Polypropylen (PP) mit 52,6 MJ/kg relativ klein.[10] Wird PVC verbrannt, bildet sich ätzender, gasförmiger Chlorwasserstoff. In Müllverbrennungsanlagen wird diese beispielsweise mit Kalk in den Ablüftungsanlagen neutralisiert. Die entstehenden Rückstände sind als gefährliche Abfälle eingestuft.

Eine Gefahr geht von schwermetallhaltigen Stabilisatoren wie etwa Bleidistearat aus. Aus diesem Grund werden bei Müllverbrennungsanlagen aufwendige Filtertechniken eingesetzt, die die schädlichen Emissionen filtern. Damit stehen der Gewinnung von Energie hohe Ausgaben für ökologischen Schutz gegenüber.

Recycling[Bearbeiten | Quelltext bearbeiten]

Der Recycling-Code von Polyvinylchlorid ist 03. Beim Recycling unterscheidet man zwischen einer Werkstoff- und einer Rohstoffrecycling-Methode. Für PVC existiert ein Rücknahmesystem; gesammelt werden vor allem Fußbodenbeläge, Dachbahnen, Fensterprofile, Elektrokabel und PVC-Rohre. Der Auf- und Ausbau von Recyclingstrukturen basiert auf einer Selbstverpflichtung der PVC-Branche (VinylPlus).[11]

Werkstoffliches Recycling[Bearbeiten | Quelltext bearbeiten]

Thermoplaste lassen sich, einmal zu einem Werkstück geformt, wieder einschmelzen und zu einem neuen Produkt formen. Die Abfolge von Wärmebehandlungen führt allerdings zu einem fortschreitenden Qualitätsverlust des Materials (Downcycling). Ein Beispiel für ein solches minderwertiges Endprodukt ist der Bakenfuß (die Halterung, in die rot-weiße Straßenabsperrungen gesteckt werden). Die werkstoffliche Verwertung wird daher zurzeit fast ausschließlich dort eingesetzt, wo große Mengen eines sortenreinen Materials zur Verfügung stehen.

Das größte Problem bei der Wiederaufbereitung stellen Verunreinigungen dar. Kabelabfälle, bei denen das Kupfer entfernt wurde, sind noch stark verschmutzt und müssen gereinigt werden, um wieder in einen echten Kreislauf zu gelangen und die Qualität eines Neumaterials zu erlangen.

Mit dem Verfahren Vinyloop lassen sich mit dem Lösemittel Methylethylketon aus PVC-haltigen Verbundwerkstoffen die PVC-Moleküle herauslösen. Nach Ausfällung und Trocknung lässt sich das gewonnene Polymer zur Herstellung beliebiger PVC-Produkte verwenden. In Europa besteht hierfür nur eine Anlage in Ferrara (Italien).

Rohstoffliche Verwertung[Bearbeiten | Quelltext bearbeiten]

Durch Pyrolyse lassen sich Kunststoffe in petrochemisch verwertbare Stoffe, wie Methanol oder Synthesegas spalten. Diese Verfahren werden naturgemäß vor allem für die Verwertung von Mischkunststoffen genutzt, die sich nur unter großem Aufwand trennen lassen würden.

Gesundheitliche Gefahren[Bearbeiten | Quelltext bearbeiten]

Als erste Arbeiter in der PVC-Produktion an Deformationen der Fingerendgliedmaßen erkrankten oder schwere Leberschäden bis hin zu Leberkrebs (Hämangioendothelsarkom) aufwiesen, wurde der Arbeitsschutz bei der Herstellung und Weiterverarbeitung von PVC verbessert. Die „VC-Krankheit“ wurde von den Berufsgenossenschaften als Berufskrankheit anerkannt.[12] Der Ausgangsstoff für PVC, Vinylchlorid, kann beim Menschen Krebs erzeugen und wirkt erbgutverändernd. Auch andere Ausgangsstoffe der PVC-Herstellung sind bedenklich.

Weich-PVC ist durch die enthaltenen Weichmacher je nach Einsatzbereich physiologisch bedenklich. Für Spielzeuge ist der Einsatz von Weich-PVC problematisch, obwohl es wegen seines günstigen Preises und der Eigenschaften verbreitet ist. Trotz des geringen Dampfdrucks können Weichmacher über Speichel, Hautkontakt oder die Atemwege in den kindlichen Körper gelangen. Die Phthalatweichmacher sind zum Teil leber- und nierenschädigend und stehen im Verdacht, krebserzeugend zu wirken. Dies ergaben mehrere Untersuchungen, bei denen sich deutliche Spuren im Blut fanden. Diethylhexylphthalat (DEHP) wurde durch eine EU-Arbeitsgruppe im Jahr 2000 als frucht- und fruchtbarkeitsschädigend eingestuft. Weich-PVC mit Phthalatweichmachern wurde in der EU im Jahre 1999 für Kleinkinderspielzeug verboten.

„Der menschliche Organismus nimmt PVC-Weichmacher in höheren Mengen auf, als bisher angenommen. Besonders gefährdet sind Kinder. Die weit verbreiteten Weichmacher Phthalate gelten als höchst gesundheitsgefährdend, weil sie in den Hormonhaushalt des Menschen eingreifen und die Fortpflanzung oder Entwicklung schädigen“

Umweltbundesamt

In Lebensmittelverpackungen ist Weich-PVC problematisch, wenn nicht durch Sperrschichten das Einwandern in die Lebensmittel verhindert wird. Für fetthaltige Lebensmittel sollte Weich-PVC unbedingt vermieden werden, da Weichmacher gut vom Fett aufgenommen werden.

Die Maximale Arbeitsplatzkonzentration für PVC in der Atemluft beträgt 0,3 mg/m3 [1]. Der MAK-Wert wurde in der Schweiz auf 3 mgm3 (gemessen als alveolengängiger Staub) festgelegt.[13]

Bestimmung[Bearbeiten | Quelltext bearbeiten]

Bei einer Brennprobe riechen die Gase nach Chlorwasserstoff. Beim Verbrennen auf Kupfer färbt sich die Flamme grün (siehe Beilsteinprobe). Sowohl für eine solche Brennprobe als auch für die Beilsteinprobe sollten (außerhalb der Untersuchungslabore) nur Kleinstmengen benutzt werden, da gesundheitlich bedenkliche chlororganische Verbindungen entstehen.

Siehe auch[Bearbeiten | Quelltext bearbeiten]

Literatur[Bearbeiten | Quelltext bearbeiten]

Weblinks[Bearbeiten | Quelltext bearbeiten]

 Commons: Polyvinylchlorid – Sammlung von Bildern, Videos und Audiodateien

Einzelnachweise[Bearbeiten | Quelltext bearbeiten]

  1. a b c d e f g h Eintrag zu CAS-Nr. 9002-86-2 in der GESTIS-Stoffdatenbank des IFA, abgerufen am 9. Januar 2015 (JavaScript erforderlich)
  2. Lassen, Carsten et al. (2014): Survey of short-chain and medium-chain chlorinated paraffins, Copenhagen: The Danish Environmental Protection Agency, S.51, 55. ISBN 978-87-93283-19-0
  3. a b c d e f g Hinweise für Akatherm FIP Produkte, bei Kwerky.de
  4. Trovidur der Röchling SE & Co. KG
  5. a b c d e f g h Werkstoffeigenschaften der Rohre aus Corzan, abgerufen bei PVC-Welt.de im Februar 2016
  6. Die Seite über PVC-C der englischen Wikipedia, abgerufen im Februar 2016
  7. Adolf Franck, Karlheinz Biederbick Kunststoff-Kompendium 1988, S. 264 ISBN 3-8023-0135-8.
  8. a b c d e f g Wissenschaft-Online-Lexika: Eintrag zu Polyvinylchlorid im Lexikon der Chemie, abgerufen 6. März 2008
  9. a b PVC (PolyVinyl Chloride) & CPVC (Chlorinated PolyVinyl Chloride) Specifications
  10. Oliver Türk, Stoffliche Nutzung nachwachsender Rohstoffe: Grundlagen - Werkstoffe - Anwendungen, Springer-Verlag, 2013. Eingeschränkte Vorschau
  11. Arbeitsgemeinschaft PVC und UMWELT e.V. (AGPU): Selbstverpflichtung der PVC-Branche
  12. Zur kontroversen Geschichte der gesellschaftlichen Auseinandersetzung mit den Krebsfällen in der PVC-herstellenden Industrie vgl. Andrea Westermann: Plastik und politische Kultur in Westdeutschland. Kap. 4.
  13. Schweizerische Unfallversicherungsanstalt (SUVA): Grenzwerte am Arbeitsplatz 2015 – MAK-Werte, BAT-Werte, Grenzwerte für physikalische Einwirkungen, abgerufen am 2. November 2015.