Adelring

aus Wikipedia, der freien Enzyklopädie
Wechseln zu: Navigation, Suche

Der Adelering wird in der Zahlentheorie, einem Teilgebiet der Mathematik, definiert. Er steht im Zusammenhang mit der Klassenkörpertheorie. Er ermöglicht eine besonders elegante Darstellung des Artinschen Reziprozitätsgesetzes. Der Adelering ist ein selbstdualer, topologischer Ring, welcher auf Grundlage eines globalen Körpers konstruiert wird. Um den Adelering zu erhalten, bildet man das restringierte Produkt aller Vervollständigungen eines globalen Körpers. Damit enthält der Adelering alle diese Vervollständigungen.

Die Idelklassengruppe, welche der Quotient aus den Einheiten des Adelerings und den Einheiten des Körpers ist, stellt ein zentrales Objekt in der Klassenkörpertheorie dar.

Notation: Im Folgenden ist ein globaler Körper. Das bedeutet, dass entweder ein algebraischer Zahlkörper oder ein algebraische Funktionenkörper positiver Charakteristik vom Transzendenzgrad 1 ist. Im ersten Fall bedeutet das, dass eine endliche Körpererweiterung ist, im zweiten Fall, dass eine endliche Körpererweiterung ist. Im Folgenden bezeichnet eine Stelle von Die triviale Bewertung und der dazu korrespondierende triviale Betrag werden im kompletten Artikel ausgeschlossen. Es wird unterschieden zwischen endlichen Stellen bzw. nicht-archimedischen Stellen, welche als oder notiert werden und unendlichen Stellen bzw. archimedischen Stellen, welche als notiert werden. Im Folgenden bezeichne die endliche Menge der unendlichen Stellen von Wir schreiben für eine endliche Teilmenge der Stellenmenge von welche enthält. Sei die Vervollständigung von nach einer Stelle Bei einer diskreten Bewertung bezeichne mit den zugehörigen diskreten Bewertungsring von und mit das maximale Ideal von Ist dieses ein Hauptideal, so schreibe für ein uniformisierendes Element. Der Leser sei weiterhin auf die eineindeutige Identifikation von Beträgen und Bewertungen eines Körpers hingewiesen bei Fixierung einer geeigneten Konstante Die Bewertung wird dem Betrag zugeordnet, welcher wie folgt definiert wird:

Umgekehrt wird dem Betrag die Bewertung zugeordnet, welche wie folgt definiert ist: für alle Diese Identifikation wird im Artikel laufend verwendet.

Inhaltsverzeichnis

Der Adelering[Bearbeiten | Quelltext bearbeiten]

Begriffserklärung[Bearbeiten | Quelltext bearbeiten]

In der lokalen Klassenkörpertheorie spielt die multiplikative Gruppe des lokalen Körpers eine wichtige Rolle. In der globalen Klassenkörpertheorie wird diese Rolle von der Idelklassengruppe übernommen (vgl. Definition der Idelklassengruppe). Der Begriff des Idels ist eine Abänderung des Idealbegriffs, wobei beide Begriffe in Beziehung zueinander stehen, siehe dazu den Satz über den Zusammenhang zwischen der Ideal- und der Idelklassengruppe. Der Idelbegriff wurde von dem französischen Mathematiker Claude Chevalley (1909–1984) unter dem Namen „ideal element“ (abgekürzt: id.el.) eingeführt. Der Begriff des Adels geht zurück auf die ursprüngliche Bezeichnung „additives Idel“. Bei der Aussprache von Adel liegt die Betonung auf der 2. Silbe.

Die Idee hinter dem Adelering ist es, dass man alle Vervollständigungen des globalen Köpers auf einmal betrachtet. Auf den ersten Blick scheint die Definition über das kartesische Produkt sinnvoll, jedoch wird der Adelering mit dem restringierten Produkt definiert, wie im nächsten Abschnitt erläutert wird. Dies hat mehrere Gründe:

  • Wenn man den globalen Körper in das Produkt über die einbettet, dann gilt für jedes also für fast alle (vgl. globaler Körper). Die Terminologie „fast alle“ meint im gesamten Artikel immer „alle bis auf endlich viele“. Also ist sogar in das restringierte Produkt einbettbar.
  • Der Adelering wird dadurch zu einem lokalkompakten, topologischen Ring. Das unrestringierte Produkt hingegen ist nicht lokalkompakt. Daher ist auf dem unrestringierten Produkt keine Harmonische Analyse möglich.

Definition des Adelerings eines globalen Körpers [Bearbeiten | Quelltext bearbeiten]

Definition: Die Menge der endlichen Adele eines globalen Körpers [Bearbeiten | Quelltext bearbeiten]

Die Menge der endlichen Adele eines globalen Körpers geschrieben ist definiert als das restringierte Produkt der mit Restriktionsbedingung das heißt

Das bedeutet, dass die Menge der endlichen Adele alle Elemente der Form enthält, so dass für fast alle Die Addition und Multiplikation werden komponentenweise erklärt. Dadurch wird zu einem Ring. Wir installieren auf der Menge der endlichen Adele die restringierte Produkttopologie. Das ist diejenige Topologie, die von den sogenannten restringierten offenen Rechtecken erzeugt wird, welche folgende Form haben:

wobei eine endliche Teilmenge der Stellenmenge von ist, welche enthält und offen sind.

Bemerkung: In der deutschen Literatur wird auch der Name eingeschränktes direktes Produkt für das restringierte Produkt verwendet. Im Folgenden wird der Begriff restringiertes Produkt verwendet. Weiterhin wird im Folgenden endlicher Adelering von als Synonym für verwendet.

Definition: Der Adelering eine globalen Körpers [Bearbeiten | Quelltext bearbeiten]

Der Adelering des globalen Körpers geschrieben ist definiert als das Produkt der Menge der endlichen Adele mit dem Produkt der endlich vielen Vervollständigungen nach den unendlichen Stellen. Diese sind oder und treten nur im algebraischen Zahlkörperfall auf. Damit erhalten wir also:

In Fall eines Funktionenkörpers ist die Menge der endlichen Adele gleich dem Adelering von Auf dem Adelering von wird eine Addition und Multiplikation jeweils komponentenweise erklärt. Dadurch wird zu einem Ring. Die Elemente von werden die Adele von genannt. Wir schreiben im Folgenden den Adelering als

obwohl dies kein restringiertes Produkt im eigentlichen Sinne ist. Im Folgenden wird nicht extra darauf hingewiesen, dass die unendlichen Stellen unrestringiert dem Produkt hinzugefügt werden.

Definition: Die Menge der -Adele eines globalen Körpers [Bearbeiten | Quelltext bearbeiten]

Sei ein globaler Körper und sei eine Teilmenge der Stellenmenge von Definiere die Menge der -Adele von als

Die unendlichen Stellen, sofern in enthalten, werden dabei ohne Restriktionsbedingung hinzugefügt. Definiere weiterhin

Es gilt dann

Beispiel: Der rationale Adelering [Bearbeiten | Quelltext bearbeiten]

Wir betrachten den Spezialfall Zuerst überlegen wir uns, wie die Stellenmenge von aussieht: Der Satz von Ostrowski besagt, dass die Stellenmenge von mit identifiziert werden kann, wobei die Primzahl dabei die Äquivalenzklasse des -adischen Betrag repräsentiert und für die folgende Äquivalenzklasse von steht, wobei wie folgt definiert wird:

Als nächstes stellen wir fest, dass die Vervollständigung nach den Stellen von gerade die Körper der p-adischen Zahlen für eine Stelle bzw. der Körper für die Stelle sind. Der zugehörige Ganzzahlring zum Körper ist Damit folgt, dass der endliche Adelering der rationalen Zahlen gleich

ist. Der ganze Adelering ist damit gleich

wofür wir auch verkürzt schreiben:

mit der Konvention

Lemma: Unterschied zwischen restringierter und unrestringierter Produkttopologie[Bearbeiten | Quelltext bearbeiten]

Die Folge von Adelen in

konvergiert in der Produkttopologie gegen das Adel jedoch nicht in der restringierten Produkttopologie.

Beweis: Die Konvergenz in der Produkttopologie entspricht der koordinatenweisen Konvergenz. Diese ist trivial, da die Koordinatenfolgen stationär werden. Die Folge konvergiert nicht in der restringierten Produkttopologie, da für jedes Adel und für jedes restringierte offene Rechteck gilt: für und daher für alle Es folgt, dass für fast alle Hierbei stehen und für endliche Teilmengen der Stellenmenge. Dabei ist eine endliche Ausnahmemenge des Adels

Der Adelering trägt nicht die Teilraumtopologie der Produkttopologie, da ansonsten der Adelering keine lokalkompakte Gruppe ist, vgl. hierzu den Satz, dass der Adelering ein topologischer Ring ist.

Lemma: Diagonale Einbettung des globalen Körpers in seinen Adelering[Bearbeiten | Quelltext bearbeiten]

Sei ein globaler Körper. Es gibt eine natürliche diagonale Einbettung von in seinen Adelering

Die Einbettung ist wohldefiniert, da für jedes gilt, dass für fast alle Sie ist injektiv, denn die Einbettung von in ist bereits injektiv für jedes Es folgt, dass als Untergruppe von aufgefasst werden kann. Man kann sogar als Unterring seines Adelerings auffassen. Die Elemente aus werden die Hauptadele von genannt.

Alternative Definition des Adelerings eines Zahlkörpers[Bearbeiten | Quelltext bearbeiten]

Definition: Die pro-endliche Komplettierung der ganzen Zahlen[Bearbeiten | Quelltext bearbeiten]

Definiere

d.h. ist die pro-endliche Komplettierung der Ringe mit der partiellen Ordnung Die pro-endliche Komplettierung der ganzen Zahlen ist also der projektive Limes über die Ringe

Mit Hilfe des chinesischen Restsatzes kann gezeigt werden, dass die pro-endliche Komplettierung der ganzen Zahlen isomorph zum Produkt der ganzen -adischen Zahlen ist. Es gilt also

Lemma: Alternative Definition des Adelerings eines Zahlkörpers[Bearbeiten | Quelltext bearbeiten]

Definiere nun den Ring

Damit kann der Adelering über folgendermaßen dargestellt werden:

Dies ist ein algebraischer Isomorphismus. Für einen beliebigen algebraischen Zahlkörper gilt nun:

wobei wir die rechte Seite mit folgender Topologie versehen. Es gilt, dass wobei die rechte Seite insgesamt Summanden hat. Wir installieren auf der rechten Seite die Produkttopologie von und transportieren diese mit Hilfe des Isomorphismus auf

Beweis: Wir beweisen zunächst die Gleichung für Es ist also zu zeigen, dass Es gilt wobei man das „Ausmultiplizieren“ beim Tensorprodukt durch eine Betrachtung mit Basen einsieht. Die zweite Isomorphie folgt dadurch, dass -lineare Abbildungen bereits -linear sind. Offensichtlich reicht es zu zeigen, dass ist. Wir rechnen hierzu die universelle Eigenschaft des Tensorproduktes nach. Definiere eine -bilineare Abbildung via Diese Abbildung ist offensichtlich wohldefiniert, da nur endlich viele Primzahlen den Nenner von teilen. Die Abbildung ist -bilinear.

Sei nun ein weiterer -Modul mit einer -bilinearen Abbildung Zu zeigen ist, dass es genau eine -lineare Abbildung gibt, mit der Eigenschaft: Die Abbildung wird wie folgt definiert: Zu gegebem existiert ein und ein sodass für alle gilt. Definiere dann Man mache sich klar, dass wohldefiniert ist, -linear und erfüllt. Weiterhin ist durch diese Eigenschaften bereits eindeutig festgelegt. Der allgemeine Fall kann ähnlich gezeigt werden und wird im folgenden Abschnitt noch allgemeiner bewiesen.

Der Adelering bei einer Körpererweiterung [Bearbeiten | Quelltext bearbeiten]

Lemma: Alternative Beschreibung des Adelerings im Fall [Bearbeiten | Quelltext bearbeiten]

Sei ein globaler Körper und sei eine endliche Körpererweiterung. Ist ein algebraischer Zahlkörper, dann ist die Körpererweiterung separabel. Im Funktionenkörperfall kann sie ebenfalls als separabel angenommen werden, vgl. Weil (1967), S. 48f. Damit ist wieder ein globaler Körper und ist definiert. Für eine Stelle von und eine Stelle von definiere

falls der Betrag eingeschränkt auf in der Äquivalenzklasse von liegt. Man sagt, die Stelle liegt über der Stelle Definiere nun

Beachte, dass mit die Stellen von und mit die Stellen von bezeichnet werden. Beachte weiterhin, dass beide Produkte endlich sind.

Bemerkung: Man kann in einbetten, falls über liegt. Dadurch kann man diagonal in einbetten und wird dadurch eine kommutative -Algebra vom Grad

Es gilt nun

Der Beweis beruht auf elementaren Eigenschaften restringierter Produkte.

Der Adelering von kann dabei wie folgt kanonisch in den Adelering von eingebettet werden: Dem Adel wird das Adel mit für zugeordnet. Deshalb kann als Untergruppe von aufgefasst werden. Ein Element liegt also genau dann in der Untergruppe wenn seine Komponenten für erfüllen und weiterhin für und für die gleiche Stelle von gilt.

Lemma: Der Adelering als Tensorprodukt[Bearbeiten | Quelltext bearbeiten]

Sei ein globaler Körper und sei eine endliche Körpererweiterung. Dann gilt:

Dies ist ein algebraischer und topologischer Isomorphismus, wobei wir die Topologie des Tensorproduktes analog wie in dem Lemma über die alternative Definition des Adelerings eines Zahlkörpers konstruieren. Um dies zu tun, ist es wichtig, dass Mit der Hilfe dieses Isomorphismus, ist die Inklusion durch die Funktion

Darüber hinaus können die Hauptadele von mit einer Untergruppe der Hauptadele von identifiziert werden via der Abbildung

Beweis: Sei eine -Basis von Es gilt nun, dass

für fast alle vgl. Cassels (1967), S. 61.

Wir haben einen kanonischen Isomorphismus:

wobei die kanonische Einbettung ist und wie üblich gilt. Indem wir auf beiden Seiten das restringierte Produkt mit Restriktionsbedingung bilden, folgt die Behauptung:

Dieser Beweis findet sich in Cassels (1967), S. 65.

Korollar: Der Adelering von als additive Gruppe

Als additive Gruppe betrachtet gilt:

wobei die linke Seite insgesamt Summanden hat. Die Hauptadele von gehen dabei auf wobei hier als Teilmenge von aufgefasst wird. Die Summe hat dabei Summanden.

Definition des Adelerings eines -Vektorraums und einer -Algebra [Bearbeiten | Quelltext bearbeiten]

Lemma: Alternative Beschreibung des Adelerings eines globalen Körpers[Bearbeiten | Quelltext bearbeiten]

Sei ein globaler Körper. Sei eine endliche Stellenmenge von die umfasst. Hierbei bezeichnet die unendlichen Stellen des globalen Körpers. Definiere

Man definiert die Addition und Multiplikation komponentenweise und versieht den entstandenen Ring mit der Produkttopologie. Es entsteht ein lokalkompakter, topologischer Ring. Anders formuliert: ist die Menge aller wobei für alle also für alle gelten soll.

Bemerkung: Ist eine weitere endliche Teilmenge der Stellenmenge von mit der Eigenschaft dann ist ein offener Unterring von

Wir geben nun eine alternative Definition des Adelerings. Mengentheoretisch ist die Vereinigung über alle Mengen der Form wobei die Vereinigung alle endlichen Teilmengen von der gesamten Stellenmenge von durchläuft. Es gilt also

In anderen Worten ist nichts anderes als die Menge aller für die gilt: für fast alle Die Topologie auf wird so definiert, dass alle offene Unterringe von werden sollen. Dadurch wird ein lokalkompakter, topologischer Ring.

Sei nun eine Stelle von und sei eine endliche Teilmenge der Stellenmenge von welche die unendlichen Stellen und enthält. Es gilt:

Definiere nun

Dann gilt:

Definiere weiterhin:

wobei alle endlichen Teilmengen der Stellenmenge durchläuft, welche enthält. Dann gilt offensichtlich:

via der Abbildung Dies kann mit jeder endlichen Stellenmenge anstelle von ebenso gemacht werden.

Mit Hilfe der obigen Definition von gibt es eine natürliche Einbettung und eine natürliche Projektion

Definition: Der Adelering eines -Vektorraums [Bearbeiten | Quelltext bearbeiten]

Die folgenden beiden Definitionen orientieren sich an Weil (1967), S. 60ff. Sei wie bisher ein globaler Körper und sei nun ein -dimensionaler -Vektorraum, Wir fixieren eine -Basis von Für jede Stelle von schreiben wir und Definiere dann den Adelering von als

Diese Definition ist angelehnt an die alternative Beschreibung des Adelerings als Tensorprodukt. Wir konstruieren wieder die Topologie auf analog wie in dem Lemma über die alternative Definition des Adelerings eines Zahlkörpers. Um dies zu tun, ist es wichtig, dass Wir versehen dann den Adelering von mit der restringierten Produkttopologie.

Analog wie in dem Abschnitt über den Adelering bei einer Körpererweiterung erhalten wir Dann kann durch natürlich in eingebettet werden.

Im Folgenden wird eine alternative Definition der Topologie auf dem Adelering gegeben. Die Topologie auf ist gegeben als die gröbste Topologie, für welche die Linearformen auf das sind lineare Abbildungen die ausgedehnt werden zu linearen Abbildungen von nach stetig sind. Man benutzt jeweils, dass bzw. auf natürliche Art und Weise in bzw. eingebettet werden können. Mit anderen Worten: Die Wahl einer Basis von über liefert einen Isomorphismus von nach also einen Isomorphismus von nach Man kann nun mit der Produkttopologie versehen und diese mit Hilfe des Isomorphismus nach transportieren. Die Wahl der Topologie hängt nicht von der Wahl der Basis ab, denn eine weitere Basiswahl definiert einen zweiten Isomorphismus. Die Komposition der Isomorphismen ergibt einen linearen Homöomorphismus, der die eine Topologie in die andere überführt. Man kann dies wie folgt darstellen:

wobei die auftretenden Summen Summanden haben. Falls so liefert obige Definition den bereits definierten Adelering.

Definition: Der Adelering einer -Algebra [Bearbeiten | Quelltext bearbeiten]

Sei ein globaler Körper und sei nun eine endlichdimensionale -Algebra. Dann ist insbesondere ein endlichdimensionaler -Vektorraum. Folglich ist definiert, vgl. dazu den letzten Abschnitt. Wir dehnen die Multiplikation von auf aus. Dies geht wie folgt:

Es gilt, dass Da wir eine Multiplikation auf und auf haben, können wir eine Multiplikation auf definieren, via

Alternativ, kann man eine -Basis von fixieren. Um die Multiplikation auf vollständig zu beschreiben, genügt es zu wissen, wie die Basiselemente miteinander multipliziert werden. Es existieren so dass

Mit Hilfe dieser können wir eine Multiplikation auf definieren:

Und ebenso eine Multiplikation auf und damit auf

Es folgt, dass eine -Algebra mit ist. Sei eine endliche Teilmenge von welche eine -Basis von enthält. Für jede endliche Stelle von nenne das -Modul erzeugt von in Für jede endliche Teilmenge der Stellenmenge von welche enthält, definiere

Man kann zeigen, dass es dann eine endliche Menge gibt, so dass ein offener Unterring von ist, falls Es gilt dann weiterhin, dass die Vereinigung aller dieser Unterringe ist. Man kann zeigen, dass im Falle der oben definierte Adelering kanonisch isomorph zur „ersten“ Definition des Adelerings ist.

Spur und Norm auf dem Adelering[Bearbeiten | Quelltext bearbeiten]

Definition: Spur und Norm auf dem Adelering[Bearbeiten | Quelltext bearbeiten]

Sei eine endliche Körpererweiterung des globalen Körpers Dann gilt Mit der Identifikation folgt, dass als abgeschlossener Unterring von aufgefasst werden kann. Schreibe für diese Einbettung von in Explizit gilt: Sei Dann ist wobei dies für alle über gilt.

Sei ein Körperturm globaler Körper. Dann gilt

Schränken wir die Abbildung auf die Menge der Hauptadele ein, so ist sie gleich der kanonischen Injektion

Sei nun eine Basis der Körpererweiterung Also kann jedes geschrieben werden als wobei eindeutig sind. Die Abbildung ist stetig. Definiere nun (hängen von ab) via der Gleichungen

Norm und Spur von werden definiert als:

Dies sind genau die Spur bzw. die Determinante der linearen Abbildung Beides sind stetige Funktionen auf dem Adelering.

Lemma: Eigenschaften von Norm und Spur[Bearbeiten | Quelltext bearbeiten]

Die Norm und die Spur erfüllen die üblichen Eigenschaften:

Weiterhin gilt, dass für die Spur und die Norm der üblichen Spur und Norm der Körpererweiterung entspricht. Für einen Körperturm haben wir wie gewohnt

Weiterhin kann gezeigt werden:

Anmerkung: Der letzte Punkt ist nicht trivial, vgl. hierzu Weil (1967), S. 52ff bzw, S. 64 oder Cassels (1967), S. 74.

Eigenschaften des Adelerings[Bearbeiten | Quelltext bearbeiten]

Prinzipiell gilt, dass in den Beweisen die Situation oft auf den Fall oder zurückgeführt werden können. Die Verallgemeinerung für beliebige globale Körper oder ähnliche Objekte ist dann oft trivial.

Satz: Der Adelering ist ein lokalkompakter, topologischer Ring[Bearbeiten | Quelltext bearbeiten]

Sei ein globaler Körper. Dann ist für jede Stellenmenge der Ring ein topologischer Ring. Weiterhin ist eine lokalkompakte Gruppe ist. Das bedeutet, dass die Menge mit ihrer Topologie lokalkompakt ist und die Gruppenverknüpfung stetig ist. Dies wiederum bedeutet, dass die Abbildung

stetig ist. Darüber hinaus soll auch die Inversionsabbildung der Gruppenverknüpfung stetig sein, d.h. die Abbildung

soll stetig sein.

Eine Umgebungsbasis der in ist auch eine Umgebungsbasis der im Adelering. Alternativ bilden auch alle Mengen der Form wobei Umgebung der in und für fast alle eine Umgebungsbasis der im Adelering.

Beweisidee: Die Lokalkompaktheit der Menge folgt aus der Definition der restringierten Produkttopologie und der Kompaktheit der Die Stetigkeit der Gruppenoperationen lässt sich auf die Stetigkeit der Gruppenoperation in den einzelnen Komponenten zurückführen. Dort sind die entsprechenden Abbildungen stetig. Ein ausführlicherer Beweis findet sich in Deitmar (2010), S. 124, Satz 5.2.1.

Bemerkung: Dieses Ergebnis lässt sich auf den Adelering eines -Vektorraums und den Adelering einer -Algebra übertragen.

Satz: Der globale Körper ist eine diskrete, cokompakte Untergruppe in seinem Adelering[Bearbeiten | Quelltext bearbeiten]

Der Adelering enthält den globalen Körper als diskrete, cokompakte Untergruppe, d.h. ist diskret und ist in der Quotiententopologie kompakt. Insbesondere ist abgeschlossen in

Beweis: Ein Beweis findet sich in Cassels (1967), S. 64, Theorem oder in Weil (1967), S. 64, Theorem 2. Im Folgenden wird der Beweis für den Fall wiedergegeben:

Um zu zeigen, dass diskret in ist, reicht es zu zeigen, dass es eine Umgebung der gibt, welche keine weiteren Elemente von enthält. Durch Translation dieser Umgebung kann der allgemeine Fall gezeigt werden. Sei nun

Dann ist eine offene Umgebung der in Es bleibt zu zeigen: Sei dazu Da und für alle ist, folgt Da zusätzlich noch gilt, dass ist, folgt

Nun zur Kompaktheitsaussage: Definiere die Menge

Wir zeigen nun, dass jede Klasse von einen Vertreter in hat, das heißt wir müssen zeigen, dass für jedes Adel ein existiert, sodass Sei nun also beliebig. Sei eine Primzahl für die gilt: Dann existiert ein mit und Nun ersetze durch Dies beeinflusst die anderen Stellen wie folgt:

Sei eine weitere Primzahl. Dann gilt: Es folgt, dass (für die Hinrichtung ist zu beachten, dass in der scharfen Dreiecksungleichung Gleichheit gilt, falls die Beträge der beiden beteiligten Zahlen verschieden sind).

Damit haben wir die (endliche) Primstellenmenge mit der Eigenschaft, dass die Komponenten nicht in liegen, um eins verkleinert. Iteration liefert die Existenz eines sodass ist. Jetzt wähle so dass Da folgt: für Betrachte nun die stetige Projektion Sie ist surjektiv. Also ist das stetige Bild eines Kompaktums, also selbst kompakt. Der Fall geht ähnlich.

Der Zusatz ist ein Lemma über topologische Gruppen.

Korollar: Sei ein globaler Körper und sei ein endlichdimensionaler -Vektorraum. Dann ist diskret in und cokompakt in d.h. ist kompakt.

Lemma: Eigenschaften des rationalen Adelerings[Bearbeiten | Quelltext bearbeiten]

Sei wie zuvor. Dann gilt:

Weiterhin gilt, dass uneingeschränkt divisibel ist, d.h. die Gleichung hat für jedes und eine Lösung Allerdings ist diese Lösung im Allgemeinen nicht eindeutig.

Außerdem gilt, dass dicht in ist. Eine allgemeinere Formulierung dieser Aussage findet sich im Satz über das starke Approximationstheorem.

Beweis: Die ersten Aussagen können elementar bewiesen werden. Die nächste Aussage findet sich so in Neukirch (2007) auf Seite 383. Wir beweisen sie im Folgenden. Sei und sei beliebig. Zu zeigen: Es existiert ein sodass gilt: Wir zeigen, dass uneingeschränkt reversibel ist, dann folgt bereits die Behauptung. Dies ist jedoch klar, da in jeder Koordinate ein Körper mit Charakteristik ungleich Null ist. Nun zu einem Gegenbeispiel, welches zeigt, dass nicht eindeutig reversibel ist. Sei und beliebig. Dann erfüllt die Gleichung Ebenfalls erfüllt diese Gleichungen, denn Da n nur endlich viele Teiler hat, ist wohldefiniert. Aber denn (betrachte unendliche Koordinate)

Bemerkung: In unserem Fall ist die eindeutige Reversibilität äquivalent zur Torsionsfreiheit und die ist hier nicht gegeben, da aber und

Zur letzten Aussage: Es gilt da wir die endlich vielen Nenner in den Koordinaten der Elemente von durch ein Element erreichen können. Wenn wir zeigen können, dass dicht in ist, folgt dann bereits die Behauptung. Es ist also zu zeigen, dass sich in jeder offenen Teilmenge von ein Element aus befindet. Die offene Menge kann ohne Einschränkung als

angenommen werden, denn bilden eine Umgebungsbasis der in

Mit Hilfe des Chinesischen Restsatzes zeigt man nun die Existenz eines mit da Primzahlpotenzen zu verschiedenen Primzahlen teilerfremd sind. Dies bedeutet so viel wie

Definition: Haarmaß auf dem Adelering[Bearbeiten | Quelltext bearbeiten]

Sei ein globaler Körper. Dann ist eine lokalkompakte Gruppe. Folglich existiert ein Haarmaß auf dieser Gruppe, welches folgendermaßen normalisiert werden kann: Sei eine einfache Funktion auf d.h. wobei messbar und für fast alle Das Haarmaß auf kann so normalisiert werden, dass für jede integrierbare, einfache Funktion die Produktformel

gilt, wobei für jede endliche Stelle gilt. An den unendlichen Stellen wird das Lebesgue-Maß von bzw. genommen. Um einzusehen, warum das Maß so normalisiert werden kann, wird es zuerst auf den sogenannten einfachen Mengen ( mit offen und fast immer) definiert und dann auf die ganze Borel-σ-Algebra fortgesetzt. Dies findet sich in Deitmar (2010), S. 126, Satz 5.2.2.

Es kann gezeigt werden, dass endliches Volumen im Quotientenmaß hat. Das Quotientenmaß wird vom Haarmaß auf induziert. Diese Aussage ist ein Korollar aus dem obigen Satz, da die Kompaktheit das endliche Maß dieser Menge impliziert.

Die Idelegruppe[Bearbeiten | Quelltext bearbeiten]

Definition der Idelegruppe eines globalen Körpers [Bearbeiten | Quelltext bearbeiten]

Definition und Satz: Topologie auf der Einheitengruppe eines topologischen Rings[Bearbeiten | Quelltext bearbeiten]

Sei ein topologischer Ring. Dann bildet mit der Teilraumtopologie im Allgemeinen keine topologische Gruppe. Wir installieren deshalb auf die folgende, gröbere Topologie, was bedeutet, dass weniger Mengen offen sind: Betrachte die Inklusionsabbildung

Wir installieren auf die Topologie, die von der entsprechenden Teilraumtopologie auf erzeugt wird. Das heißt, wir installieren auf die Teilraumtopologie der Produkttopologie. Eine Menge ist per Definition genau dann offen in der neuen Topologie, wenn in der Teilraumtopologie offen ist. Mit dieser Topologie wird eine topologische Gruppe und die Inklusionsabbildung wird stetig. Es ist die gröbste Topologie, welche aus der Topologie von entsteht und die zu einer topologischen Gruppe macht.

Beweis: Man nehme den topologischen Ring Dann ist die Inversionsabbildung nicht stetig. Dies kann an folgendem Beispiel eingesehen werden: Betrachte die Folge

Diese Folge konvergiert in der -Topologie gegen das Einsadel, denn für eine gegebene Umgebung der können wir annehmen, dass U die folgende Form hat:

Weiterhin gilt, dass für alle und daher für alle Es folgt, dass für alle groß genug. Das Bild dieser Folge unter der Inversionsabbildung konvergiert nicht mehr in der Teilraumtopologie von (vgl. das Lemma über den Unterschied zwischen der restringierten und unrestringierten Produkttopologie). In dieser neuen Topologie konvergiert weder die Folge noch ihre Inverse. Dieses Beispiel zeigt insbesondere, dass die beiden Topologien verschieden sind. Wir installieren also auf den Einheiten die oben beschriebene Topologie. Mit dieser Topologie wird eine topologische Gruppe. Es bleibt die Stetigkeit der Inversionsabbildung zu zeigen. Sei eine beliebige, offen Menge in der oben definierten Topologie, d.h. ist offen. Zu zeigen ist, dass offen ist, d.h. zu zeigen ist, dass offen ist. Dies ist nach Voraussetzung der Fall.

Definition: Die Idelegruppe eines globalen Körpers [Bearbeiten | Quelltext bearbeiten]

Sei ein globaler Körper. Die Einheitengruppe des Adelerings ist die sogenannte Idelegruppe von welche im Folgenden mit

bezeichnet werden. Definiere weiterhin

Wir installieren auf der Idelegruppe die Topologie, die wir im Abschnitt zuvor definiert haben. Dadurch wird die Idelegruppe eine topologische Gruppe.

Lemma: Die Idelegruppe als restringiertes Produkt[Bearbeiten | Quelltext bearbeiten]

Sei ein globaler Körper. Es gilt:

wobei die Gleichheit im Sinne topologischer Ringe zu verstehen ist. Das restringierte Produkt trägt die restringierte Produkttopologie, welche erzeugt wird von den restringierten offenen Rechtecken. Diese haben die folgende Gestalt:

wobei eine endliche Teilmenge aller Stellen ist und beliebige, offene Mengen sind.

Beweis: Wir führen den Beweis für Die anderen beiden Aussagen folgen analog. Zuerst überlegen wir uns die Mengengleichheit. Betrachte dazu folgende Gleichungskette:

Beim Übergang von Zeile 2 zu 3 ist zu beachten, dass sowohl als auch in sein sollen, also für fast alle und für fast alle also insgesamt für fast alle Als nächstes überlegen wir uns, dass die beiden Topologien übereinstimmen. Offensichtlich ist jedes restringierte offene Rechteck auch offen in der Topologie der Idelegruppe. Andererseits sei offen in der Topologie der Idelegruppe, d.h. ist offen. Es folgt, dass für jedes ein restringiertes offenes Rechteck existiert, welches enthält und in liegt. Also ist als Vereinigung restringierter offener Rechtecke darstellbar, also offen in der restringierten Produkttopologie.

Weitere Definitionen:

Unter Verwendung der bisherigen Notation, definiere

und als die entsprechende Einheitengruppe. Es gilt dann

Die Idelegruppe bei einer Körpererweiterung [Bearbeiten | Quelltext bearbeiten]

Dieser Abschnitt orientiert sich an dem entsprechenden Abschnitt über den Adelering.

Lemma: Alternative Beschreibung der Idelegruppe im Fall

Sei ein globaler Körper und sei eine endliche Körpererweiterung. Dann ist wieder ein globaler Körper und die Idelegruppe ist definiert. Definiere

Beachte, dass beide Produkte endlich sind. Es gilt nun:

Lemma: Einbettung der Idelegruppe von K in die Idelegruppe von L

Es gibt eine kanonische Einbettung der Idelegruppe von in die Idelegruppe von Dem Idel wird das Idel mit für zugeordnet. Deshalb kann als Untergruppe von aufgefasst werden. Ein Element liegt also genau dann in der Untergruppe wenn seine Komponenten erfüllen für und wenn weiterhin gilt, dass für und für die gleiche Stelle von

Die Situation eines -Vektorraums und einer -Algebra [Bearbeiten | Quelltext bearbeiten]

Der folgende Abschnitt orientiert sich an Weil (1967), S. 71ff.

Definition:

Sei wie bisher ein endlichdimensionaler -Vektorraum, wobei ein globaler Körper ist. Sei Dies ist eine -Algebra. Es gilt: wobei eine lineare Abbildung genau dann invertierbar ist, wenn ihre Determinante von verschieden ist. Wenn ein topologischer Körper ist, dann ist eine offene Teilmenge von denn Da abgeschlossen ist und stetig ist, ist offen.

Definition und Proposition: Die Idelegruppe einer -Algebra [Bearbeiten | Quelltext bearbeiten]

Sei nun eine endlichdimensionale -Algebra, wobei ein globaler Körper ist. Betrachte die Einheitengruppe von Die Abbildung ist im Allgemeinen nicht stetig in der Teilraumtopologie. Somit bilden die Einheiten keine topologische Gruppe. Wir statten deswegen mit der Topologie aus, die wir in dem Abschnitt über die Einheiten auf topologischen Ringen definiert haben. Mit dieser Topologie versehen, nennen wir die Einheitengruppe von die Idelegruppe von Die Elemente der Gruppe werden die Idele von genannt.

Sei eine endliche Teilmenge von welche eine -Basis von enthält. Sei wieder der -Modul, der von in erzeugt wird. Wie bereits bei der Betrachtung des Adelerings, existiert eine endliche Teilmenge der Stellenmenge, welche enthält, so dass für alle gilt, dass ein kompakter Unterring von ist und die Einheiten enthält. Weiterhin gilt für jedes dass eine offene Teilmenge von ist und dass die Abbildung stetig auf ist. Es folgt, dass die Abbildung die Gruppe homöomorph auf ihr Bild unter dieser Abbildung in abbildet. Für sind diejenigen Elemente von welche unter der obigen Abbildung auf abgebildet werden. Somit ist eine offene und kompakte Untergruppe von Der Beweis dieser Aussage findet sich in Weil (1967), S. 71ff.

Proposition: Alternative Charakterisierung der Idelegruppe[Bearbeiten | Quelltext bearbeiten]

Sei die Situation wie zuvor: Sei eine endliche Teilmenge der Stellenmenge welche enthält. Dann ist

eine offene Untergruppe von wobei als Vereinigung der geschrieben werden kann, und wobei alle endlichen Teilmengen der Stellenmenge durchläuft. Ein Beweis dieser Aussage findet sich in Weil (1967), S. 72.

Korollar: Die Situation

Betrachte den Fall Für jede endliche Teilmenge der Stellenmenge von welche enthält, ist die Gruppe

eine offene Untergruppe von Es gilt weiterhin, dass die Vereinigung aller dieser Untergruppen ist.

Norm auf der Idelegruppe[Bearbeiten | Quelltext bearbeiten]

Die Spur kann nicht ohne weiteres auf die Idelegruppe übertragen werden, die Norm allerdings schon. Sei dazu Dann ist also haben wir einen injektiven Gruppenhomomorphismus

Da und somit invertierbar ist, so ist auch invertierbar, da Es gilt also, dass Folglich liefert die Einschränkung der Normabbildung die folgende Abbildung:

Diese ist stetig und erfüllt ebenfalls die Eigenschaften der Norm aus dem Lemma über die Eigenschaften von Spur und Norm.

Eigenschaften der Idelegruppe[Bearbeiten | Quelltext bearbeiten]

Lemma: ist eine diskrete Untergruppe von [Bearbeiten | Quelltext bearbeiten]

Die Einheiten des globalen Körpers können diagonal in die Idelegruppe eingebettet werden:

Da für alle gilt, folgt die Wohldefiniertheit und Injektivität dieser Abbildung wie beim entsprechenden Satz über den Adelering.

Weiterhin gilt, dass die Untergruppe diskret (und damit insbesondere abgeschlossen) in ist. Diese Tatsache folgt analog wie bei dem entsprechenden Satz über den Adelering.

Korollar: ist eine diskrete Untergruppe von

Definition: Die Idelklassengruppe[Bearbeiten | Quelltext bearbeiten]

In der algebraischen Zahlentheorie wird für einen gegebenen Zahlkörper die Idealklassengruppe betrachten. In Analogie an den Begriff des Hauptideals, werden die Elemente von in als Hauptidele von bezeichnet. Der Quotient, also die Faktorgruppe wird die Idelklassengruppe von genannt. Diese steht in Zusammenhang mit der Idealklassengruppe (vgl. den Satz über den Zusammenhang zwischen der Ideal- und der Idelklassengruppe) und ist Hauptgegenstand bei den Betrachtungen in der Klassenkörpertheorie.

Bemerkung: Da abgeschlossen in ist, folgt, dass eine lokalkompakte, hausdorffsche, topologische Gruppe ist.

Sei nun eine endliche Körpererweiterung globaler Körper. Die Einbettung induziert eine injektive Abbildung auf den Idelklassengruppen:

Die Wohldefiniertheit der Abbildung folgt, da die Injektion offensichtlich auf eine Untergruppe von abbildet. Die Injektivität wird in Neukirch (2007), S. 388 gezeigt.

Satz: Die Idelegruppe ist eine lokalkompakte, topologische Gruppe[Bearbeiten | Quelltext bearbeiten]

Für jede Teilmenge der Stellenmenge von ist mit der Topologie der Idelegruppe eine lokalkompakte, topologische Gruppe. Mit der Teilraumtopologie wird im Allgemeinen keine topologische Gruppe, da die Inversionsabbildung nicht stetig ist.

Dieser Satz folgt aus der Lokalkompaktheit des Adelerings, der Konstruktion der Ideletopologie und der Darstellung der Idelegruppe als restringiertes Produkt.

Da die Idelegruppe mit der Multiplikation eine lokalkompakte Gruppe bilden, existiert ein Haarmaß auf dieser Gruppe. Dieses kann so normalisiert werden, dass Dies ist die Normalisierung an den endlichen Stellen. Hierbei bezeichnet die Menge der endlichen Idele, also die Einheitengruppe der Menge der endlichen Adele. An den unendlichen wird das multiplikative Lebesgue-Maß genommen.

Eine Einsumgebungsbasis der Idelegruppe ist durch eine Einsumgebungsbasis von gegeben. Alternativ bilden auch alle Mengen der folgenden Form eine Einsumgebungsbasis:

wobei eine Umgebung der in ist und für fast alle

Definition: Betrag auf und die Menge der -Idele von [Bearbeiten | Quelltext bearbeiten]

Sei ein globaler Körper. Auf der Idelegruppe installieren wir einen Betrag wie folgt: Für ein gegebenes Idel definiere:

Da ist dieses Produkt endlich und damit wohldefiniert. Die Definition des Betrages lässt sich auf den Adelering ausdehnen, wenn wir unendliche Produkte zulassen, wobei die Konvergenz in betrachtet wird. Diese Produkte werden alle so dass der ausgedehnte Betrag auf verschwindet. Im folgenden bezeichne die Betragsabbildung auf bzw.

Es gilt nun, dass die Betragsabbildung ein stetiger Gruppenhomomorphismus ist, d.h. die Abbildung ist ein stetiger Gruppenhomomorphismus. Dies kann durch folgende Rechnung eingesehen werden: Seien und Dann gilt:

wobei beim Übergang von Zeile 3 in Zeile 4 benutzt wurde, dass alle auftretenden Produkte endlich sind. Die Stetigkeit der Abbildung folgt, indem man Folgenstetigkeit zeigt und ausnutzt, dass die Betragsabbildung auf stetig ist. Dies kann man mit der umgekehrten Dreiecksungleichung einsehen. Aufgrund der restringierten Produkttopologie werden effektiv nur endlich viele Stellen betrachtet und die Behauptung folgt.

Wir definieren nun die Menge der -Idele wie folgt:

Die Gruppe der -Idele sind eine Untergruppe von In der Literatur wird auch für die Gruppe der -Idele verwendet. Im Folgenden wird die Notation verwendet.

Es gilt nun, dass eine abgeschlossene Teilmenge von ist, denn

Die -Topologie auf stimmt mit der Teilraumtopologie von auf überein. Diese Aussage findet sich in Cassels (1967), S. 69f.

Satz: Allgemeine Produktformel[Bearbeiten | Quelltext bearbeiten]

Sei ein globaler Körper. Für den Homomorphismus von nach gilt: Mit anderen Worten bedeutet das, dass für alle Die Produktformel impliziert, dass ist. Dieser Satz ist in der Literatur als „Artin's product formula“ (=Artins Produktformel) bekannt.

Beweis: Es gibt viele Beweise dieser Aussage. Dieser hier orientiert sich an Neukirch (2007), S. 195. Er findet sich auch in Cassels (1967), S. 61. Die wesentliche Idee des Beweises ist es, die allgemeine Produktformel im algebraischen Zahlkörperfall auf den Spezialfall zurückzuführen. Der Funktionenkörperfall geht ähnlich.

Sei beliebig. Zu zeigen ist:

Es ist und damit für jedes für welches das zugehörige Primideal nicht in der Primidealzerlegung des Hauptideals auftritt. Dies ist für fast alle so. Es gilt nun: