CRISPR/Cas-Methode

aus Wikipedia, der freien Enzyklopädie
Wechseln zu: Navigation, Suche
CRISPR/Cas-Komplex mit DNA

Die CRISPR/Cas-Methode (Clustered Regularly Interspaced Short Palindromic Repeats) ist eine biochemische Methode, um DNA gezielt zu schneiden und zu verändern (Genome Editing). Gene können mit dem CRISPR/Cas-System eingefügt, entfernt oder ausgeschaltet werden,[1] auch Nukleotide in einem Gen können geändert werden.[2]

Die wissenschaftliche Grundlage zur Entwicklung der CRISPR/Cas-Methode wurde durch die Entdeckung und Erforschung der CRISPR-Sequenzen und des damit verbundenen CRISPR/Cas-Systems im Immunsystem verschiedener Bakterien und Archaea gelegt. Die erste wissenschaftliche Dokumentation zur Entwicklung und zum Einsatz der Methode wurde 2012 durch eine Arbeitsgruppe um Emmanuelle Charpentier und Jennifer Doudna veröffentlicht. Die wissenschaftliche Fachzeitschrift Science erklärte die CRISPR-Methode zum Breakthrough of the Year 2015.[3]

Eigenschaften[Bearbeiten | Quelltext bearbeiten]

3D Struktur des CRISPR-Cas9 Interferenz-Komplexes.
CRISPR-Cas9 kann als molekulares Werkzeug gezielt DNA-Doppelstrang Brüche einführen.
Die durch CRISPR-Cas9 gezielt eingeführten DNA-Doppelstrangbrüche eröffnen den Weg zu genetischer Manipulation.

Die CRISPR/Cas-Methode basiert auf einem adaptiven antiviralen Abwehrmechanismus von Bakterien, dem CRISPR.[4][5] Sie wird verwendet, um DNA an einer bestimmbaren DNA-Sequenz zu schneiden. Dadurch können beispielsweise DNA-Sequenzen entfernt oder andere DNA-Sequenzen an dieser Stelle eingefügt werden. Das CRISPR/Cas-System kann durch Zugabe eines DNA-Oligonukleotids auch zur Veränderung von RNA verwendet werden.[6][7] Der Effekt der Unterdrückung eines Gens durch CRISPR/Cas besitzt verschiedene Ähnlichkeiten mit demjenigen per RNA-Interferenz, da bei beiden bakteriellen Abwehrmechanismen kurze RNA-Stücke von etwa 18 bis 20 Nukleotiden die Bindung an das Ziel vermitteln.[8]

Cas-Proteine können als Ribonukleoproteine bestimmte RNA-Sequenzen binden. Die Endonuklease Cas9 (von englisch CRISPR-associated, veraltet auch Cas5, Csn1 oder Csx12) kann eine bestimmte RNA-Sequenz (crRNA repeat, Sequenz GUUUUAGAGCU(A/G)UG(C/U)UGUUUUG)[9] binden und in der unmittelbaren Umgebung DNA schneiden. Diese crRNA-repeat-Sequenz bildet eine RNA-Sekundärstruktur und wird dann von Cas9 gebunden,[10] wodurch eine Änderung der Proteinfaltung von Cas9 erfolgt und die Ziel-DNA von der RNA gebunden wird.[11] Darüber hinaus ist das Vorhandensein eines PAM-Motivs (englisch protospacer adjacent motif ‚Angrenzendes Motiv an den Protospacer‘) mit der Sequenz NGG in der Ziel-DNA für eine Aktivierung von Cas9 notwendig.[12] Der Schnitt der DNA erfolgt drei Nukleotide vor dem PAM. An der crRNA-repeat-Sequenz befindet sich anschließend eine an die Ziel-DNA bindende Sequenz (crRNA spacer); beide Sequenzen werden zusammen als crRNA bezeichnet. Als zweiter Teil der crRNA dient die crRNA-spacer-Sequenz in der Funktion eines variablen Adapters, die komplementär zur Ziel-DNA ist und an die Ziel-DNA bindet. Zudem ist noch eine zur DNA-Sequenz analoge RNA (tracrRNA, von engl. trans-acting CRISPR RNA) notwendig. Dadurch wird die DNA gebunden und von der Endonukleasefunktion nahe der Bindungsstelle geschnitten. Die DNA-Reparatur des erzeugten Doppelstrangbruchs erfolgt durch homology-directed repair (HDR) oder durch non-homologous end joining (NHEJ).

Anpassung an die Zielsequenz[Bearbeiten | Quelltext bearbeiten]

Wird an eine crRNA repeat-Sequenz anstatt der natürlich vorkommenden crRNA-spacer-Sequenz eine andere, zu einer DNA-Zielsequenz komplementäre RNA-Sequenz angefügt und diese crRNA zu einer tracrRNA hinzugegeben, schneidet Cas9 die DNA nahe der geänderten Zielsequenz. Die an die Ziel-DNA bindende Sequenz besteht aus 20 Nukleotiden, von denen vor allem die 12 an das PAM angrenzenden Nukleotide für die Bindungsspezifität entscheidend sind.[13] Die beiden RNA-Stränge der crRNA und der tracrRNA können auch in einem einzelnen, teilweise selbsthybridisierenden RNA-Strang untergebracht werden (sgRNA ‚single guide RNA‘).[1] Durch das Cas9 mit den entsprechend geänderten RNA-Sequenzen kann sequenzspezifisch doppelsträngige, teilweise komplementäre DNA geschnitten werden, wodurch gezielte Deletionen erzeugt werden können.

Nukleotidsubstitution[Bearbeiten | Quelltext bearbeiten]

Einzelne Cytidine können durch ein Fusionsprotein aus Cas9 ohne doppelsträngige Endonuklease mit einer Cytidindeaminase in Thymidin umgewandelt werden.[14] Dadurch entsteht eine Substitutionsmutation.

Insertionen[Bearbeiten | Quelltext bearbeiten]

Durch Doppelstrangbrüche kann die Häufigkeit einer homologen Rekombination deutlich erhöht werden,[15] wodurch ein sequenzspezifischer Schnitt durch Cas9 auch zum Einfügen von DNA-Sequenzen (z. B. im Zuge der Gentherapie) verwendet werden kann, sofern die anschließend einzufügende DNA an beiden Enden jeweils eine zur jeweiligen Zielsequenz überlappende Sequenz aufweist.[16]

Spezifität[Bearbeiten | Quelltext bearbeiten]

Zur Minimierung unspezifischer DNA-Schnitte und der daraus potentiell folgenden Mutagenese werden verschiedene Ansätze zur Erhöhung der Spezifität untersucht, wie Proteindesign der Cas9 oder Ersatz der Endonukleaseaktivität von Cas9 durch Kombination mit anderen Endonukleasen. Entsprechend wurden verschiedene Methoden zur Detektion solcher Mutationen entwickelt.[17] Die Mutation von Asparaginsäure zu Alanin an der Position 10 in Cas9 (kurz: D10A) oder von Histidin zu Alanin an der Position 840 (H840A) inaktiviert die doppelsträngige Endonukleasefunktion des gebundenen DNA-Stranges unter Erhalt der RNA-DNA-Bindungsfunktion und einer einzelsträngigen Endonukleasefunktion.[18][19] Zudem wird die Spezifität durch die Affinität der RNA-DNA-Bindung an Cas9 bestimmt.[20][21][22] Durch Verwendung zweier verschiedener sgRNA, deren an die Ziel-DNA bindende Sequenzen geringfügig versetzt sind, kann die Spezifität des Schnitts erhöht werden.[18][23] Dabei werden zwei geringfügig verschiedene Cas9-sgRNA-Komplexe mit unterschiedlicher Spezifität gebildet (paired nickases). Zudem entstehen durch die versetzten Einzelstrangbrüche sticky ends, die eine Insertion einer DNA mit komplementären sticky ends erleichtern. Einzelstrangbrüche werden durch die Basenexzisionsreparatur[18] und die HDR geschlossen,[24] die weniger Mutationen als die Reparatur per NHEJ erzeugen.[18]

Einbringung in Zellen[Bearbeiten | Quelltext bearbeiten]

Durch Transformation oder Transfektion von einem Vektor können Lebewesen mit dem CRISPR/Cas-System "ergänzt" werden, die es natürlicherweise nicht besitzen, z. B. manche Bakterienstämme,[25] Bäckerhefe,[26] Taufliegen,[27] Zebrabärblinge,[28] Mäuse[29] und Menschen.[30][31] Üblicherweise wird CRISPR/Cas per Plasmid in einen Organismus eingefügt, alternativ kann auch der Komplex aus Cas9 mit einer sgRNA in Zellen eingeschleust werden.[32]

Für ein Genome Editing in der Keimbahn werden als Methoden zur Einschleusung des CRISPR/Cas9 die Elektroporation und die Mikroinjektion eingesetzt. Die gleichzeitige Änderung mehrerer DNA-Zielsequenzen wird als Multiplex Genome Editing bezeichnet.

Typen[Bearbeiten | Quelltext bearbeiten]

Es existieren mehr als 40 verschiedene Cas-Proteinfamilien.[33] Die Familien können in zwei Klassen mit sechs Typen (Klasse I mit Typen I, III und IV sowie Klasse II mit Typen II, V und VI) und weiter in 19 Subtypen eingeteilt werden.[34][35] Bei Klasse I besteht der Proteinanteil aus mehreren Proteinen in einem Proteinkomplex, während Klasse II nur ein Protein verwendet.[34] Typ I, II und III-A binden und schneiden doppelsträngige DNA, während Typ III-B einzelsträngige RNA bindet und schneidet.[35][36] Bei allen Typen erfolgt die Bildung des spacers in Bakterien durch Cas1 und Cas2.[36] Bei den Typen I-A und I-E erfolgt der DNA-Schnitt durch Cas3, während bei Typ II Cas9, bei Typ III-A Csm6 und bei Typ III-B Cmr4 den Schnitt bewirkt.[36] Die Typen I und III sind strukturell verwandt, was einen gemeinsamen Ursprung nahelegt.[35] Das helikale Protein Cas des Typs III besitzt mehrere β-hairpins, die in Abständen von sechs Nukleotiden die Doppelhelix der crRNA und der Ziel-RNA für den Schnitt auseinanderdrücken.[35]

Das Cas9 stammt meistens entweder aus Streptococcus pyogenes (SpCas9) oder Staphylococcus aureus (SaCas9), wobei die kodierende DNA-Sequenz von SaCas9 etwa 1000 Basenpaare kürzer ist.[37] Cas9 gehört zum Typ II und wird vermehrt eingesetzt, da der Proteinanteil nur aus einem Protein besteht, wodurch die Klonierung und Überexpression weniger aufwändig ist. Cas-Proteine des Typs I sind dagegen Proteinkomplexe aus mehreren kleinen Proteinen.[38]

Eine alternative Methode mit gleicher Spannbreite möglicher DNA-Zielsequenzen ist das CRISPR/Cpf1-System. Alternativ zum CRISPR/Cas-System können teilweise Transcription Activator-like Effector Nucleases und Zinkfingernukleasen verwendet werden.

Anwendungen[Bearbeiten | Quelltext bearbeiten]

Verwendungsbeispiel des CRISPR/Cas-Systems in einem Plasmid
Blockade der Genexpression durch eine Cas9-Mutante (dCas9) im Zuge der CRISPRi

Das CRISPR/Cas-System kann unter anderem zum Genome Editing (Deletionen/Gen-Knockout[39] und Insertionen) und damit auch zur Gentherapie verwendet werden.[40][41] Weiterhin wird das CRISPR/Cas-System zur Entfernung der Genome von Krankheitserregern chronischer Infektionskrankheiten wie des Hepatitis-B-Virus[42] und des HIV eingesetzt.[43][44] Die gezielte Veränderung einzelner Gene wird bei der Charakterisierung von Onkogenen und somit zur Untersuchung der Tumorentstehung verwendet.[45][46]

Das CRISPR/Cas-System wird zur Untersuchung der Funktionen von teilweise unbekannten Genen eingesetzt.[47] Zudem wird es zur Korrektur von Mutationen bei der Erzeugung induzierter pluripotenter Stammzellen[48] und embryonaler Stammzellen verwendet.[49][50] Weitere Anwendungen werden untersucht.[51]

Mit dem CRISPR/Cas-System wurden unter anderem Bakteriophagen-resistente Bakterienstämme erzeugt, und dies durch eine adaptive Resistenz bei Hinzufügen entsprechender RNA bei industriell wichtigen Bakterien, z. B. in der Milch- oder Weinindustrie. Durch ein mutiertes Cas ohne funktionsfähige Endonuklease (dCas9) kann ein DNA-bindendes Protein erzeugt werden, das unter anderem analog zur RNAi zu einem Knockdown von endogenen Genen führt,[52] z. B. durch Transformation mit einem Plasmid, aus dem Cas9 und eine CRISPR-RNA transkribiert wird (CRISPRi).[53] Ebenso kann mittels dCas9 als Fusionsprotein mit einem Aktivator an einer anderen, bestimmbaren Stelle im Genom eine Transkription eingeleitet werden. Anhand charakteristischer CRISPR-Sequenzen können CRISPR/Cas enthaltende Bakterienstämme identifiziert werden (spoligotyping). Ein grün fluoreszierendes Protein kann mit einer Cas-Mutante als Fusionsprotein zur Markierung von DNA-Sequenzen (auch repetitiver Sequenzen wie Telomere) verwendet werden.[54] Durch das CRISPR/Cas-System konnte die Herstellungszeit von Mäusen mit komplexen Genomveränderungen von bis zu zwei Jahren auf wenige Wochen verkürzt werden.[29]

Pflanzenzüchtung[Bearbeiten | Quelltext bearbeiten]

Die CRISPR-Methode eröffnet Pflanzenzüchtern die Möglichkeit, Sorten von Nutzpflanzen auf eine leichtere, effizientere und flexiblere Art zu verbessern.[55] Für mehrere Nutzpflanzen liegen bereits Studien vor, aber es sind noch keine CRISPR-Pflanzen auf dem Markt.[56][57][58]

Caribou Biosciences, die 2011 von Doudna und Charpentier gegründete Firma, ging eine strategische Partnerschaft mit DuPont Pioneer ein. Abhängig vom Ausgang des Patentstreits könnte DuPont daher die Rechte an der Anwendung der Methode bei wichtigen Nutzpflanzen wie Mais, Raps und Sojabohne erhalten und Caribou für kleinere Märkte wie Obst und Gemüse. Unklar ist auch, wie sich der letztendliche Patentinhaber hinsichtlich der Lizenzierung der Methode verhalten wird.[56][57] Im September 2016 vergab das Broad-Institut eine (nicht exklusive) Lizenz zur Anwendung der Methode an Monsanto (von der Lizenz ausgeschlossen sind Gene Drive sowie Anwendungen bei Tabak und die Herstellung steriler Pflanzen).[59]

Gleichzeitig besteht weiterhin Unklarheit bezüglich der Regulierung von CRISPR-Pflanzen (ausschließlich mit Deletionen, ohne Insertionen) in verschiedenen Ländern. Die für die mögliche zukünftige kommerzielle Nutzung von CRISPR-Pflanzen in der Landwirtschaft entscheidende Frage ist, ob diese rechtlich als gentechnisch veränderte Pflanzen angesehen werden, sofern nur etwas aus dem Genom entfernt und kein Transgen eingefügt wurde, da gentechnisch veränderte Pflanzen insbesondere in der EU sehr streng reguliert sind.[56][57][58] Das US-Landwirtschaftsministerium verkündete bereits im April 2016, zwei mit der CRISPR-Methode hergestellte Organismen, einen nicht-bräunenden Champignon und einen Wachsmais mit verändertem Stärkegehalt, nicht zu regulieren.[60] In der EU steht eine Rechtseinschätzung der Europäischen Kommission noch aus (die letztliche Deutungshoheit unterliegt dem Europäischen Gerichtshof); verschiedene Stakeholder haben sich bereits für oder gegen eine Gentechnik-Einstufung ausgesprochen.[61]

Entdeckungsgeschichte[Bearbeiten | Quelltext bearbeiten]

Siehe auch: CRISPR#Entdeckung und Eigenschaften

Die Entdeckung und Erforschung der CRISPR-Sequenzen und des damit verbundenen CRISPR/Cas-Systems im Immunsystem verschiedener Bakterien und Archaea erfolgte in mehreren Schritten seit den späten 1980er Jahren. Vor allem in den frühen 2000ern wurden die Zusammenhänge zwischen den CRISPR-Sequenzen der DNA und den cas-Genen sowie ihre Bedeutung in der Immunabwehr der Bakterien identifiziert. Ab 2008 war bekannt dass das adaptive CRISPR DNA bindet.[62]

Im Jahr 2011 zeigte eine Arbeitsgruppe um Emmanuelle Charpentier und Jennifer Doudna, dass mittels des CRISPR/Cas-Systems der Mikroorganismen spezifische DNA-Ziele in vitro geschnitten werden können.[63] Sie reichten ihre wissenschaftliche Arbeit am 8. Juni 2012 bei der Fachzeitschrift Science ein, wo sie am 28. Juni veröffentlicht wurde.[1] Parallel zu ihnen arbeitete eine Arbeitsgruppe um Virginijus Šikšnys an der Methode, die bereits im April 2012 ihre Arbeit bei Cell einreichten; diese wurde jedoch abgelehnt, wenngleich die Herausgeber von Cell dem Artikel nachträglich eine große Bedeutung zuschrieben. Im Mai reichten Šikšnys und Kollegen das Papier in den Proceedings of the National Academy of Sciences (PNAS) ein, wo es am 4. September online veröffentlicht wurde.[64]

Doudna und Charpentier beschrieben, wie sich in einem Bakterium gezielt Abschnitte aus dem Erbgut entfernen lassen. Dem Neurowissenschaftler Feng Zhang vom Massachusetts Institute of Technology gelang es später, die CRISPR-Methode nicht nur im Bakterium anzuwenden, sondern für alle Zellen zu optimieren.[65] Der Leiter des Broad Institute und Vorgesetzte von Feng Zhang, Eric Lander, verfasste im Januar 2016 einen Artikel über die Anteile der verschiedenen Wissenschaftler an der Entdeckung des CRISPR/Cas-Systems,[66] der aufgrund von einseitiger Darstellung und eines vermuteten Interessenskonflikts kritisiert wurde.[67][68][69]

Charpentier und Doudna erhielten 2014 für die Entdeckung der CRISPR/Cas-Methode den mit drei Millionen Dollar für jeden Preisträger dotierten Breakthrough Prize in Life Sciences und wurden mit zahlreichen weiteren Preisen bedacht.

Patentstreit[Bearbeiten | Quelltext bearbeiten]

Doudna und Charpentier (University of California, Berkeley) als auch Zhang (Broad) beantragten grundlegende Patente auf die CRISPR/Cas-Methode. Doudna und Charpentier reichten ihren Antrag beim United States Patent and Trademark Office (USPTO) im Mai 2012, Zhang im Dezember 2012 ein, und Zhang beantragte ein Schnellverfahren. Zhang wurden im Mai 2014 Patentrechte zugesprochen. Das USPTO begründete diese Entscheidung damit, dass Zhang die Methode für alle Zellen tauglich machte.[65] Doudna und Charpentier reichten Klage beim USPTO gegen diese Entscheidung ein. Das Verfahren zur Klärung der Urheberschaft lief im Januar 2016 an. Broad argumentiert, Berkeley habe die Methode zwar für Prokaryoten (Bakterien), aber nicht hinreichend für Eukaryoten (z. B. Mäusen und menschlichen Zellen) beschrieben. Berkeley argumentiert, der Schritt von Pro- zu Eukaryoten bedürfe keiner erfinderischen Tätigkeit.[70] Im Februar 2017 entschied das USPTO zugunsten von Broad und lehnte die Klage der University of California mit der Begründung ab, dass die Anwendung der von Doudna und Charpentier beschriebenen CRISPR/Cas-Methode auf Eukaryoten nicht offensichtlich sei.[71]

Auch das Europäische Patentamt (EPA) muss im Patentstreit Entscheidungen fällen. Hinsichtlich des Berkeley-Patentantrags hat das EPA bereits argumentiert, der Antrag habe die Erfindung nicht ausreichend beschrieben, da die Hervorhebung der Rolle der PAM-Sequenzen fehle. Berkeley vertritt die Ansicht, dass diese Rolle für Fachleute offensichtlich ist. Dem Broad-Institut wurden hingegen bereits mehrere Patente an der CRISPR/Cas-Methode zugesprochen, die jedoch von mehreren Seiten angefochten wurden. Kläger verweisen zum Beispiel darauf, dass Broads ursprünglicher Patentantrag einen Wissenschaftler der Rockefeller University als an der Erfindung Mitbeteiligten erwähnte, eine spätere Version des Antrags jedoch nicht.[70]

Risiken[Bearbeiten | Quelltext bearbeiten]

Die Methode ist eine verhältnismäßig einfache, preiswerte, leicht verfügbare, punktgenaue und effiziente Technik. Es ist noch nicht geregelt, ob reine Deletionen, die auch durch zufällige Mutagenese im Rahmen einer Züchtung entstehen können (jedoch nicht zielgerichtet), als Gentechnik zu bewerten sind. Kritiker weisen darauf hin, dass es beispielsweise internationaler Standards und Vorsorgemassnahmen bedürfe, um Wildwuchs und Missbrauch vorzubeugen. Hier bestehen auch Befürchtungen vor kriminellen oder terroristischen Anwendungen; das amerikanische FBI beispielsweise beobachtet entsprechende mehr oder weniger private Do-it-Yourself (DIY)-„Garagen-Bastler“ („Bio-Hacker“). In Bezug auf den Eingriff in die menschliche Keimbahn durch Verwendung einer CRISPR/Cas-Methode auf menschlichen Keimzellen in Verbindung mit einer In-vitro-Fertilisation im Rahmen einer Gentherapie gibt es bioethische Bedenken.[72]

Literatur[Bearbeiten | Quelltext bearbeiten]

Weblinks[Bearbeiten | Quelltext bearbeiten]

Einzelnachweise[Bearbeiten | Quelltext bearbeiten]

  1. a b c Martin Jinek, Krzysztof Chylinski, Ines Fonfara, Michael Hauer, Jennifer A. Doudna, Emmanuelle Charpentier: A Programmable Dual-RNA–Guided DNA Endonuclease in Adaptive Bacterial Immunity. In: Science. Band 337, Nr. 6096, 17. August 2012, ISSN 0036-8075, S. 816–821, doi:10.1126/science.1225829, PMID 22745249.
  2. H. Ochiai: Single-Base Pair Genome Editing in Human Cells by Using Site-Specific Endonucleases. In: International journal of molecular sciences. Band 16, Nummer 9, 2015, S. 21128–21137, doi:10.3390/ijms160921128, PMID 26404258, PMC 4613245 (freier Volltext) (Review).
  3. Email Science: And Science’s Breakthrough of the Year is … In: news.sciencemag.org. 17. Dezember 2015; abgerufen am 17. Dezember 2015 (englisch).
  4. R. Sorek, V. Kunin, P. Hugenholtz: CRISPR–a widespread system that provides acquired resistance against phages in bacteria and archaea. In: Nature reviews. Microbiology. Band 6, Nummer 3, März 2008, S. 181–186, ISSN 1740-1534. doi:10.1038/nrmicro1793. PMID 18157154.
  5. D. Rath, L. Amlinger, A. Rath, M. Lundgren: The CRISPR-Cas immune system: biology, mechanisms and applications. In: Biochimie. Band 117, Oktober 2015, S. 119–128, doi:10.1016/j.biochi.2015.03.025, PMID 25868999 (Review).
  6. M. R. O’Connell, B. L. Oakes, S. H. Sternberg, A. East-Seletsky, M. Kaplan, J. A. Doudna: Programmable RNA recognition and cleavage by CRISPR/Cas9. In: Nature. Band 516, Nummer 7530, Dezember 2014, S. 263–266, ISSN 1476-4687. doi:10.1038/nature13769. PMID 25274302.
  7. C. R. Hale, P. Zhao, S. Olson, M. O. Duff, B. R. Graveley, L. Wells, R. M. Terns, M. P. Terns: RNA-guided RNA cleavage by a CRISPR RNA-Cas protein complex. In: Cell. Band 139, Nummer 5, November 2009, S. 945–956, doi:10.1016/j.cell.2009.07.040, PMID 19945378, PMC 2951265 (freier Volltext).
  8. Rodolphe Barrangou, A. Birmingham, S. Wiemann, R. L. Beijersbergen, V. Hornung, A. v. Smith: Advances in CRISPR-Cas9 genome engineering: lessons learned from RNA interference. In: Nucleic acids research. Band 43, Nummer 7, April 2015, S. 3407–3419, doi:10.1093/nar/gkv226, PMID 25800748, PMC 4402539 (freier Volltext).
  9. G. Gasiunas, R. Barrangou, P. Horvath, V. Siksnys: Cas9-crRNA ribonucleoprotein complex mediates specific DNA cleavage for adaptive immunity in bacteria. In: Proceedings of the National Academy of Sciences of the United States of America. Band 109, Nummer 39, September 2012, S. E2579–E2586, ISSN 1091-6490. doi:10.1073/pnas.1208507109. PMID 22949671. PMC 3465414 (freier Volltext).
  10. V. Kunin, R. Sorek, P. Hugenholtz: Evolutionary conservation of sequence and secondary structures in CRISPR repeats. In: Genome biology. Band 8, Nummer 4, 2007, S. R61, ISSN 1465-6914. doi:10.1186/gb-2007-8-4-r61. PMID 17442114. PMC 1896005 (freier Volltext).
  11. F. Jiang, D. W. Taylor, J. S. Chen, J. E. Kornfeld, K. Zhou, A. J. Thompson, E. Nogales, J. A. Doudna: Structures of a CRISPR-Cas9 R-loop complex primed for DNA cleavage. In: Science. Band 351, Nummer 6275, Februar 2016, S. 867–871, doi:10.1126/science.aad8282, PMID 26841432.
  12. S. H. Sternberg, S. Redding, M. Jinek, E. C. Greene, J. A. Doudna: DNA interrogation by the CRISPR RNA-guided endonuclease Cas9. In: Nature. Band 507, Nummer 7490, März 2014, S. 62–67, doi:10.1038/nature13011, PMID 24476820, PMC 4106473 (freier Volltext).
  13. M. Mikami, S. Toki, M. Endo: Precision Targeted Mutagenesis via Cas9 Paired Nickases in Rice. In: Plant & cell physiology. Band 57, Nummer 5, Mai 2016, S. 1058–1068, doi:10.1093/pcp/pcw049, PMID 26936792, PMC 4867050 (freier Volltext).
  14. A. C. Komor, Y. B. Kim, M. S. Packer, J. A. Zuris, D. R. Liu: Programmable editing of a target base in genomic DNA without double-stranded DNA cleavage. In: Nature. Band 533, Nummer 7603, Mai 2016, S. 420–424, doi:10.1038/nature17946, PMID 27096365, PMC 4873371 (freier Volltext).
  15. N. Rudin, E. Sugarman, J. E. Haber: Genetic and physical analysis of double-strand break repair and recombination in Saccharomyces cerevisiae. In: Genetics. Band 122, Nummer 3, Juli 1989, S. 519–534, ISSN 0016-6731. PMID 2668114. PMC 1203726 (freier Volltext).
  16. P. D. Hsu, E. S. Lander, F. Zhang: Development and Applications of CRISPR-Cas9 for Genome Engineering. In: Cell. Band 157, Nummer 6, Juni 2014, S. 1262–1278, ISSN 1097-4172. doi:10.1016/j.cell.2014.05.010. PMID 24906146. PDF.
  17. J. Zischewski, R. Fischer, L. Bortesi: Detection of on-target and off-target mutations generated by CRISPR/Cas9 and other sequence-specific nucleases. In: Biotechnology advances. Band 35, Nummer 1, 2017 Jan - Feb, S. 95–104, doi:10.1016/j.biotechadv.2016.12.003, PMID 28011075.
  18. a b c d F. A. Ran, P. D. Hsu, C. Y. Lin, J. S. Gootenberg, S. Konermann, A. E. Trevino, D. A. Scott, A. Inoue, S. Matoba, Y. Zhang, F. Zhang: Double nicking by RNA-guided CRISPR Cas9 for enhanced genome editing specificity. In: Cell. Band 154, Nummer 6, September 2013, S. 1380–1389, doi:10.1016/j.cell.2013.08.021, PMID 23992846, PMC 3856256 (freier Volltext).
  19. K. Ishida, P. Gee, A. Hotta: Minimizing off-Target Mutagenesis Risks Caused by Programmable Nucleases. In: International journal of molecular sciences. Band 16, Nummer 10, 2015, S. 24751–24771, doi:10.3390/ijms161024751, PMID 26501275, PMC 4632775 (freier Volltext) (Review).
  20. H. O'Geen, A. S. Yu, D. J. Segal: How specific is CRISPR/Cas9 really? In: Current opinion in chemical biology. [elektronische Veröffentlichung vor dem Druck] Oktober 2015, doi:10.1016/j.cbpa.2015.10.001, PMID 26517564.
  21. T. Koo, J. Lee, J. S. Kim: Measuring and Reducing Off-Target Activities of Programmable Nucleases Including CRISPR-Cas9. In: Molecules and cells. Band 38, Nummer 6, Juni 2015, S. 475–481, doi:10.14348/molcells.2015.0103, PMID 25985872, PMC 4469905 (freier Volltext) (Review).
  22. Y. Ma, L. Zhang, X. Huang: Genome modification by CRISPR/Cas9. In: The FEBS journal. Band 281, Nummer 23, Dezember 2014, S. 5186–5193, doi:10.1111/febs.13110, PMID 25315507 (Review).
  23. P. Mali, J. Aach, P. B. Stranges, K. M. Esvelt, M. Moosburner, S. Kosuri, L. Yang, G. M. Church: CAS9 transcriptional activators for target specificity screening and paired nickases for cooperative genome engineering. In: Nature biotechnology. Band 31, Nummer 9, September 2013, S. 833–838, doi:10.1038/nbt.2675, PMID 23907171, PMC 3818127 (freier Volltext).
  24. J. Lee, J. H. Chung, H. M. Kim, D. W. Kim, H. Kim: Designed nucleases for targeted genome editing. In: Plant biotechnology journal. Band 14, Nummer 2, Februar 2016, S. 448–462, doi:10.1111/pbi.12465, PMID 26369767.
  25. W. Jiang, D. Bikard, D. Cox, F. Zhang, L. A. Marraffini: RNA-guided editing of bacterial genomes using CRISPR-Cas systems. In: Nature biotechnology. Band 31, Nummer 3, März 2013, S. 233–239, ISSN 1546-1696. doi:10.1038/nbt.2508. PMID 23360965. PMC 3748948 (freier Volltext).
  26. J. E. DiCarlo, J. E. Norville, P. Mali, X. Rios, J. Aach, G. M. Church: Genome engineering in Saccharomyces cerevisiae using CRISPR-Cas systems. In: Nucleic acids research. Band 41, Nummer 7, April 2013, S. 4336–4343, ISSN 1362-4962. doi:10.1093/nar/gkt135. PMID 23460208. PMC 3627607 (freier Volltext).
  27. K. J. Beumer, D. Carroll: Targeted genome engineering techniques in Drosophila. In: Methods (San Diego, Calif.). Band 68, Nummer 1, Juni 2014, S. 29–37, doi:10.1016/j.ymeth.2013.12.002, PMID 24412316, PMC 4048800 (freier Volltext) (Review).
  28. W. Y. Hwang, Y. Fu, D. Reyon, M. L. Maeder, S. Q. Tsai, J. D. Sander, R. T. Peterson, J. R. Yeh, J. K. Joung: Efficient genome editing in zebrafish using a CRISPR-Cas system. In: Nature biotechnology. Band 31, Nummer 3, März 2013, S. 227–229, ISSN 1546-1696. doi:10.1038/nbt.2501. PMID 23360964. PMC 3686313 (freier Volltext).
  29. a b H. Wang, H. Yang, C. S. Shivalila, M. M. Dawlaty, A. W. Cheng, F. Zhang, R. Jaenisch: One-step generation of mice carrying mutations in multiple genes by CRISPR/Cas-mediated genome engineering. In: Cell. Band 153, Nummer 4, Mai 2013, S. 910–918, ISSN 1097-4172. doi:10.1016/j.cell.2013.04.025. PMID 23643243. PMC 3969854 (freier Volltext).
  30. P. Mali, L. Yang, K. M. Esvelt, J. Aach, M. Guell, J. E. DiCarlo, J. E. Norville, G. M. Church: RNA-guided human genome engineering via Cas9. In: Science. Band 339, Nummer 6121, Februar 2013, S. 823–826, ISSN 1095-9203. doi:10.1126/science.1232033. PMID 23287722. PMC 3712628 (freier Volltext).
  31. Puping Liang, Yanwen Xu, Xiya Zhang, Chenhui Ding, Rui Huang, Zhen Zhang, Jie Lv, Xiaowei Xie, Yuxi Chen, Yujing Li, Ying Sun, Yaofu Bai, Zhou Songyang, Wenbin Ma, Canquan Zhou, Junjiu Huang: CRISPR/Cas9-mediated gene editing in human tripronuclear zygotes. In: Protein & Cell. 6, 2015, S. 363, doi:10.1007/s13238-015-0153-5.
  32. L. Arora, A. Narula: Gene Editing and Crop Improvement Using CRISPR-Cas9 System. In: Frontiers in plant science. Band 8, 2017, S. 1932, doi:10.3389/fpls.2017.01932, PMID 29167680, PMC 5682324 (freier Volltext).
  33. D. H. Haft, J. Selengut, E. F. Mongodin, K. E. Nelson: A guild of 45 CRISPR-associated (Cas) protein families and multiple CRISPR/Cas subtypes exist in prokaryotic genomes. In: PLoS computational biology. Band 1, Nummer 6, November 2005, S. e60, ISSN 1553-7358. doi:10.1371/journal.pcbi.0010060. PMID 16292354. PMC 1282333 (freier Volltext).
  34. a b H. Nishimasu, O. Nureki: Structures and mechanisms of CRISPR RNA-guided effector nucleases. In: Current opinion in structural biology. Band 43, April 2017, S. 68–78, doi:10.1016/j.sbi.2016.11.013, PMID 27912110.
  35. a b c d D. W. Taylor, Y. Zhu, R. H. J. Staals, J. E. Kornfeld, A. Shinkai, J. van der Oost, E. Nogales, J. A. Doudna: Structures of the CRISPR-Cmr complex reveal mode of RNA target positioning. In: Science. 348, 2015, S. 581, doi:10.1126/science.aaa4535.
  36. a b c J. van der Oost, E. R. Westra, R. N. Jackson, B. Wiedenheft: Unravelling the structural and mechanistic basis of CRISPR-Cas systems. In: Nature reviews. Microbiology. Band 12, Nummer 7, Juli 2014, S. 479–492, doi:10.1038/nrmicro3279, PMID 24909109, PMC 4225775 (freier Volltext).
  37. F. Ann Ran, L. e. Cong, Winston X. Yan, David A. Scott, Jonathan S. Gootenberg, Andrea J. Kriz, Bernd Zetsche, Ophir Shalem, Xuebing Wu, Kira S. Makarova, Eugene V. Koonin, Phillip A. Sharp, Feng Zhang: In vivo genome editing using Staphylococcus aureus Cas9. In: Nature. 520, 2015, S. 186, doi:10.1038/nature14299.
  38. A. Plagens, H. Richter, E. Charpentier, L. Randau: DNA and RNA interference mechanisms by CRISPR-Cas surveillance complexes. In: FEMS microbiology reviews. Band 39, Nummer 3, Mai 2015, S. 442–463, doi:10.1093/femsre/fuv019, PMID 25934119.
  39. O. Shalem, N. E. Sanjana, F. Zhang: High-throughput functional genomics using CRISPR-Cas9. In: Nature reviews. Genetics. Band 16, Nummer 5, Mai 2015, S. 299–311, doi:10.1038/nrg3899, PMID 25854182, PMC 4503232 (freier Volltext) (Review).
  40. Y. Wang, Z. Li, J. Xu, B. Zeng, L. Ling, L. You, Y. Chen, Y. Huang, A. Tan: The CRISPR/Cas System mediates efficient genome engineering in Bombyx mori. In: Cell research. Band 23, Nummer 12, Dezember 2013, S. 1414–1416, ISSN 1748-7838. doi:10.1038/cr.2013.146. PMID 24165890. PMC 3847576 (freier Volltext).
  41. T. R. Sampson, D. S. Weiss: Exploiting CRISPR/Cas systems for biotechnology. In: BioEssays : news and reviews in molecular, cellular and developmental biology. Band 36, Nummer 1, Januar 2014, S. 34–38, ISSN 1521-1878. doi:10.1002/bies.201300135. PMID 24323919.
  42. G. Lin, K. Zhang, J. Li: Application of CRISPR/Cas9 Technology to HBV. In: International journal of molecular sciences. Band 16, Nummer 11, 2015, S. 26077–26086, doi:10.3390/ijms161125950, PMID 26540039 (Review).
  43. L. Ye, J. Wang, A. I. Beyer, F. Teque, T. J. Cradick, Z. Qi, J. C. Chang, G. Bao, M. O. Muench, J. Yu, J. A. Levy, Y. W. Kan: Seamless modification of wild-type induced pluripotent stem cells to the natural CCR5Δ32 mutation confers resistance to HIV infection. In: Proceedings of the National Academy of Sciences of the United States of America. Band 111, Nummer 26, Juli 2014, S. 9591–9596, doi:10.1073/pnas.1407473111, PMID 24927590, PMC 4084478 (freier Volltext).
  44. G. Wang, N. Zhao, B. Berkhout, A. T. Das: CRISPR-Cas based antiviral strategies against HIV-1. In: Virus research. [elektronische Veröffentlichung vor dem Druck] Juli 2017, doi:10.1016/j.virusres.2017.07.020, PMID 28760348.
  45. F. J. Sánchez-Rivera, T. Jacks: Applications of the CRISPR-Cas9 system in cancer biology. In: Nature reviews. Cancer. Band 15, Nummer 7, Juli 2015, S. 387–395, doi:10.1038/nrc3950, PMID 26040603, PMC 4530801 (freier Volltext).
  46. S. Chen, H. Sun, K. Miao, C. X. Deng: CRISPR-Cas9: from Genome Editing to Cancer Research. In: International journal of biological sciences. Band 12, Nummer 12, 2016, S. 1427–1436, doi:10.7150/ijbs.17421, PMID 27994508, PMC 5166485 (freier Volltext).
  47. T. Wijshake, D. J. Baker, B. van de Sluis: Endonucleases: new tools to edit the mouse genome. In: Biochimica et biophysica acta. Band 1842, Nummer 10, Oktober 2014, S. 1942–1950, doi:10.1016/j.bbadis.2014.04.020, PMID 24794718.
  48. H. L. Li, P. Gee, K. Ishida, A. Hotta: Efficient genomic correction methods in human iPS cells using CRISPR-Cas9 system. In: Methods (San Diego, Calif.). [elektronische Veröffentlichung vor dem Druck] Oktober 2015, doi:10.1016/j.ymeth.2015.10.015, PMID 26525194.
  49. T. Horii, I. Hatada: Genome Editing Using Mammalian Haploid Cells. In: International journal of molecular sciences. Band 16, Nummer 10, 2015, S. 23604–23614, doi:10.3390/ijms161023604, PMID 26437403, PMC 4632716 (freier Volltext) (Review).
  50. E. A. Vasileva, O. U. Shuvalov, A. V. Garabadgiu, G. Melino, N. A. Barlev: Genome-editing tools for stem cell biology. In: Cell death & disease. Band 6, 2015, S. e1831, doi:10.1038/cddis.2015.167, PMID 26203860, PMC 4650720 (freier Volltext) (Review).
  51. N. Savić, G. Schwank: Advances in therapeutic CRISPR/Cas9 genome editing. In: Translational research : the journal of laboratory and clinical medicine. [elektronische Veröffentlichung vor dem Druck] September 2015, doi:10.1016/j.trsl.2015.09.008, PMID 26470680.
  52. L. S. Qi, M. H. Larson, L. A. Gilbert, J. A. Doudna, J. S. Weissman, A. P. Arkin, W. A. Lim: Repurposing CRISPR as an RNA-guided platform for sequence-specific control of gene expression. In: Cell. Band 152, Nummer 5, Februar 2013, S. 1173–1183, ISSN 1097-4172. doi:10.1016/j.cell.2013.02.022. PMID 23452860. PMC 3664290 (freier Volltext).
  53. M. H. Larson, L. A. Gilbert, X. Wang, W. A. Lim, J. S. Weissman, L. S. Qi: CRISPR interference (CRISPRi) for sequence-specific control of gene expression. In: Nature protocols. Band 8, Nummer 11, November 2013, S. 2180–2196, ISSN 1750-2799. doi:10.1038/nprot.2013.132. PMID 24136345. PMC 3922765 (freier Volltext).
  54. B. Chen, L. A. Gilbert, B. A. Cimini, J. Schnitzbauer, W. Zhang, G. W. Li, J. Park, E. H. Blackburn, J. S. Weissman, L. S. Qi, B. Huang: Dynamic Imaging of Genomic Loci in Living Human Cells by an Optimized CRISPR/Cas System. In: Cell. Band 155, Nummer 7, Dezember 2013, S. 1479–1491, ISSN 1097-4172. doi:10.1016/j.cell.2013.12.001. PMID 24360272.
  55. X. Liu, S. Wu, J. Xu, C. Sui, J. Wei: Application of CRISPR/Cas9 in plant biology. In: Acta pharmaceutica Sinica. B. Band 7, Nummer 3, Mai 2017, S. 292–302, doi:10.1016/j.apsb.2017.01.002, PMID 28589077, PMC 5443236 (freier Volltext).
  56. a b c Huw D. Jones: Are plants engineered with CRISPR technology genetically modified organisms? In: The Biochemist. Band 38, Nr. 3, Juni 2016, S. 14–17.
  57. a b c Scott M. Schaeffer, Paul A. Nakata: CRISPR/Cas9-mediated genome editing and gene replacement in plants: Transitioning from lab to field. In: Plant Science. Band 240, 2015, S. 130–142, doi:10.1016/j.plantsci.2015.09.011.
  58. a b Teodoro Cardi, C. Neal Stewart Jr.: Progress of targeted genome modification approaches in higher plants. In: Plant Cell Reports. Band 35, 2016, S. 1401–1416, doi:10.1007/s00299-016-1975-1.
  59. Monsanto cuts deal to use CRISPR to engineer food. New Scientist, 23. September 2016.
  60. Erin Brodwin: The next generation of GMO food is here, and it's technically not a GMO. Business Insider, 18. April 2016.
  61. Tarja Laaninen: New plant-breeding techniques: Applicability of GM rules. Wissenschaftlicher Dienst des Europäischen Parlaments, 10. Mai 2016
  62. L. A. Marraffini, E. J. Sontheimer: CRISPR interference limits horizontal gene transfer in staphylococci by targeting DNA. In: Science. Band 322, Nummer 5909, Dezember 2008, S. 1843–1845, doi:10.1126/science.1165771, PMID 19095942, PMC 2695655 (freier Volltext).
  63. E. Pennisi: The CRISPR craze. In: Science. Band 341, Nummer 6148, August 2013, S. 833–836, doi:10.1126/science.341.6148.833, PMID 23970676.
  64. G. Gasiunas, R. Barrangou, P. Horvath, V. Siksnys: Cas9-crRNA ribonucleoprotein complex mediates specific DNA cleavage for adaptive immunity in bacteria. In: Proceedings of the National Academy of Sciences of the United States of America. Band 109, Nummer 39, September 2012, S. E2579–E2586, doi:10.1073/pnas.1208507109, PMID 22949671, PMC 3465414 (freier Volltext).
  65. a b Streit um Ruhm, Ehre und Millionen Dollar, Zeit, 22. Juni 2016.
  66. E. S. Lander: The Heroes of CRISPR. In: Cell. Band 164, Nummer 1–2, Januar 2016, S. 18–28, doi:10.1016/j.cell.2015.12.041, PMID 26771483.
  67. Tracy Vence: “Heroes of CRISPR” Disputed. In: The Scientist, 19. Januar 2016.
  68. Joel Achenbach: Eric Lander talks CRISPR and the infamous Nobel ‘rule of three’. In: The Washington Post, 21. April 2016.
  69. Stephen S. Hall: The Embarrassing, Destructive Fight over Biotech's Big Breakthrough. In: Scientific American, 4. Februar 2016.
  70. a b Heidi Ledford: Titanic clash over CRISPR patents turns ugly. In: Nature. Band 537, 22. September 2016, S. 460–461, doi:10.1038/537460a.
  71. Interference 106,048, USPTO, 15. Februar 2017.
  72. A. Plaza Reyes, F. Lanner: Towards a CRISPR view of early human development: applications, limitations and ethical concerns of genome editing in human embryos. In: Development. Band 144, Nummer 1, 01 2017, S. 3–7, doi:10.1242/dev.139683, PMID 28049687.