„Mosasaurus“ – Versionsunterschied

aus Wikipedia, der freien Enzyklopädie
Zur Navigation springen Zur Suche springen
[gesichtete Version][gesichtete Version]
Inhalt gelöscht Inhalt hinzugefügt
Keine Bearbeitungszusammenfassung
Fortsetzung der Übersetzung aus dem englischen Artikel (weitere folgen)
Zeile 85: Zeile 85:


== Beschreibung ==
== Beschreibung ==
''Mosasaurus'' war ein spezialisierter Mosasaurier, der einen vollständig aquatischen Lebensstil entwickelt hat. Er hatte einen stromlinienförmigen Körper, einen länglichen Schwanz, der mit einer abwärts gebogenen Schwanzflosse endete, und zwei Paar paddelförmiger Flossen. Während in der Vergangenheit Mosasaurier als riesige Seeschlangen mit Flossen dargestellt wurden, weiß man jetzt, dass sie in ihrer oberflächlichen Gestalt anderen großen Meereswirbeltieren wie [[Ichthyosaurier|Ichthyosauriern]], [[Thalattosuchia]] ([[Crocodylomorpha|Crokodylomorpha]]) und [[Wale#Übergangsformen|Archaeoeti]] durch [[konvergente Evolution]] ähnlicher waren.<ref>{{Literatur |Autor=Johan Lindgren, Michael W. Caldwell, Takuya Konishi, Luis M. Chiappe |Titel=Convergent Evolution in Aquatic Tetrapods: Insights from an Exceptional Fossil Mosasaur |Sammelwerk=PLoS ONE |Band=5 |Nummer=8 |Datum=2010-08-09 |ISSN=1932-6203 |DOI=10.1371/journal.pone.0011998 |PMC= |PMID=20711249 |Seiten=e11998 |Online=https://dx.plos.org/10.1371/journal.pone.0011998 |Abruf=2021-03-02}}</ref><ref name=":15">{{Literatur |Autor=Michael W. Caldwell |Titel=A challenge to categories: “What, if anything, is a mosasaur?” |Sammelwerk=Bulletin de la Société Géologique de France |Band=183 |Nummer=1 |Datum=2012-01-01 |ISSN=1777-5817 |DOI=10.2113/gssgfbull.183.1.7 |Seiten=7–34 |Online=https://pubs.geoscienceworld.org/sgf/bsgf/article/183/1/7/314014/A-challenge-to-categories-What-if-anything-is-a |Abruf=2021-03-02}}</ref><ref name=":12" />


=== Größe ===
=== Größe ===
Zeile 130: Zeile 131:
=== Systematik und Evolution ===
=== Systematik und Evolution ===
Als [[Typusgattung]] der [[Familie (Biologie)|Familie]] [[Mosasaurier|Mosasauridae]] und der Unterfamilie [[Mosasaurinae]] gehört ''Mosasaurus'' zur [[Ordnung (Biologie)|Ordnung]] [[Squamata]] (bestehend aus [[Echte Eidechsen|Eidechsen]] und [[Schlangen]]). ''Mosasaurus'' bildet zusammen mit den [[Gattung (Biologie)|Gattungen]] ''[[Eremiasaurus]]'', ''[[Plotosaurus]]''<ref name=":14">{{Literatur |Autor=Aaron R. H. Leblanc, Michael W. Caldwell, Nathalie Bardet |Titel=A new mosasaurine from the Maastrichtian (Upper Cretaceous) phosphates of Morocco and its implications for mosasaurine systematics |Sammelwerk=Journal of Vertebrate Paleontology |Band=32 |Nummer=1 |Datum=2012-01 |ISSN=0272-4634 |DOI=10.1080/02724634.2012.624145 |Seiten=82–104 |Online=http://www.tandfonline.com/doi/abs/10.1080/02724634.2012.624145 |Abruf=2021-03-01}}</ref> und ''[[Moanasaurus]]''<ref name=":13" /> (nach Auffassung mancher Autoren außerdem ''[[Prognathodon]]'' und ''[[Plesiotylosaurus]]''<ref>{{Literatur |Autor=Daniel Madzia, Andrea Cau |Titel=Inferring ‘weak spots’ in phylogenetic trees: application to mosasauroid nomenclature |Sammelwerk=PeerJ |Band=5 |Datum=2017-09-15 |ISSN=2167-8359 |DOI=10.7717/peerj.3782 |PMC= |PMID=28929018 |Seiten= |Online=https://peerj.com/articles/3782 |Abruf=2021-03-01}}</ref>, bei denen es sich aber vermutlich um basalere Mosasaurier handelt<ref>{{Cite journal|last=Simões|first=Tiago R.|last2=Vernygora|first2=Oksana|last3=Paparella|first3=Ilaria|last4=Jimenez-Huidobro|first4=Paulina|last5=Caldwell|first5=Michael W.|date=2017-05-03|title=Mosasauroid phylogeny under multiple phylogenetic methods provides new insights on the evolution of aquatic adaptations in the group|url=http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0176773|journal=PLOS ONE|volume=12|issue=5|pages=e0176773|doi=10.1371/journal.pone.0176773|issn=1932-6203|pmc=5415187|pmid=28467456|bibcode=2017PLoSO..1276773S}}</ref>) einen [[Tribus (Biologie)|Tribus]], der Mosasaurini oder Plotosaurini genannt wird.<ref name=":1" /><ref name=":14" /><ref>{{Literatur |Autor=Gorden L. Bell |Titel=A Phylogenetic Revision of North American and Adriatic Mosasauroidea |Sammelwerk=Ancient Marine Reptiles |Verlag=Elsevier |Datum=1997 |ISBN=978-0-12-155210-7 |DOI=10.1016/b978-012155210-7/50017-x |Seiten=293–332 |Online=https://linkinghub.elsevier.com/retrieve/pii/B978012155210750017X |Abruf=2021-03-01}}</ref>
Als [[Typusgattung]] der [[Familie (Biologie)|Familie]] [[Mosasaurier|Mosasauridae]] und der Unterfamilie [[Mosasaurinae]] gehört ''Mosasaurus'' zur [[Ordnung (Biologie)|Ordnung]] [[Squamata]] (bestehend aus [[Echte Eidechsen|Eidechsen]] und [[Schlangen]]). ''Mosasaurus'' bildet zusammen mit den [[Gattung (Biologie)|Gattungen]] ''[[Eremiasaurus]]'', ''[[Plotosaurus]]''<ref name=":14">{{Literatur |Autor=Aaron R. H. Leblanc, Michael W. Caldwell, Nathalie Bardet |Titel=A new mosasaurine from the Maastrichtian (Upper Cretaceous) phosphates of Morocco and its implications for mosasaurine systematics |Sammelwerk=Journal of Vertebrate Paleontology |Band=32 |Nummer=1 |Datum=2012-01 |ISSN=0272-4634 |DOI=10.1080/02724634.2012.624145 |Seiten=82–104 |Online=http://www.tandfonline.com/doi/abs/10.1080/02724634.2012.624145 |Abruf=2021-03-01}}</ref> und ''[[Moanasaurus]]''<ref name=":13" /> (nach Auffassung mancher Autoren außerdem ''[[Prognathodon]]'' und ''[[Plesiotylosaurus]]''<ref>{{Literatur |Autor=Daniel Madzia, Andrea Cau |Titel=Inferring ‘weak spots’ in phylogenetic trees: application to mosasauroid nomenclature |Sammelwerk=PeerJ |Band=5 |Datum=2017-09-15 |ISSN=2167-8359 |DOI=10.7717/peerj.3782 |PMC= |PMID=28929018 |Seiten= |Online=https://peerj.com/articles/3782 |Abruf=2021-03-01}}</ref>, bei denen es sich aber vermutlich um basalere Mosasaurier handelt<ref>{{Cite journal|last=Simões|first=Tiago R.|last2=Vernygora|first2=Oksana|last3=Paparella|first3=Ilaria|last4=Jimenez-Huidobro|first4=Paulina|last5=Caldwell|first5=Michael W.|date=2017-05-03|title=Mosasauroid phylogeny under multiple phylogenetic methods provides new insights on the evolution of aquatic adaptations in the group|url=http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0176773|journal=PLOS ONE|volume=12|issue=5|pages=e0176773|doi=10.1371/journal.pone.0176773|issn=1932-6203|pmc=5415187|pmid=28467456|bibcode=2017PLoSO..1276773S}}</ref>) einen [[Tribus (Biologie)|Tribus]], der Mosasaurini oder Plotosaurini genannt wird.<ref name=":1" /><ref name=":14" /><ref>{{Literatur |Autor=Gorden L. Bell |Titel=A Phylogenetic Revision of North American and Adriatic Mosasauroidea |Sammelwerk=Ancient Marine Reptiles |Verlag=Elsevier |Datum=1997 |ISBN=978-0-12-155210-7 |DOI=10.1016/b978-012155210-7/50017-x |Seiten=293–332 |Online=https://linkinghub.elsevier.com/retrieve/pii/B978012155210750017X |Abruf=2021-03-01}}</ref>

==== Verwandtschaft zu Schlangen und Waranen ====
{{Mehrere Bilder
| align = left
| Fußzeile = In der Wissenschaft besteht Uneinigkeit, ob Warane oder Schlangen die nächsten lebenden Verwandten von ''Mosasaurus'' sind.
| Bild1 = Komodo dragon (Varanus komodoensis).jpg
| Bild2 = 2017.07.17.-17-Tiefer See oder Grubensee-Storkow (Mark)--Ringelnatter.jpg
}}
Die genaue Einordnung der [[Mosasaurier]] innerhalb der [[Schuppenkriechtiere]] und damit die Beziehung von ''Mosasaurus'' zu modernen Reptilien ist von Anfang an umstritten. Cuvier war der erste Wissenschaftler, der die mögliche taxonomische Stellung von ''Mosasaurus'' eingehend analysierte. Während seine ursprüngliche Hypothese von 1808, dass die Gattung eine Echse mit Ähnlichkeit zu [[Warane|Waranen]] war, am beliebtesten blieb, war Cuvier selbst über die Richtigkeit dieser Einordnung unsicher. Er schlug eine Reihe alternativer Hypothesen vor, beispielsweise dass ''Mosasaurus'' stattdessen enger mit [[Leguane|Leguanen]] verwandt war, denn beide hatten [[Flügelbein|Pterygoid]]<nowiki/>zähne. Zu Beginn und Mitte des 19. Jahrhunderts gab es wenige Fossilien von Mosasauriern, sodass sich die Wissenschaft hauptsächlich auf [[Biostratigraphie|stratigraphische]] Assoziationen und Cuviers Forschungsergebnisse der 1808er Jahre zum Holotyp-Schädel stützte. Daher wurden eingehende Untersuchungen zur Einordnung von ''Mosasaurus'' erst durchgeführt, als im späten 19. Jahrhundert vollständigere Mosasaurier-Fossilien entdeckt wurden, die die Forschung zur Stellung von Mosasauriern unter den Schuppenkriechtieren wieder aufleben ließen.

In einer Zeitspanne von etwa 30 bis 40 Jahren im späten 19. bis frühen 20. Jahrhundert diskutierten Paläontologen heftig über das Thema, was zwei wichtige Theorien hervorbrachte: eine, die eine Verwandtschaft zu Waranen unterstützte, und eine, die eine engere Verwandtschaft zu [[Schlangen]] unterstützte.<ref name=":15" /> Eine solche Hypothese wurde erstmals 1869 von [[Edward Drinker Cope|Cope]] veröffentlicht, der vorschlug, dass Mosasaurier, die er einer Gruppe namens [[Pythonomorpha]] zuordnete, die Schwestergruppe der Schlangen waren. Einige Wissenschaftler gingen so weit, Mosasaurier als direkte Vorfahren von Schlangen zu interpretieren.<ref name=":16">{{Literatur |Autor=Alessandro Palci |Titel=On the Origin and Evolution of the Ophidia |Datum=2014 |DOI=10.7939/R3NG4H314 |Online=https://era.library.ualberta.ca/items/08055594-6458-4185-a058-0dfe62841f24 |Abruf=2021-03-02}}</ref> Gegner, die eine Beziehung zu Waranen unterstützten, argumentierten, dass Mosasaurier innerhalb der Teilordnung [[Schleichenartige|Anguimorpha]] platziert werden sollten; entweder als echte Warane innerhalb der Familie Varanidae oder taxonomisch weiter entfernt.<ref name=":15" /> Diese Debatten führten zur Gründung höherer taxonomischer Gruppen, um die Mosasaurier einzuschließen (obwohl sich nicht alle als korrekt herausstellten). Eine davon war die Mosasauria, eine lose definierte Gruppe, die 1880 von [[Othniel Charles Marsh|Marsh]] gegründet wurde. Der Begriff wird bis heute von einigen Wissenschaftlern verwendet und schließt alle Nachkommen des letzten gemeinsamen Vorfahren von ''Mosasaurus'' und einigen anderen Arten (wie ''[[Dolichosaurus]]'', ''[[Coniasaurus]]'' und ''[[Adriosaurus]]'') ein.<ref name=":17">{{Literatur |Autor=Jack L. Conrad |Titel=Phylogeny And Systematics Of Squamata (Reptilia) Based On Morphology |Sammelwerk=Bulletin of the American Museum of Natural History |Band=310 |Datum=2008-06-03 |ISSN=0003-0090 |DOI=10.1206/310.1 |Seiten=1–182 |Online=http://www.bioone.org/doi/abs/10.1206/310.1 |Abruf=2021-03-02}}</ref> Im Jahr 1923 veröffentlichte [[Charles Lewis Camp]] von der [[University of California, Berkeley|University of California in Berkeley]] die ''Klassifikation der Echsen'', in der er durch Überprüfung früherer Theorien und unter Anwendung seiner eigenen anatomischen Beobachtungen vorschlug, dass alle [[Taxon|Taxa]], die enger mit ''Mosasaurus'' als mit ''Dolichosaurus'' verwandt sind, als [[Mosasauroidea]] klassifiziert werden sollten, eine Schwester-Überfamilie der Varanoidea.<ref name=":15" /><ref>Charles Lewis Camp (1923). "Classification of the Lizards". ''Bulletin of the American Museum of Natural History''. '''48''' (11): 289–481. [[Handle-System|hdl]]:[https://hdl.handle.net/2246%2F898 2246/898].</ref> Camps Einteilung wurde für ungefähr 70 Jahre überwiegend akzeptiert, wobei fast alle nachfolgenden Studien eine Verwandtschaft zu Waranen unterstützten. Viele Studien ordneten die Mosasaurier dabei jedoch weiterhin innerhalb der Varanoidea ein.<ref name=":15" />

Die Debatte wurde mit der Veröffentlichung einer [[Kladistik|kladistischen]] Studie des Paläontologen Michael Lee von der [[Universität Sydney]] aus dem Jahr 1997 wiederbelebt, in der er die Mosasauroidea als Schwestertaxon der Schlangenunterordnung [[Schlangen|Serpentes]] einordnete.<ref name=":15" /><ref name=":18">{{Literatur |Autor=Michael S. Y. Lee |Titel=The phylogeny of varanoid lizards and the affinities of snakes |Sammelwerk=Philosophical Transactions of the Royal Society of London. Series B: Biological Sciences |Band=352 |Nummer=1349 |Datum=1997-01-29 |ISSN=0962-8436 |DOI=10.1098/rstb.1997.0005 |PMC=1691912 |Seiten=53–91 |Online=https://royalsocietypublishing.org/doi/10.1098/rstb.1997.0005 |Abruf=2021-03-02}}</ref> Es handelte sich um die erste moderne [[Phylogenetik|phylogenetische]] Studie, in der die Verwandtschaftsverhältnisse zwischen Mosasauriern und Schlangen speziell untersucht wurden. Lee definierte außerdem die nicht mehr bestehende Gruppe [[Pythonomorpha]] neu, um die Mosasauroidea und Serpentes darin zu vereinen.<ref name=":18" /> Mehrere nachfolgende Studien, die von Wissenschaftlern wie Lee, Caldwell und Alessandro Palci von der [[Universität Modena und Reggio Emilia]] durchgeführt wurden, konkretisierten diese Hypothese. In einigen Studien wurde die Mosasauria-Klade verwendet, um Mosasaurier darzustellen;<ref name=":15" /><ref name=":16" /> hierbei bestand jedoch noch wenig Konsens. Zum Beispiel stellte eine groß angelegte phylogenetische Studie des Paläontologen Jack Conrad vom [[American Museum of Natural History]] aus dem Jahr 2008 die Mosasauria-Klade in einer [[Polytomie]] oder unkonkreten Schwesterbeziehung mit Waranen und [[Krustenechsen]] wieder her;<ref name=":17" /> und eine Studie von 2012 unter der Leitung von [[Jacques Gauthier]] von der [[Yale University]] stellte die Mosasauria als [[Schwestergruppe]] sowohl den Waranen, als auch den Schlangen gegenüber.<ref>{{Literatur |Autor=Jacques A. Gauthier, Maureen Kearney, Jessica Anderson Maisano, Olivier Rieppel, Adam D.B. Behlke |Titel=Assembling the Squamate Tree of Life: Perspectives from the Phenotype and the Fossil Record |Sammelwerk=Bulletin of the Peabody Museum of Natural History |Band=53 |Nummer=1 |Datum=2012-04 |ISSN=0079-032X |DOI=10.3374/014.053.0101 |Seiten=3–308 |Online=http://www.bioone.org/doi/abs/10.3374/014.053.0101 |Abruf=2021-03-02}}</ref>

Mit dem Aufkommen der [[Molekulargenetik]] in den 2010er Jahren plädierten einige Wissenschaftler für die Kombination molekularer und [[Morphologie (Biologie)|morphologischer]] Daten, um die Beziehungen zwischen Mosasauriern und lebenden Schuppenkriechtieren zu untersuchen.<ref name=":19">{{Literatur |Autor=John J. Wiens, Caitlin A. Kuczynski, Ted Townsend, Tod W. Reeder, Daniel G. Mulcahy |Titel=Combining Phylogenomics and Fossils in Higher-Level Squamate Reptile Phylogeny: Molecular Data Change the Placement of Fossil Taxa |Sammelwerk=Systematic Biology |Band=59 |Nummer=6 |Datum=2010-12-01 |ISSN=1076-836X |DOI=10.1093/sysbio/syq048 |Seiten=674–688 |Online=https://academic.oup.com/sysbio/article/59/6/674/1710706 |Abruf=2021-03-02}}</ref><ref name=":20">{{Literatur |Autor=Tod W. Reeder, Ted M. Townsend, Daniel G. Mulcahy, Brice P. Noonan, Perry L. Wood |Titel=Integrated Analyses Resolve Conflicts over Squamate Reptile Phylogeny and Reveal Unexpected Placements for Fossil Taxa |Sammelwerk=PLOS ONE |Band=10 |Nummer=3 |Datum=2015-03-24 |ISSN=1932-6203 |DOI=10.1371/journal.pone.0118199 |PMC=4372529 |PMID=25803280 |Seiten=e0118199 |Online=https://dx.plos.org/10.1371/journal.pone.0118199 |Abruf=2021-03-02}}</ref> Lee (2009) veröffentlichte eine frühe Studie, die auf [[Zellkern|nuklearer]] und [[Mitochondriale DNA|mitochondrialer DNA]] lebender Schuppenkriechtiere und morphologischen Daten von Mosasauriern basierte und die Mosasaurier erneut als [[Stammgruppe]] der Schlangen darstellte<ref>{{Literatur |Autor=M. S. Y. Lee |Titel=Hidden support from unpromising data sets strongly unites snakes with anguimorph ‘lizards’ |Sammelwerk=Journal of Evolutionary Biology |Band=22 |Nummer=6 |Datum=2009-06 |DOI=10.1111/j.1420-9101.2009.01751.x |Seiten=1308–1316 |Online=http://doi.wiley.com/10.1111/j.1420-9101.2009.01751.x |Abruf=2021-03-02}}</ref> (was einige spätere Autoren als Einordnung der Schlangen innerhalb der Mosasaurier-Klade interpretierten). Eine 2010 von John Weins und mehreren Autoren der [[Stony Brook University]] durchgeführte Studie versuchte, Lee (2009) unter Verwendung eines größeren Datensatzes zu replizieren, lieferte jedoch Ergebnisse, die die Mosasauria als Schwesterklade der Warane bestätigten.<ref name=":19" />

Die Diskrepanzen der Ergebnisse sind auf das hohe Maß [[Konvergente Evolution|konvergenter Evolution]] bei Schuppenkriechtieren zurückzuführen, die viel Raum für die Interpretation molekularer und morphologischer Daten schafft und Widersprüche erzeugt. Aus diesem Grund argumentierten einige Wissenschaftler, dass eine molekulare Perspektive vollständig aufgegeben werden sollte.<ref name=":20" /><ref>{{Literatur |Autor=N. B. Ananjeva |Titel=Current State of the Problems in the Phylogeny of Squamate Reptiles (Squamata, Reptilia) |Sammelwerk=Biology Bulletin Reviews |Band=9 |Nummer=2 |Datum=2019-03-01 |ISSN=2079-0872 |DOI=10.1134/S2079086419020026 |Seiten=119–128 |Online= |Abruf=}}</ref> Dennoch versuchten Wissenschaftler, diese Schwierigkeiten zu klären. Ein Ansatz bot eine 2015 von Todd Reeder und mehreren Autoren von der [[San Diego State University]] durchgeführten Studie: Sie integrierte morphologische, molekulare und paläontologische Daten eng in einen großen Datensatz, um frühere Konflikte zu überwinden. Dies ergab eine neue morphologische Übereinstimmung mit molekularen Ergebnissen, die die Mosasauria als Schwesterklade der Serpentes bestätigten.<ref name=":20" /> Ein anderer Ansatz wurde von dem Biologen R. Alexander Pyron von der [[George Washington University]] in einer Studie aus dem Jahr 2016 entwickelt; diese verwendete einen asymmetrischer Ansatz zur Interpretation einiger problematischer morphologischer Datensätze neben molekularen Daten, wodurch die Mosasauria ebenfalls als Schwesterklade der Serpentes bestätigt wurden.<ref>{{Literatur |Autor=R. Alexander Pyron |Titel=Novel Approaches for Phylogenetic Inference from Morphological Data and Total-Evidence Dating in Squamate Reptiles (Lizards, Snakes, and Amphisbaenians) |Sammelwerk=Systematic Biology |Datum=2016-08-11 |ISSN=1063-5157 |DOI=10.1093/sysbio/syw068 |Seiten=syw068 |Online=https://academic.oup.com/sysbio/article/doi/10.1093/sysbio/syw068/2670090/Novel-Approaches-for-Phylogenetic-Inference-from |Abruf=2021-03-02}}</ref>


== Quellen ==
== Quellen ==

Version vom 2. März 2021, 02:40 Uhr


Mosasaurus

Skelettrekonstruktion von Mosasaurus hoffmannii

Zeitliches Auftreten
Oberkreide (Campanium bis Maastrichtium)
Fehler. Bitte {{Erdzeitalter/Beginn|fmt=1|{{{1|}}}}} verwenden! bis Fehler. Bitte {{Erdzeitalter/Ende|fmt=1|{{{1|}}}}} verwenden! Mio. Jahre
Fundorte
Systematik
Sauropsida
Schuppenkriechtiere (Squamata)
Mosasauroidea
Mosasaurier (Mosasauridae)
Mosasaurinae
Mosasaurus
Wissenschaftlicher Name
Mosasaurus
Conybeare, 1822

Mosasaurus („Echse von der Maas“) ist die Typusgattung der Mosasaurier (Mosasauridae), einer ausgestorbenen Familie großer Meeresreptilien aus der Zeit der Oberkreide. Die Gattung war namensgebend für die Mosasauridae, Schuppenkriechtiere, die hochgradig an eine aquatische Lebensweise angepasst waren. Mosasaurus war einer der letzten, am weitesten entwickelten und größten Mosasaurier.

Bei den Schädeln, die in den späten Jahren des 18. Jahrhunderts in einem Kreidesteinbruch in der Nähe der niederländischen Stadt Maastricht gefunden wurden, handelte es sich um die frühesten der Wissenschaft bekannten Fossilien. Ursprünglich wurde angenommen, dass sie die Knochen von Krokodilen oder Walen waren.

Das erste Fossil, der Schädel des Holotypus (NMHN AC. 9648), wurde etwa 1770 von niederländischen Bergleuten in der Nähe von Maastricht gefunden. Nach dem Einmarsch französischer Truppen wurde der Schädel 1794 als Kriegsbeute nach Paris gebracht und erlangte mit dem Spitznamen „großes Tier von Maastricht“ Bekanntheit. Im Jahr 1808 kam der Naturforscher Georges Cuvier zu dem Schluss, dass es sich um eine riesige Meereseidechse handelt, die Ähnlichkeiten zu Waranen aufweist, sich aber ansonsten von allen heute bekannten Tieren unterscheidet. Diese Auffassung war zu dieser Zeit revolutionär und trug dazu bei, die sich damals entwickelnden Vorstellungen des Aussterbens von Lebewesen zu unterstützen. Mosasaurus war somit das erste Reptil, bei dem anerkannt wurde, dass es eine nicht mehr existierende Art aus einer Vorwelt war. Zuvor hielt man Fossilien für Überreste rezenter (oder vielmehr unveränderlicher) Arten. Cuvier gab dem neuen Tier jedoch keinen wissenschaftlichen Namen; dies tat der britische Paläontologe William Daniel Conybeare im Jahr 1822.[1] Er nannte es Mosasaurus in Bezug auf den Fossilfund in der Nähe der Maas. Die Verwandtschaftsverhältnisse zwischen Mosasaurus und modernen Reptilien sind umstritten und die Frage, ob seine nächsten lebenden Verwandten Warane oder Schlangen sind, ist nach wie vor Bestandteil des wissenschaftlichen Diskurses.

Sein je nach Art breiterer oder schmalerer Schädel war mit robusten Kiefern mit großen Zähnen und starken Muskeln ausgestattet, die einen starken Biss ermöglichten. Seine vier Extremitäten waren zu robusten Paddeln geformt, um das Tier unter Wasser zu steuern. Sein Schwanz war lang und endete in einer paddelartigen Flosse, der nach unten gebogen war. Mosasaurus war ein Prädator, der einen schlechten Geruchssinn, dafür aber ein hervorragendes Sehvermögen hatte; außerdem eine hohe Stoffwechselrate, die darauf hindeutet, dass er endotherm (warmblütig) war, womit die Mosasaurier unter den Schuppenkriechtieren eine Ausnahme bilden würden. Die Klassifizierung von Mosasaurus war aufgrund einer unklaren Diagnose des Typusexemplars historisch problematisch. Infolgedessen wurden in der Vergangenheit über fünfzig verschiedene Arten der Gattung zugeordnet. Eine erneute Diagnose des Typusexemplars im Jahr 2017 trug zur Lösung des Taxonomieproblems bei und bestätigte, dass mindestens fünf Arten zur Gattung gehören. Weitere fünf Arten, die noch nominell in Mosasaurus klassifiziert sind, sollen in einer künftigen Studie erneut untersucht werden. Jede Art zeichnet sich durch einzigartige anatomische Merkmale aus, vom robust gebauten M. hoffmannii bis zum schlanken und schlangenförmigen M. lemonnieri.

Lebendrekonstruktion von M. hoffmannii

Die Typusart und gleichzeitig größte Art der Gattung, M. hoffmannii, erreichte wahrscheinlich knapp 18 Meter Gesamtlänge. Gideon Mantell benannte 1829 die Art nach dem vermeintlich an der Bergung des Schädels beteiligten Militärchirurgen Johann Leonard Hoffmann.[2]

Fossile Beweise deuten darauf hin, dass Mosasaurus in einem Großteil des Atlantischen Ozeans und der angrenzenden Gewässer verbreitet war. Mosasaurus-Fossilien wurden in Nordamerika, Südamerika, Europa, Afrika, Westasien und der Antarktis gefunden. Diese Verbreitung umfasste ein breites Spektrum ozeanischer Klimazonen, einschließlich tropischer, subtropischer, gemäßigter und subpolarer Klimazonen. Mosasaurus war ein häufiges großes Raubtier in diesen Ozeanen und eine dominante Gattung, die an der Spitze der Nahrungskette stand. Wissenschaftler glauben, dass er praktisch jedes Tier erbeutete; in seinem Beutespektrum befanden sich Fische, Haie, Kopffüßer, Vögel und anderen Meeresreptilien wie Meeresschildkröten und andere Mosasaurier. Vermutlich jagte er bevorzugt im offenen Wasser nahe der Oberfläche. Aus ökologischer Sicht hatte Mosasaurus wahrscheinlich einen tiefgreifenden Einfluss auf die Struktur mariner Ökosysteme. Die Verbreitung an einigen Orten wie dem Western Interior Seaway in Nordamerika veränderte die Fauna stark. Obwohl Mosasaurus mit anderen großen räuberischen Mosasauriern wie Prognathodon und Tylosaurus, die sich von ähnlichen Beutetieren ernährten, in Konkurrenz stand, konnten die Gattungen durch Nischendifferenzierung in denselben Ökosystemen koexistieren. Mehrere Fossilien illustrierten Angriffe auf Mosasaurus-Individuen durch Tylosaurus und durch Artgenossen. Vermutlich fanden Rangkämpfe in Form von Bissen statt, wie sie heute bei Krokodilen zu beobachten sind.

Forschungsgeschichte

Erste Entdeckungen

TM 7424, das erste bekannte Exemplar von M. hoffmannii

Die ersten der Wissenschaft bekannten Überreste des Mosasaurus sind Fragmente eines Schädels, die 1764 in einem unterirdischen Kreidesteinbruch unter dem Sint Pietersberg, einem Hügel in der Nähe von Maastricht in der Niederlande, entdeckt wurden. Das Fossil wurde 1766 von Leutnant Jean Baptiste Drouin gesammelt und 1784 vom Museumsdirektor Martinus van Marum für das Teylers Museum in Haarlem beschafft. Im Jahr 1790 veröffentlichte van Marum eine Beschreibung des Fossils, in der er es als Pisces cetacei klassifizierte.[3] Seiner Ansicht nach handelte es sich um eine Art „großer atmender Fische“ (also einen Wal). Dieser Schädel befindet sich bis heute in den Sammlungen des Museums und ist als TM 7424 katalogisiert.[4]

Um 1780 wurde im selben Steinbruch ein zweiter, vollständigerer Schädel entdeckt. Ein pensionierter niederländischer Militärchirurg namens Johann Leonard Hoffmann interessierte sich sehr für dieses Exemplar und korrespondierte darüber mit dem bekannten Biologen Petrus Camper. Hoffmann, der um 1770 verschiedene Mosasaurierknochen gesammelt hatte, vermutete, dass das Tier ein Krokodil war.[5] Camper kam dagegen 1786 zu dem Schluss, dass es sich bei den Überresten um eine „unbekannte Zahnwalart“ handelte und veröffentlichte seine Studien des Fossils in der Philosophical Transactions of the Royal Society,[6] die zu dieser Zeit die international renommierteste wissenschaftliche Zeitschrift war. So erlangte auch des zweite Fossil internationale Bekanntheit.[7] Während dieser Zeit befand es sich im Besitz des Kanonikers Theodorus Joannes Godding, dem der Teil des Landes gehörte, in dem es entdeckt wurde. Godding war von der Schönheit des Fossils beeindruckt, ergriff alle Maßnahmen, um es zu erhalten, und stellte es schließlich in einem Grotte hinter seinem Haus aus.[5]

MNHN AC 9648, der zweite Schädel und Holotyp von M. hoffmannii, der als „großes Tier von Maastricht“ bezeichnet wurde.

Maastricht, eine zu dieser Zeit wichtige österreichische Festungsstadt, wurde während der Koalitionskriege im November 1794 von den französischen Truppen unter der Führung von General Jean-Baptiste Kléber erobert. Vier Tage später wurde das Fossil aufgrund seines internationalen wissenschaftlichen Wertes[7] von dem Politoffizier Augustin-Lucie de Frécine im Auftrag Klébers[8] aus Goddings Besitz entwendet. Nach einem Bericht von Goddings Nichte und Erbin Rosa gab Frécine zunächst vor, an der Untersuchung der berühmten Überreste interessiert zu sein, und arrangierte mit Godding per Brief einen Besuch in seiner Hütte. Frécine schickte sechs bewaffnete Soldaten, um das Fossil unter dem Vorwand, er sei krank und wollte es bei sich zu Hause studieren, gewaltsam zu beschlagnahmen.[5][7] Der Nationalkonvent verfügte, dass das Exemplar zum Muséum national d’histoire naturelle transportiert werden sollte. Bei dem Transport gingen verschiedene Teile des Schädels verloren. In einem Reklamationsantrag von 1816 behauptete Rosa, noch zwei der fehlenden Seitenteile des Schädels zu besitzen. Das Schicksal dieser Knochen ist jedoch unbekannt, und Historiker glauben, dass Rosa sie in der Hoffnung erwähnte, über eine Entschädigung verhandeln zu können. Die französische Regierung weigerte sich, das Fossil zurückzugeben, entschädigte aber Godding 1827 durch Befreiung von Kriegssteuern.[7]

Es gibt eine populäre Legende über Goddings Besitz des Exemplars und der anschließenden Aneignung durch die Franzosen, die auf der Publikation des Geologen Barthélemy Faujas de Saint-Fond (einer der vier Männer, die im Januar 1795 nach Maastricht kamen, um Objekte von wissenschaftlichem Wert für Frankreich zu beschlagnahmen) Histoire naturelle de la montagne de Saint-Pierre de Maestricht von 1798 basiert. Laut Faujas war Hoffmann der ursprüngliche Besitzer des Exemplars, bei deren Ausgrabung er geholfen und das er anschließend gekauft hatte. Als die Nachricht von dieser Entdeckung Godding erreichte, den Faujas als böswillig darstellte, habe er versucht, das äußerst wertvolle Exemplar in seinen Besitz zu überführen, und eine Klage gegen Hoffmann eingereicht, in der er seine Rechte als Landbesitzer geltend machte. Aufgrund der Position von Godding als Kanoniker habe er die Gerichte beeinflussen und Hoffmann zwingen können, das Fossil abzugeben und die Kosten der Klage zu tragen. Als Maastricht von den Franzosen angegriffen wurde, sei den Artilleristen bewusst gewesen, dass das berühmte Fossil in Goddings Haus aufbewahrt wurde. Dieser wusste nicht, dass sein Haus verschont bleiben würde und habe das Exemplar an einem geheimen Ort in der Stadt versteckt. Nach der Eroberung der Stadt habe Faujas persönlich bei der Sicherung des Fossils geholfen, während de Frécine denjenigen, der den Schädel unbeschädigt ausfindig machen und ihm bringen würde, mit 600 Flaschen guten Weins belohnen sollte. Am nächsten Tag brachten zwölf Grenadiere das Fossil sicher zu de Frécine, nachdem sie Godding die volle Entschädigung zugesichert und ihre versprochene Belohnung bekommen hatten.

Historiker haben wenig Beweise gefunden, um Faujas´ Bericht zu stützen. Zum Beispiel gibt es keine Beweise dafür, dass Hoffmann das Fossil jemals besaß, dass es ein Gerichtsverfahren zwischen ihm und Godding gab oder dass Faujas direkt an der Überführung des Fossils beteiligt war. Zuverlässigere, aber widersprüchliche Berichte deuten darauf hin, dass seine Erzählung größtenteils erfunden wurde: Faujas war als berüchtigter Lügner bekannt, der seine Geschichten gewöhnlich verschönerte, und es gilt als wahrscheinlich, dass er die Geschichte fälschte, um Hinweise auf Plünderungen eines privaten Eigentümers zu verschleiern (was ein Kriegsverbrechen war), um französische Propaganda zu betreiben oder einfach um andere zu beeindrucken. Trotzdem hat die Legende, die durch Faujas´ beschönigende Darstellung geschaffen wurde, dazu beigetragen, dem zweiten Schädel zu kultureller Bekanntheit zu verschaffen.[7][5]

Im Gegensatz zu dem bekannten Fossil wurde der erste Schädel TM 7424 nach der Eroberung von Maastricht nicht von den Franzosen beschlagnahmt. Während der Mission Faujas´ und seiner drei Kollegen im Jahr 1795 wurden die Sammlungen des Teylers Museum, obwohl sie berühmt waren, vor Beschlagnahme geschützt. Es ist möglich, dass die vier Männer angewiesen wurden, alle Privatsammlungen als „unverletzlich“ zu schützen (es sei denn, ihr Besitzer war zum Rebellen erklärt worden) und es ihnen so verboten wurde, die Sammlungen des Teylers Museum zu beschlagnahmen. Der Schutz könnte jedoch auch auf van Marums Bekanntschaft mit Faujas und André Thouin (ein weiterer der vier Männer) zurückzuführen sein.[5]

Identifikation und Namensgebung

Bevor der zweite Schädel Ende 1794 von den Franzosen beschlagnahmt wurde, waren die beiden populärsten Hypothesen zu seiner Zugehörigkeit, dass er die Überreste eines Krokodils oder eines Wals darstellte, wie es zuerst Hoffmann bzw. Camper vertreten hatten. Hoffmanns Identifikation als Krokodil wurde damals von vielen als die naheliegendste Lösung angesehen, da zu dieser Zeit Vorstellungen von Evolution und Aussterben nicht verbreitet waren und der Schädel oberflächlich dem eines Krokodils ähnelte.[9] Unter den verschiedenen Mosasaurierknochen, die Hoffmann 1770 sammelte, befanden sich außerdem Phalanxknochen, die er zusammensetzte und auf eine Gipsmatrix legte. In seiner Zusammensetzung wurde die Sicht auf einige der Phalangen derart verzerrt, dass es so schien, als wenn Krallen vorhanden wären, was für Hoffmann wahrscheinlich einen weiteren Beweis für ein Krokodil darstellte. Camper stützte seine Argumentation für einen Wal auf vier Punkte. Zunächst bemerkte er, dass die Kieferknochen des Schädels eine glatte Textur hatten und die Zähne an der Wurzel fest waren, ähnlich wie bei Pottwalen und unähnlich zu den porösen Kieferknochen und hohlen Zähnen eines Krokodils.[10] Zweitens erhielt Camper Mosasaurier-Phalangen, von denen er feststellte, dass sie sich signifikant von denen von Krokodilen unterscheiden. Er vermutete, dass sie zu paddelförmigen Gliedmaßen gehörten, was ebenso zu Walen passte. Drittens bemerkte Camper Zähne am Pterygoidknochen des Schädels, ein Merkmal, das nicht bei Krokodilen, aber bei vielen Fischarten vorhanden ist (Camper glaubte auch, dass die rudimentären Zähne im Oberkiefer des Pottwals, von dem er fälschlicherweise glaubte, dass er eine Fischart wäre, Pterygoidzähnen entsprächen). Schließlich wies Camper darauf hin, dass alle anderen Fossilien aus Maastricht marin sind, was darauf hinweist, dass auch der Schädel zu einem marinen Tier gehört. Da er fälschlicherweise glaubte, Krokodile seien ausschließlich Süßwassertiere, kam Camper durch das Ausschlussverfahren zu dem Ergebnis, dass das Tier nur ein Wal sein könne.[9]

Der zweite Schädel kam 1795 im Muséum national d’histoire naturelle an, wo er heute als MNHN AC 9648 katalogisiert ist. Er erregte die Aufmerksamkeit weiterer Wissenschaftler und wurde als Le Grand Animal Fossile des Carrières de Maestricht[5] („großes Tier von Maastricht“)[4] bezeichnet. Einer der Wissenschaftler war Campers Sohn Adriaan Gilles Camper. Obwohl Camper Jr. ursprünglich beabsichtigt hatte, die Ergebnisse seines Vaters zu verteidigen, war er stattdessen der Erste, der begriff, dass sowohl die Krokodil-, als auch die Walhypothese falsch waren. Basierend auf seinen eigenen Untersuchungen von MNHN AC 9648 und den Fossilien seines Vaters stellte er fest, dass ihre anatomischen Merkmale eher Schuppenkriechtieren und Waranen ähnelte. Er kam zu dem Schluss, dass das Tier eine große Meereseidechse mit Ähnlichkeiten zu Waranen gewesen sein muss. 1799 diskutierte Camper Jr. seine Schlussfolgerungen mit dem französischen Naturforscher Georges Cuvier. Cuvier untersuchte MNHN AC 9648 und bestätigte 1808 die Identifizierung als große Meereseidechse, bemerkte jedoch, dass es sich um eine ausgestorbene Art handelt, die sich von allen rezenten Arten unterscheidet.[9] Das Fossil wurde so Teil von Cuviers ersten Spekulationen über die Möglichkeit des Aussterbens von Arten, die den Weg für seine Theorie des Katastrophismus oder der „aufeinanderfolgender Schöpfungen“, einer der Vorgänger der Evolutionstheorie, ebneten. Zuvor wurden fast alle Fossilien, auch wenn anerkannt wurde, dass sie von vergangenen Lebensformen stammten, als Formen interpretiert, die denen der heutigen Zeit ähnlich waren. Cuviers Vorstellung, dass das Maastricht-Exemplar eine gigantische Version eines modernen Tieres ohne größere Ähnlichkeit zu irgendeiner heutigen Spezies, mutete zu dieser Zeit seltsam an, sogar für ihn selbst.[11] Die Idee war für Cuvier so bedeutsam, dass er 1812 verkündete: „In erster Linie erscheint die genaue Bestimmung des berühmten Tieres aus Maastricht uns für die Theorie der zoologischen Gesetze ebenso wichtig wie für die Geschichte der Welt.“[5] Cuvier begründete seine Konzepte damit, dass er seinen Techniken auf dem sich damals entwickelnden Gebiet der vergleichenden Anatomie vertraute, mit denen er bereits riesige ausgestorbene Vertreter anderer moderner Gruppen identifiziert hatte.[11]

M. hoffmannii, die größte Art der Gattung

Obwohl die binäre Nomenklatur zu dieser Zeit gut etabliert war, gab Cuvier der neuen Art nie einen wissenschaftlichen Namen und für eine Weile wurde es weiterhin als „großes Tier von Maastricht“ bezeichnet. 1822 veröffentlichte der englische Arzt James Parkinson eine Konversation, die einen Vorschlag von Llandaff-Dekan William Daniel Conybeare enthielt, die Art als vorübergehend als Mosasaurus zu bezeichnen, bis Cuvier sich für einen dauerhaften wissenschaftlichen Namen entschied. Cuvier übernahm selbst Mosasaurus als Gattungsnamen der Art und legte MNHN AC 9648 als Holotyp fest. Im Jahr 1829 fügte der englische Paläontologe Gideon Mantell das Epitheton hoffmannii zu Ehren Hoffmanns hinzu.[4][12]

Frühe amerikanische Entdeckungen

Die erste mögliche Entdeckung eines Mosasauriers in Nordamerika war ein Teilskelett, das 1804 bei der Lewis-und-Clark-Expedition gefunden und als Fisch beschrieben wurde. Es wurde von Sergeant Patrick Gass in schwarzen Schwefelgestein entlang des Missouri River gefunden[13][14] und bestand aus einigen Zähnen und Teilen einer Wirbelsäule mit einer Länge von 14 m. Vier Mitglieder der Expedition hielten die Entdeckung schriftlich fest, darunter Clark und Gass.[14] Einige Teile des Fossils wurden gesammelt und nach Washington, D.C. zurückgeschickt, wo sie verloren gingen, bevor sie ordnungsgemäß dokumentiert werden konnten. In seinem 2003 veröffentlichten Buch Sea Dragons: Predators of Prehistoric Seas stellt Richard Ellis die Vermutung auf, dass die Überreste zu M. missouriensis gehört haben könnten[15]; andere Spekulationen gehen jedoch eher von einem Vertreter der Tylosaurinae oder einem Plesiosaurier aus.[16]

Die früheste Beschreibung nordamerikanischer Fossilien, die sicher der Gattung Mosasaurus zugeordnet sind, wurde 1818 vom Naturforscher Samuel L. Mitchill vom Lyceum of Natural History vorgenommen. Die beschriebenen Fossilien bestanden aus einem Zahn- und Kieferfragment, die aus einer Mergelgrube aus Monmouth County geborgen wurden. Mitchill beschrieb sie als „Eidechsenmonster oder Saurier, das dem berühmten fossilen Reptil von Maestricht ähnelt“, was darauf hindeutet, dass die Fossilien Ähnlichkeit zu dem damals unbenannten M. hoffmannii-Holotypus aus Maastricht aufwiesen. Cuvier war sich dieser Entdeckung bewusst, bezweifelte jedoch, dass sie zur Gattung Mosasaurus gehörte. Zusätzlich erklärte ein anderer ausländischer Naturforscher, dessen Name nicht bekannt ist, „vorbehaltlos“, dass die Fossilien stattdessen einer Art von Ichthyosaurus gehörten. 1830 untersuchte der Zoologe James Ellsworth De Kay das Exemplar erneut. Er kam zu dem Schluss, dass es sich tatsächlich um eine Mosasaurus-Art handelt, die erheblich größer als der M. hoffmannii-Holotyp ist, was sie zum größten fossilen Reptil macht, das jemals auf dem Kontinent entdeckt wurde.[17] Ob die beiden zur selben Art gehörten oder nicht, blieb unbekannt, bis der deutsche Paläontologe Heinrich Georg Bronn das Exemplar 1839 als neue Art bezeichnete und es zu Ehren von De Kays Bemühungen Mosasaurus dekayi nannte.[18] Das Exemplar ging jedoch verloren und das Taxon wurde 2005 zum Nomen Dubium erklärt.[12][19] Es existieren einige weitere Fossilien aus New Jersey, die ehemals als M. dekayi bezeichnet wurden, heute aber M. hoffmannii zugeordnet werden.[12][20]

Holotyp von M. missouriensis mit der am Goldfuss-Schädel befestigten Harlan-Schnauze (MNHN 958) (RFWUIP 1327); gezeichnet 1834 bzw. 1845

Das Typusexemplar der zweiten Art, M. missouriensis, wurde erstmals in den frühen 1830er Jahren entdeckt und von einem Pelzfänger in der Nähe der Big Bend Talsperre des Missouri Rivers geborgen. Dieses Exemplar, das aus einigen Wirbeln und einem teilweise vollständigen Schädel bestand, dem insbesondere das Ende seiner Schnauze fehlte, wurde nach St. Louis zurückgebracht, wo es von einem Indianeragenten als Heimdekoration gekauft wurde. Dieses Fossil erregte die Aufmerksamkeit des deutschen Prinzen Maximilian zu Wied-Neuwied während seiner Reisen von 1832 bis 1834 in den amerikanischen Westen. Er kaufte das Fossil und schickte es anschließend für Forschungszwecke an den Naturforscher Georg August Goldfuss von der Universität Bonn. Es wurde in den Sammlungen der Universität unter der Katalognummer RFWUIP 1327 aufbewahrt. Goldfuss untersuchte das Exemplar sorgfältig und kam zu dem Ergebnis, dass es sich um eine neue Mosasaurus-Art handelte, die er 1845 zu Ehren Maximilians M. maximiliani nannte.[13] Der amerikanische Naturforscher Richard Harlan veröffentlichte jedoch bereits 1834 eine Beschreibung einer partiellen fossilen Schnauze, die er von einem Händler aus den Rocky Mountains erhalten hatte, der sie an derselben Stelle wie das Goldfuss-Exemplar gefunden hatte. Basierend auf Merkmalen der Zähne und Positionierung der Nasenlöcher glaubte Harlan, das Fossil gehöre zu einer Ichthyosaurus-Art und nannte es Ichthyosaurus missouriensis.[21] 1839 revidierte er diese Ansicht, nachdem er Unterschiede im Zwischenkieferbein und in den Poren zwischen der Schnauze des Fossils und denen eines Ichthyosaurus festgestellt hatte. Stattdessen glaubte er, dass das Fossil zu einer neuen Froschgattung oder einer salamanderähnlichen Amphibie gehörte und ordnete es der Gattung Bactrachiosaurus zu.[22] Aus unbekannten Gründen dokumentierte eine Veröffentlichung von Harlans Ergebnissen der Société géologique de France das Fossil im selben Jahr als Bactrachotherium.[23] Spätere Autoren vermuteten, dass die Schnauze weder zu einem Ichthyosaurier, noch einer Amphibie, sondern zu einem Mosasaurier gehörte, und dass es die Schnauze gewesen sein könnte, die im Goldfuss-Schädel fehlte. Dies konnte zu diesem Zeitpunkt nicht bestätigt werden, da die fossile Schnauze verloren ging. Im Jahr 2004 wurde sie in den Sammlungen des Nationalen Naturkundemuseums in Frankreich unter der Katalognummer MNHN 958 wiederentdeckt. Harlan hatte das Fossil dem Museum gespendet hatte, wo es bis zu seiner Wiederentdeckung in Vergessenheit geraten war. Die Schnauze passte perfekt zum Goldfuss-Schädel, was bestätigte, dass es sich um die fehlende Schnauze des Exemplars handelte. Aufgrund seiner früheren Beschreibung hatte Harlans Taxon Vorrang und das Fossil bekam den endgültigen wissenschaftlichen Namen M. missouriensis.[13]

Frühe Darstellungen

Wissenschaftler stellten sich Mosasaurus zunächst als amphibisches Meeresreptil mit Schwimmhäuten und für die Bewegung an Land angepassten Beinen vor, das sich sowohl terrestrisch als auch aquatisch fortbewegen konnte. Gelehrte wie Goldfuss argumentierten, dass die damals bekannten Skelettmerkmale wie die elastische Wirbelsäule darauf hinwiesen, dass Mosasaurus laufen konnte, weil für ein Leben ausschließlich im Wasser eine steife Wirbelsäule wegen ihrer höheren Stabilität besser geeignet wäre. Der deutsche Zoologe Hermann Schlegel bewies 1854 durch anatomische Forschungsergebnisse als erster, dass Mosasaurus Flossen anstelle von Füßen hatte. Bei der Untersuchung der fossilen Phalangen, einschließlich der von Hoffmann gesammelten, mit Gips umhüllten Proben (die Schlegel aus dem Gips extrahieren musste, wobei er feststellte, dass dies frühere Wissenschaftler irregeführt haben könnte), stellte er fest, dass sie breit und flach waren und keinen Hinweis auf Muskel- oder Sehnenanhaftung zeigten, was darauf hinweist, dass Mosasaurus nicht laufen konnte, sondern flossenartige Gliedmaßen für einen vollständig aquatischen Lebensstil hatte. Schlegels Hypothese wurde von seinen Zeitgenossen weitgehend ignoriert, wurde jedoch in den 1870er Jahren allgemein akzeptiert, als die amerikanischen Paläontologen Othniel Charles Marsh und Edward Drinker Cope vollständigere Mosasaurierfossilien in Nordamerika entdeckten.[9]

Eine Mosasaurus-Darstellung von 1854 im Crystal Palace Park

Eine der frühesten künstlerischen Rekonstruktionen des Mosasaurus ist eine lebensgroße Betonskulptur, die der naturhistorische Bildhauer Benjamin Waterhouse Hawkins zwischen 1852 und 1854 als Teil der Sammlung von Skulpturen prähistorischer Tiere im Crystal Palace in London, der ehemaligen Ausstellungsfläche der Great Exhibition. Hawkins modellierte Mosasaurus unter der Leitung des englischen Paläontologen Richard Owen, der dessen mögliches Erscheinungsbild hauptsächlich anhand des Holotypschädels rekonstruierte. Angesichts seiner Kenntnis der möglichen Verwandtschaft zwischen Mosasaurus und Waranen stellte Hawkins das prähistorische Tier im Wesentlichen als wasserlebenden Waran dar. Der Kopf war groß und kastenförmig, was in Owens Schätzungen der Maße des Holotypschädels von 0,76 m × 1,5 m begründet war. An der Seite des Schädels waren Nasenlöcher und um die Augen viel Weichgewebe, die Lippen erinnern an Warane. Die Haut erhielt eine robuste, schuppige Textur, ähnlich wie bei größeren Waranen wie dem Komodowaran. Zu den dargestellten Gliedmaßen gehört eine rechte, einzelne Flosse, die die aquatische Natur des Mosasaurus widerspiegelt. Das Modell wurde jedoch absichtlich unvollständig geformt, wobei nur der Kopf, der Rücken und die einzelne Flosse konstruiert wurden. Dies wurde allgemein auf Owens mangelndes klares Wissen über die postkraniale Anatomie des Mosasaurus zurückgeführt. Der Paläontologe und Paläokünstler Mark P. Witton hält dies aber für unwahrscheinlich, da Owen eine vollständige spekulative Rekonstruktion einer Dicynodon-Skulptur, die damals ebenfalls nur durch Schädel bekannt war, anleiten konnte. Stattdessen könnten zeitliche und finanzielle Einschränkungen Hawkins dazu veranlasst haben, Abstriche zu machen und das Mosasaurus-Modell auf eine Weise zu formen, die unvollständig, aber visuell akzeptabel war.[24] Um die fehlenden anatomischen Teile zu verbergen, wurde die Skulptur teilweise in den See getaucht und in der Nähe der Pterodactylus-Modelle auf der anderen Seite der Hauptinsel platziert.[25] Obwohl einige Elemente der Mosasaurus-Skulptur wie die Zähne genau dargestellt wurden, können viele Elemente des Modells selbst für diese Zeit als ungenau angesehen werden. Die Darstellung von Mosasaurus mit kastenförmigem Kopf, seitlich positionierten Nasenlöchern und Flossen widersprach den Studien von Goldfuss (1845), dessen Untersuchungen der Wirbel und des nahezu vollständigen und unverfälschten Schädel von M. missouriensis einen schmaleren Schädel, Nasenlöcher an der Schädeloberseite und amphibische, terrestrische Gliedmaßen implizierten (letzteres ist nach aktuellen Erkenntnissen falsch). Die Unkenntnis dieser Ergebnisse könnte auf eine allgemeine Unkenntnis von Goldfuss 'Studien durch andere zeitgenössische Wissenschaftler zurückzuführen sein.[24]

Spätere Entdeckungen

Außer M. hoffmannii und M. missouriensis (als die bekanntesten und bestuntersuchten Arten der Gattung Mosasaurus) wurden noch weitere Arten der Gattung beschrieben.[26] 1881 beschrieb Cope eine dritte Mosasaurus-Art anhand von Fossilien, die ihm ein Kollege geschickt hatte, der sie in Lagerstätten in der Umgebung von Freehold Township, New Jersey, entdeckte;[27] darunter ein Teil des Unterkiefers, einige Zähne und Wirbel sowie Gliedmaßen. Diese Fossilien befinden sich jetzt unter der Katalognummer AMNH 1380 im American Museum of Natural History.[28] Aufgrund ihres schlanken Körperbaus vermutete Cope, dass die Fossilien eine neue Art von Clidastes darstellten, die er Clidastes conodon nannte.[27] 1966 untersuchten die Paläontologen Donald Baird und Gerard R. Case die Holotyp-Fossilien erneut und stellten fest, dass die Art stattdessen Mosasaurus zuzuordnen war, woraufhin sie sie in Mosasaurus conodon umbenannten.[28] Cope gab keine Etymologie für das Epitheton conodon an.[27] Der Etymologe Ben Creisler gibt als Übersetzung „Kegelzahn“ an, abgeleitet vom altgriechischen κῶνος (kônos, was „Kegel“ bedeutet) und ὀδών (odṓn, was „Zahn“ bedeutet), wahrscheinlich in Bezug auf die für die Art charakteristischen konischen Zähne mit glatter Oberfläche.[29]

Zeichnung von IRSNB 3189, eines mehrerer von Louis Dollo beschriebener M. lemonnieri-Skelette (1892)

Die vierte Art, M. lemonnieri, wurde 1889 von belgischen Paläontologen Louis Dollo beschrieben, basierend auf einem ziemlich vollständigen Schädel, der aus einem Phosphat-Steinbruch geborgen wurde, der im Besitz des Konzerns Solvay war. Der Schädel war eines von vielen Fossilien, die der Ausgrabungsleiter Alfred Lemonnier dem Königlich-Belgischen Institut für Naturwissenschaften gespendet hatte; deshalb nannte Dollo die Art zu seinen Ehren.[30] In den folgenden Jahren führte der Gesteinsabbau dort zu weiteren gut erhaltenen Fossilien der Art, von denen einige in Dollos späteren Veröffentlichungen beschrieben wurden, darunter mehrere Teilskelette, die ausreichten, um fast das gesamte Skelett von M. lemonnieri zu rekonstruieren. Alle bekannten Fossilien der Art befinden sich in den Sammlungen desselben Museums; der Holotyp-Schädel ist als IRSNB R28 katalogisiert.[12][31] Obwohl die Art der Gattung durch die meisten Funde gestützt ist, wurde sie in der wissenschaftlichen Literatur oft ignoriert. Der Paläontologe Theagarten Lingham-Soliar von der Nelson Mandela University schlug zwei Gründe für eine solche Nichtbeachtung vor: Der erste Grund war, dass M. lemonnieri-Fossilien in Belgien und den Niederlanden endemisch waren; diese Gebiete zogen trotz der berühmten Entdeckung des Holotyps von M. hoffmannii im Allgemeinen kaum die Aufmerksamkeit von Mosasaurier-Paläontologen auf sich. Der zweite Grund war, dass M. lemonnieri durch ihre berühmtere und geschichtsträchtige Nachbarart M. hoffmannii in den Schatten gestellt wurde.[31] M. lemonnieri wurde als umstrittenes Taxon betrachtet, und Autoren, die die Art thematisierten, argumentierten teilweise, dass es sich um ein Synonym für andere Arten handeln würde.[32] 1967 argumentierte der Paläontologe Dale Russell von der North Carolina State University, dass Unterschiede zwischen den Fossilien von M. lemonnieri und M. conodon zu gering seien, um eine Trennung auf Artebene zu unterstützen. Gemäß der Prioritätsregel bezeichnete Russell M. lemonnieri als Junior-Synonym für M. conodon.[33] In einer im Jahr 2000 veröffentlichten Studie widerlegte Lingham-Soliar Russells Klassifizierung durch eine umfassende Untersuchung der Proben des Royal Belgian Institute und wies signifikante Unterschiede in der Schädelmorphologie nach. Er erklärte jedoch, dass bessere Studien über M. conodon erforderlich seien, um die Frage der Synonymie zu lösen.[31] Eine solche Studie wurde 2014 in einem Artikel von Takehito Ikejiri von der University of Alabama und Spencer G. Lucas vom New Mexico Museum for Natural History and Science veröffentlicht, bei der der Schädel von M. conodon im Detail untersucht und so die Trennung von M. conodon und M. lemonnieri als unterschiedliche Arten gerechtfertigt wurde.[28] 2004 stellten die Paläontologen Eric Mulder, Dirk Cornelissen und Louis Verding jedoch die Theorie auf, dass M. lemonnieri tatsächlich juvenile Vertreter von M. hoffmannii sein könnten. Gestützt wurde diese These durch die Argumentation, Unterschiede zwischen den beiden Arten seien nur in „Idealfällen“ beobachtbar und könnten durch altersbedingte Faktoren erklärt werden. Dennoch gibt es einige Unterschiede wie beispielsweise Riffelungen an den Zähnen von M. lemonnieri, die darauf hinweisen könnten, dass es sich um unterschiedliche Arten handelt. Für einen schlüssigere Ergebnisse bezüglich der Synonymie sind weitere Studien erforderlich.[34]

Die fünfte Art, M. beaugei, wurde 1952 vom französischen Paläontologen Camille Arambourg beschrieben, im Rahmen eines seit 1934 laufenden Großprojekts, um paläontologische und stratigraphische Daten Marokkos zu untersuchen und Phosphatbergarbeitern wie dem OCP zur Verfügung zu stellen.[35] Die Art wurde anhand von neun einzelnen Zähnen beschrieben, die aus Phosphatdeponien im Ouled-Abdoun-Becken und im Ganntour-Becken in Marokko stammen.[36] Die Art wurde zu Ehren des OCP-Generaldirektors Alfred Beaugé benannt, der Arambourg zur Teilnahme am Forschungsprojekt einlud und bei der Beschaffung lokaler Fossilien half.[35] Die Zähne befinden sich derzeit im Nationalen Naturkundemuseum in Frankreich. Einer der Zähne, der als MNHN PMC 7 katalogisiert ist, wurde als Holotyp bezeichnet. In einer Studie von 2004 untersuchten Paläontologen unter der Leitung von Nathalie Bardet vom selben Museum Arambourgs Zähne erneut und stellten fest, dass nur drei mit Sicherheit M. beaugei zuzuordnen sind. Zwei der anderen Zähne weisen Eigenschaften auf, die möglicherweise innerhalb der Variationsbreite der Art liegen, aber schließlich nicht M. beaugei zugeordnet wurden, während die verbleibenden vier Zähne in keinem Zusammenhang zu der Art stehen und unbestimmt blieben. Die Studie beschrieb auch vollständigere M. beaugei-Fossilien in Form zweier gut erhaltener Schädel, die aus dem Ouled-Abdoun-Becken geborgen wurden.[36]

Beschreibung

Mosasaurus war ein spezialisierter Mosasaurier, der einen vollständig aquatischen Lebensstil entwickelt hat. Er hatte einen stromlinienförmigen Körper, einen länglichen Schwanz, der mit einer abwärts gebogenen Schwanzflosse endete, und zwei Paar paddelförmiger Flossen. Während in der Vergangenheit Mosasaurier als riesige Seeschlangen mit Flossen dargestellt wurden, weiß man jetzt, dass sie in ihrer oberflächlichen Gestalt anderen großen Meereswirbeltieren wie Ichthyosauriern, Thalattosuchia (Crokodylomorpha) und Archaeoeti durch konvergente Evolution ähnlicher waren.[37][38][39]

Größe

Das Pensa-Exemplar, eines der größten bekannten Fossilien des Mosasaurus

Mosasaurus ist eine der größten bekannten Arten der Mosasaurier.[40] Da nur wenige postkraniale Fossilien gefunden wurden, unterliegt seine Länge groben Schätzungen, die auf Hochrechnungen unvollständiger Fossilien beruhen.[12] Die Art ist durch fossile Schädel gut vertreten, weshalb von der Länge des Schädels oder des Unterkiefers ausgehend eine hypothetische Gesamtlänge ermittelt werden kann. Weithin bekannt ist die von Russell (1967) verwendete Berechnung; der schrieb, dass „die gegebene Länge des Kiefers 10% der Körperlänge entspricht“.[33] Unter Anwendung dieses Verhältnisses auf den größten Unterkiefer, der M. hoffmannii zugeschrieben wird (CCMGE 10/2469; auch bekannt als das Pensa-Exemplar mit einer Länge von 1.710 Millimetern), schätzte Grigoriev (2014) eine maximale Länge von 17,1 Metern.[40] Bei der Untersuchung eines kleineren Teils eines Kieferknochenfossils (NHMM 009002) mit einer Größe von 900 Millimetern und einer „zuverlässigen Schätzung von 1600 mm“ vermutete Lingham-Soliar (1995) eine größere maximale Länge von 17,6 Metern unter der Annahme desselben Verhältnisses, das er aber möglicherweise falsch angewendet hatte, indem er die Länge des Unterkiefers mit dessen zehnfacher Länge addierte (also ein Verhältnis von 1:10, anstatt 1:9 wie Russell).[41][33] Der Vergleich mit den Verhältnissen verwandter Mosasaurier-Gattungen legt nahe, auch für M. hoffmannii eine im Verhältnis zur Kopflänge geringere Gesamtlänge anzunehmen. In einer Studie von 2014 gingen Federico Fanti et al. von einer etwa siebenfachen Gesamtlänge von M. hoffmannii aus, nachdem sie ein nahezu vollständiges Skelett von Prognathodon overtoni studiert und verglichen hatten. Demnach besäße ein M. hoffmannii-Exemplar mit einer Schädellänge von 144 Zentimetern eine Körperlänge von guten 11 Metern.[42]

Einzelne Knochen deuten darauf hin, dass einige M. hoffmannii die Länge des Pensa-Fossils überschritten haben könnten. Ein solcher Knochen ist ein Quadratum (NHMM 003.892), das 150 % der durchschnittlichen Größe aufwies; Everhart et al. (2016) berichteten, dass dies auf eine Länge von etwa 18 Metern hochgerechnet werden kann, wobei aber nicht angegeben wurde, ob bei der Berechnung das Verhältnis von Russell verwendet wurde.[43]

M. missouriensis und M. lemonnieri sind kleiner als M. hoffmannii, aber durch vollständigere Fossilien bekannt. Basierend auf Messungen verschiedener belgischer Skelette schätzte Dollo, dass M. lemonnieri ausgewachsen eine Länge von etwa 7 bis 10 Metern erreichte, wobei der Schädel etwa ein Elftel des gesamten Körpers ausmachte.[33][44] Polycn et al. (2014) schätzten M. missouriensis auf 8–9 Meter Länge.[45][46] Street (2016) stellte fest, dass große M. missouriensis typischerweise Schädel von mehr als einem Meter Länge hatten. Bei einem nahezu vollständiges Skelett von M. missouriensis mit einem einen Meter langen Schädel wurde eine Gesamtlänge von 6,5 Metern gemessen.[47] Zuverlässige Größenschätzungen von M. conodon existieren in der wissenschaftlichen Literatur nicht, aber mit einem Schädel von etwa 97,7 Zentimetern Länge wird er als kleiner bis mittelgroßer Vertreter der Gattung angesehen.[28]

Schädel

Schema eines Schädel von Mosasaurus hoffmannii

Der Schädel des Mosasaurus war konisch und verjüngte sich zu einer kurzen und konischen Schnauze, die sich ein wenig über die Prämaxillarzähne hinaus erstreckte. Oberhalb des Zahnfleischrands in beiden Kiefern befand sich parallel zur Kinnlinie ein einreihiges Muster kleiner Gruben, die als Foramina bezeichnet werden und in die die Nervenenden mündeten. Einige Foramina waren auch entlang der Schnauze in einem ähnlichen Muster vorhanden wie bei Schädeln von Clidastes.[41] Bei den meisten Arten war der Oberkiefer robust gebaut, breit und tief, mit Ausnahme von M. conodon, der schlanke Kiefer hatte.[28] Der Prämaxillarstab, der lange Teil des Prämaxillarknochens, der sich hinter den Prämaxillarzähnen erstreckte, war robust und verschmälerte sich nicht zur Mitte hin, wie es für andere Mosasaurier-Gattungen typisch ist.[48] Die äußeren Nasenöffnungen waren mäßig groß und messen bei M. hoffmannii etwa 21–24 % der Schädellänge. Sie befanden sich weiter hinten als bei jedem anderen Mosasaurier (bis auf Goronyosaurus, bei dem sie noch weiter hinten sind) und begannen oberhalb der vierten oder fünften Oberkieferzähne.[41]

Mosasaurus hatte einen dichten Gaumenkomplex, was eine große Stabilität des Schädels gewährleistete; er bestand aus Pterygoidknochen, Gaumenbein und nahegelegenen Knochen anderer Bereiche. Das begrenzte Neurokranium beherbergte ein im Vergleich zu anderen Mosasauriern relativ kleines Gehirn (bei Plioplatecarpus marshi war das Gehirn etwa doppelt so groß wie das von M. hoffmannii, bei halber Körperlänge). Die Räume innerhalb des Neurokraniums, die den Okzipitallappen und das Großhirn umschlossen, waren eng und flach, was darauf hindeutet, dass diese Gehirnteile relativ klein waren. Das Foramen parietale, das mit dem Scheitelauge assoziiert ist, war das kleinste in der Familie der Mosasauridae.[41] Die Luftröhre verlief wahrscheinlich von der Speiseröhre bis unter das hintere Ende des Muskelfortsatzes des Unterkiefers, wo sie sich in kleinere Bronchienpaare aufspaltete, die sich parallel zueinander erstreckten.[49]

Zähne

Nahaufnahme von M. hoffmannii-Zähnen mit sich entwickelndem Ersatzzahn in der Wurzel des rechten unteren Zahns

Die Merkmale der Mosasaurus-Zähne sind je nach Art verschieden. Gemeinsame Merkmale der Gattung sind die Schmelzprismen und die zwei gegenüberliegenden Schneidekanten.[28][36][50][51] Mosasaurus-Zähne sind groß und robust, mit Ausnahme von M. conodon und M. lemonnieri, die schlankere Zähne haben.[28][36] Die Schneidekanten der Zähne können je nach Art gezackt sein: Die Schneidekanten von M. hoffmannii und M. missouriensis waren fein gezackt,[26][48] während die von M. conodon und M. lemonnieri keine Zacken aufwiesen.[34] Die Schneidekanten von M. beaugei waren weder gezackt noch glatt, sondern wiesen winzige Krenulationen auf. Die Anzahl der Prismen und flachen Seiten kann zwischen den Zahntypen leicht variieren und die allgemeinen Schemata unterscheiden sich zwischen den Arten. M. hoffmannii hatte zwei bis drei Prismen auf der labialen (nach außen zeigenden) Seite und keine Prismen auf der lingualen (der Zunge zugewandten) Seite. M. missouriensis hatte vier bis sechs labiale und acht linguale Prismen, M. lemonnieri hatte acht bis zehn labiale Prismen und M. beaugei hatte drei bis fünf labiale und acht bis neun linguale Prismen.[36]

Wie alle Mosasaurier hatte Mosasaurus vier Arten von Zähnen, die nach den Kieferknochen benannt waren, auf denen sie sich befanden. Am Oberkiefer gab es drei Arten: die Prämaxillarzähne, die Maxillarzähne und die Pterygoidzähne (ein Merkmal, das bei allen Mosasauriern und verschiedenen modernen Reptilien vorhanden ist). Am Unterkiefer war nur ein Typ vorhanden, die Dentalzähne. In jeder Kieferreihe hatte Mosasaurus (von vorne nach hinten): zwei Prämaxillarzähne, zwölf bis sechzehn Maxillarzähne und acht bis sechzehn Pterygoidzähne und vierzehn bis siebzehn Dentalzähne.[49][28][36][52] Die Anzahl der Zähne in der Maxillar-, Pterygoid- und Dentallage variiert zwischen Arten und manchmal sogar zwischen Individuen. M. hoffmannii hatte vierzehn bis sechzehn Maxillarzähne, vierzehn bis fünfzehn Dentalzähne und acht Pterygoidzähne;[28][40][41] M. missouriensis hatte vierzehn bis fünfzehn Maxillarzähne, vierzehn bis fünfzehn Dentalzähne und acht bis neun Pterygoidzähne;[49][36][53] M. conodon hatte vierzehn bis fünfzehn Maxillarzähne, sechzehn bis siebzehn Dentalzähne und acht Pterygoidzähne; M. lemonnieri hatte fünfzehn Maxillarzähne und 14 bis 17 Dentalzähne;[28][36] M. beaugei hatte zwölf bis dreizehn Maxillarzähne und vierzehn bis sechzehn Dentalzähne.[36] Einem unbestimmten Exemplar von Mosasaurus, das M. conodon aus dem staatlichen Park Pembina Gorge in North Dakota ähnelt, wurde eine ungewöhnliche Anzahl von 16 Pterygoidzähnen festgestellt, was einer weitaus höheren Anzahl als bei bekannten Arten entspricht.[52]

Mosasaurus hatte ein thekodontes Gebiss, was bedeutet, dass die Zahnwurzeln tief im Kieferknochen verankert waren. Mosasaurus hatte keine bleibenden Zähne und verlor sie häufig. Aus den Wurzeln des Originalzahns entwickelten sich in einer Resorptionsgrube Ersatzzähne durch einen achtstufigen Prozess, der für Mosasaurier einzigartig war. Die erste Stufe ist durch die Mineralisierung einer kleinen Zahnkrone gekennzeichnet, die an anderer Stelle entwickelt wurde und in der zweiten Stufe in die Resorptionsgrube wanderte. In der dritten Stufe zementierte sich die sich entwickelnde Krone fest in der Resorptionsgrube und wuchs an Größe; im vierten Stadium hatte es die gleiche Größe wie die Krone im Originalzahn. In den Stufen fünf und sechs entwickelte sich die Wurzel des Ersatzzahns: In Stufe fünf entwickelte sie sich vertikal und in Stufe sechs dehnte sich die Wurzel in alle Richtungen aus, bis der Ersatzzahn freigelegt wurde und auf den ursprünglichen Zahn drückte. In der siebten Stufe wurde der ursprüngliche Zahn abgestoßen und der nun unabhängige Ersatzzahn begann sich in der Lücke zu verankern. Im achten und letzten Stadium wuchs der Ersatzzahn, um sich fest zu verankern.[54] Chemische Untersuchungen an einem M. hoffmannii-Maxillarzahn schätzten die Dauer der Ablagerung von Odontoblasten, den für die Dentinbildung verantwortlichen Zellen, auf 511 Tage und die vollständige Entwicklung des Dentins auf 233 Tage.[55]

Postcraniales Skelett

Lebendrekonstruktion von M. missouriensis

Das vollständigste Skelett des Mosasaurus, dessen Identifikation auf Artenebene diskutiert wird[12][28] und das im Museum für Geologie der South Dakota School of Mines and Technology unter der Katalognummer SDSM 452 ausgestellt ist, hat sieben Halswirbel, achtunddreißig Rückenwirbel (einschließlich Brust- und Lendenwirbel) und acht Pygalwirbel (vordere Schwanzwirbel ohne Hämalbögen), gefolgt von achtundsechzig Schwanzwirbeln. Alle Mosasaurus-Arten hatten sieben Halswirbel, aber die Anzahl der anderen Wirbel variieren. Verschiedene Teilskelette von M. conodon, M. hoffmannii und M. missouriensis legen nahe, dass M. conodon wahrscheinlich bis zu sechsunddreißig Rückenwirbel und neun Pygalwirbel hatte; M. hoffmannii hatte wahrscheinlich bis zu zweiunddreißig Brustwirbel und zehn Pygalwirbel;[31][28] und M. missouriensis um dreiunddreißig Rückenwirbel, elf Pygalwirbel und mindestens neunundsiebzig Schwanzwirbel. M. lemmonieri hatte mit bis zu etwa vierzig Rückenwirbeln, zweiundzwanzig Pygalwirbeln und neunzig Schwanzwirbeln die meisten Wirbel der Gattung.[12][31] Im Vergleich zu anderen Mosasauriern war der Brustkorb von Mosasaurus ungewöhnlich tief und bildete einen nahezu perfekten Halbkreis, der ihm eine zylinderförmige Brust verlieh. Vermutlich verband Knorpel die Rippen flächendeckend mit dem Brustbein, was bei dem Wasserdruck in größeren Tiefen das Atmen erleichterte.[41] Die Knochentextur war praktisch identisch mit der moderner Wale, was impliziert, dass Mosasaurus wie diese ein hohes Maß an aquatischer Anpassungsfähigkeit und neutralem Auftrieb aufwies.[39]

Skelettrekonstruktion von M. hoffmannii

Die Schwanzflosse war zweilappig und hypocerk, was bedeutet, dass die Schwanzwirbel den unteren Lappen stützten.[39] Die Schwanzstruktur ähnelt Verwandten wie Prognathodon, von dem 2013 erstmals Weichgewebe eines zweilappigen Schwanzes nachgewiesen wurde.[56] Die Wirbelkörper der Schwanzwirbel verkürzten sich allmählich zur Mitte des Schwanzes hin und verlängern sich hinter der Mitte, was auf eine Steifheit um die Schwanzmitte und eine ausgezeichnete Flexibilität dahinter hinweist. Wie bei den meisten höher entwickelten Mosasauriern bog sich der Schwanz nahe der Mitte leicht nach unten. Mosasaurus hatte große Hämalbögen, die sich nahe der Mitte des Schwanzes krümmten (im Gegensatz zur Verkürzung der Hämalbögen bei anderen Meeresreptilien wie Ichthyosauriern). Diese und andere Merkmale unterstützen einen großen und kräftigen paddelartigen Flossenschlag.[39]

Die Vordergliedmaßen von Mosasaurus waren breit und robust. Schulterblatt und Oberarmknochen waren fächerförmig und breiter als hoch. Radius und Ulna waren kurz, wobei der Radius etwas größer war. Fünf Sätze von Mittelhandknochen und Phalangen stützten die paddelförmigen Flossen, wobei der fünfte Satz kürzer und vom Rest abgesetzt war. Die Gesamtstruktur des Paddels war ähnlich wie bei Plotosaurus komprimiert und war gut für schnelleres Schwimmen geeignet.[41][28] In den Hintergliedmaßen wurde das Paddel mit vier Sätzen unterstützt. Das Darmbein war stäbchenförmig und schlank; bei M. missouriensis war es etwa 1,5-mal länger als der Femur. Der Femur war etwa doppelt so lang wie breit und endete in einem Paar unterschiedlicher Gelenkfortsätze, die sich in einem Winkel von ungefähr 120° trafen.[49]

Klassifikation

Geschichte der Taxonomie

Holotypschädel der neu vorgeschlagenen Art M. glycys

Da die Regeln der Nomenklatur zu dieser Zeit nicht genau definiert waren, fertigten Wissenschaftler des 19. Jahrhunderts keine korrekte Erstbeschreibung von Mosasaurus an. Dies führte zu Unklarheiten hinsichtlich der Definition der Gattung, was dazu führte, dass sie zu einem sogenannten Mülleimer-Taxon wurde, nahezu fünfzig verschiedene Arten enthielt. Das taxonomische Problem war so schwerwiegend, dass es Fälle von Arten gab, bei denen festgestellt wurde, dass sie Junior-Synonyme von Arten waren, die selbst Junior-Synonyme waren (beispielsweise wurden vier Taxa zu Junior-Synonymen von M. maximus, der selbst zu einem Junior-Synonym von M. hoffmannii wurde). Dieses Problem wurde von vielen damaligen Wissenschaftlern erkannt, aber Bemühungen, die Taxonomie von Mosasaurus zu bereinigen, wurden durch das Fehlen einer eindeutigen Diagnose behindert.[26][12]

1967 veröffentlichte Russell die Systematics and Morphology of American Mosasaurs, die eine der frühesten richtigen Diagnosen von Mosasaurus enthielten. Obwohl seine Arbeit als unvollständig angesehen wird, da er ausschließlich an nordamerikanischen Vertretern arbeitete und keine europäischen Vertreter wie M. hoffmannii untersuchte, konnte Russell das Taxon erheblich überarbeiten und eine Diagnose der Gattung erstellen, die klarer war als frühere Beschreibungen . Er identifizierte acht Arten, die er für gültig hielt – M. hoffmannii, M. missouriensis, M. conodon, M. dekayi, M. maximus, M. gaudryi, M. lonzeensis und M. ivoensis.[26][12] Wissenschaftler überarbeiteten dies in den späten 1990er und frühen 2000er Jahren weiter: M. maximus wurde von Mulder (1999) mit M. hoffmannii synonymisiert (obwohl einige Wissenschaftler die Ansicht vertreten, dass es sich um eine eigenständige Art handelt)[26][12], die ehemals ungültige Art M. lemonnieri wurde von Lingham-Soliar (2000) wiederbelebt, M. ivoensis und M. gaudryi wurden von Lindgren und Siverson (2002) bzw. Lindgren (2005) in die Gattung Tylosaurus überführt und M. dekayi und M. lonzeensis wurden Nomina dubia. Während des späten 20. Jahrhunderts beschrieben Wissenschaftler vier weitere Arten anhand von Fossilien, die im Pazifik gefunden wurden – M. mokoroa, M. hobetsuensis, M. flemingi und M. prismaticus.[57][26][12] 1995 veröffentlichte Lingham-Soliar eine der frühesten modernen Diagnosen von M. hoffmannii, die detaillierte Beschreibungen der bekannten Anatomie der Typusart auf der Grundlage einer Vielzahl von Fossilien aus Lagerstätten in der Umgebung von Maastricht lieferte.[41] Es wurde jedoch kritisiert, dass sie sich eher auf andere Exemplare als nur auf den Holotyp stützte (obwohl es normalerweise üblich ist, eine Artendiagnose anhand der Typusproben zu erstellen), insbesondere auf IRSNB R12, einen fossilen Schädel des Royal Belgian Institute, dessen Zuordnung zu Mosasaurus fraglich war. [26][12]

Montiertes Skelett eines nordamerikanischen M. hoffmannii, das früher als die eigenständige Art M. maximus angesehen wurde

Die 2016 publizierte Dissertation des Paläontologen Halle Street der University of Alberta, betreut von Michael Caldwell, enthielt die erste ordnungsgemäße Beschreibung und Diagnose von M. hoffmannii ausschließlich anhand seines Holotyps seit seiner Benennung vor über zweihundert Jahren. Diese Neubewertung des Holotyp-Exemplars verdeutlichte die Schwierigkeiten, mit denen frühere Forscher konfrontiert waren, und ermöglichte eine signifikante taxonomische Überarbeitung von Mosasaurus. In der Arbeit wurde eine phylogenetische Studie durchgeführt, in der die Beziehungen zwischen M. hoffmannii und zwölf möglichen Mosasaurus-Arten untersucht wurden – M. missouriensis, M. dekayi, M. gracilis, M. maximus, M. conodon, M. lemonnieri, M. beaugei, M. ivoensis, M. Mmokoroa, M. hobetsuensis, M. flemingi und M. prismaticus. Von den zwölf Kandidatenarten erwiesen sich nur M. missouriensis und M. lemonnieri als unterschiedliche Arten innerhalb der Gattung. M. beaugei, M. dekayi und M. maximus wurden als Junior-Synonyme von M. hoffmannii identifiziert. Die Platzierung von M. gracilis und M. ivoensis außerhalb der Unterfamilie Mosasaurinae wurden ebenfalls bestätigt. M. hobetsuensis und M. flemingi wurden als Vertreter von Moanasaurus identifiziert und entsprechend umbenannt. M. mokoroa und M. prismaticus wurden als verschiedene Gattungen identifiziert, die Antipodinectes und Umikosaurus genannt wurden. Es wurde festgestellt, dass Funde von M. conodon aus dem Western Interior Seaway zu M. missouriensis gehören, während Funde von der Ostküste (einschließlich des Holotyps) zu einer neuen Gattung gehören, die später Aktisaurus genannt wurde. Schließlich ergab die Studie, dass der IRSNB R12-Schädel zu einer Mosasaurus-Art gehörte, die M. glycys genannt wurde, wobei das Epitheton eine Romanisierung des altgriechischen Wortes γλυκύς (ɡlykýs, was „süß“ bedeutet) ist (in Bezug auf den Aufenthaltsort des Schädels in Belgien und den Ruf des Landes als Schokoladenproduzent). Street erklärte in ihrer Dissertation, dass der Inhalt als wissenschaftliche Arbeit veröffentlicht werden soll.[12]

Die Diagnose des Mosasaurus-Holotyps wurde in einem von Experten (unter anderem Caldwell) verfassten Artikel aus dem Jahr 2017 veröffentlicht. Die taxonomische Überarbeitung der Gattung muss noch offiziell veröffentlicht werden, in Street und Caldwell (2017)[26] wird jedoch bereits darauf verwiesen und es wurden zwei Zusammenfassungen während des 5. Dreijahres-Mosasaurier-Treffens 2016[58] und des 5. Jahrestreffens der Canadian Society of Vertebrate Palaeontology im Jahr 2017[59] vorgestellt. Street und Caldwell (2017) präsentierten außerdem eine kurze vorläufige taxonomische Übersicht über Mosasaurus, in der fünf wahrscheinlich gültige Arten auf der Grundlage früherer Literatur – M. hoffmannii, M. missouriensis, M. conodon, M. lemonnieri und M. beaugei – identifiziert und die vier pazifischen Arten als möglicherweise gültig betrachtet werden, bis in Zukunft eine formelle Neubewertung erfolgt. M. dekayi wurde in die Liste der möglichen gültigen Taxa aufgenommen, ohne dass sein zweifelhafter Status angesprochen wurde, jedoch als wahrscheinliches Synonym für M. hoffmannii beschrieben.[26]

Systematik und Evolution

Als Typusgattung der Familie Mosasauridae und der Unterfamilie Mosasaurinae gehört Mosasaurus zur Ordnung Squamata (bestehend aus Eidechsen und Schlangen). Mosasaurus bildet zusammen mit den Gattungen Eremiasaurus, Plotosaurus[60] und Moanasaurus[59] (nach Auffassung mancher Autoren außerdem Prognathodon und Plesiotylosaurus[61], bei denen es sich aber vermutlich um basalere Mosasaurier handelt[62]) einen Tribus, der Mosasaurini oder Plotosaurini genannt wird.[33][60][63]

Verwandtschaft zu Schlangen und Waranen

In der Wissenschaft besteht Uneinigkeit, ob Warane oder Schlangen die nächsten lebenden Verwandten von Mosasaurus sind.

Die genaue Einordnung der Mosasaurier innerhalb der Schuppenkriechtiere und damit die Beziehung von Mosasaurus zu modernen Reptilien ist von Anfang an umstritten. Cuvier war der erste Wissenschaftler, der die mögliche taxonomische Stellung von Mosasaurus eingehend analysierte. Während seine ursprüngliche Hypothese von 1808, dass die Gattung eine Echse mit Ähnlichkeit zu Waranen war, am beliebtesten blieb, war Cuvier selbst über die Richtigkeit dieser Einordnung unsicher. Er schlug eine Reihe alternativer Hypothesen vor, beispielsweise dass Mosasaurus stattdessen enger mit Leguanen verwandt war, denn beide hatten Pterygoidzähne. Zu Beginn und Mitte des 19. Jahrhunderts gab es wenige Fossilien von Mosasauriern, sodass sich die Wissenschaft hauptsächlich auf stratigraphische Assoziationen und Cuviers Forschungsergebnisse der 1808er Jahre zum Holotyp-Schädel stützte. Daher wurden eingehende Untersuchungen zur Einordnung von Mosasaurus erst durchgeführt, als im späten 19. Jahrhundert vollständigere Mosasaurier-Fossilien entdeckt wurden, die die Forschung zur Stellung von Mosasauriern unter den Schuppenkriechtieren wieder aufleben ließen.

In einer Zeitspanne von etwa 30 bis 40 Jahren im späten 19. bis frühen 20. Jahrhundert diskutierten Paläontologen heftig über das Thema, was zwei wichtige Theorien hervorbrachte: eine, die eine Verwandtschaft zu Waranen unterstützte, und eine, die eine engere Verwandtschaft zu Schlangen unterstützte.[38] Eine solche Hypothese wurde erstmals 1869 von Cope veröffentlicht, der vorschlug, dass Mosasaurier, die er einer Gruppe namens Pythonomorpha zuordnete, die Schwestergruppe der Schlangen waren. Einige Wissenschaftler gingen so weit, Mosasaurier als direkte Vorfahren von Schlangen zu interpretieren.[64] Gegner, die eine Beziehung zu Waranen unterstützten, argumentierten, dass Mosasaurier innerhalb der Teilordnung Anguimorpha platziert werden sollten; entweder als echte Warane innerhalb der Familie Varanidae oder taxonomisch weiter entfernt.[38] Diese Debatten führten zur Gründung höherer taxonomischer Gruppen, um die Mosasaurier einzuschließen (obwohl sich nicht alle als korrekt herausstellten). Eine davon war die Mosasauria, eine lose definierte Gruppe, die 1880 von Marsh gegründet wurde. Der Begriff wird bis heute von einigen Wissenschaftlern verwendet und schließt alle Nachkommen des letzten gemeinsamen Vorfahren von Mosasaurus und einigen anderen Arten (wie Dolichosaurus, Coniasaurus und Adriosaurus) ein.[65] Im Jahr 1923 veröffentlichte Charles Lewis Camp von der University of California in Berkeley die Klassifikation der Echsen, in der er durch Überprüfung früherer Theorien und unter Anwendung seiner eigenen anatomischen Beobachtungen vorschlug, dass alle Taxa, die enger mit Mosasaurus als mit Dolichosaurus verwandt sind, als Mosasauroidea klassifiziert werden sollten, eine Schwester-Überfamilie der Varanoidea.[38][66] Camps Einteilung wurde für ungefähr 70 Jahre überwiegend akzeptiert, wobei fast alle nachfolgenden Studien eine Verwandtschaft zu Waranen unterstützten. Viele Studien ordneten die Mosasaurier dabei jedoch weiterhin innerhalb der Varanoidea ein.[38]

Die Debatte wurde mit der Veröffentlichung einer kladistischen Studie des Paläontologen Michael Lee von der Universität Sydney aus dem Jahr 1997 wiederbelebt, in der er die Mosasauroidea als Schwestertaxon der Schlangenunterordnung Serpentes einordnete.[38][67] Es handelte sich um die erste moderne phylogenetische Studie, in der die Verwandtschaftsverhältnisse zwischen Mosasauriern und Schlangen speziell untersucht wurden. Lee definierte außerdem die nicht mehr bestehende Gruppe Pythonomorpha neu, um die Mosasauroidea und Serpentes darin zu vereinen.[67] Mehrere nachfolgende Studien, die von Wissenschaftlern wie Lee, Caldwell und Alessandro Palci von der Universität Modena und Reggio Emilia durchgeführt wurden, konkretisierten diese Hypothese. In einigen Studien wurde die Mosasauria-Klade verwendet, um Mosasaurier darzustellen;[38][64] hierbei bestand jedoch noch wenig Konsens. Zum Beispiel stellte eine groß angelegte phylogenetische Studie des Paläontologen Jack Conrad vom American Museum of Natural History aus dem Jahr 2008 die Mosasauria-Klade in einer Polytomie oder unkonkreten Schwesterbeziehung mit Waranen und Krustenechsen wieder her;[65] und eine Studie von 2012 unter der Leitung von Jacques Gauthier von der Yale University stellte die Mosasauria als Schwestergruppe sowohl den Waranen, als auch den Schlangen gegenüber.[68]

Mit dem Aufkommen der Molekulargenetik in den 2010er Jahren plädierten einige Wissenschaftler für die Kombination molekularer und morphologischer Daten, um die Beziehungen zwischen Mosasauriern und lebenden Schuppenkriechtieren zu untersuchen.[69][70] Lee (2009) veröffentlichte eine frühe Studie, die auf nuklearer und mitochondrialer DNA lebender Schuppenkriechtiere und morphologischen Daten von Mosasauriern basierte und die Mosasaurier erneut als Stammgruppe der Schlangen darstellte[71] (was einige spätere Autoren als Einordnung der Schlangen innerhalb der Mosasaurier-Klade interpretierten). Eine 2010 von John Weins und mehreren Autoren der Stony Brook University durchgeführte Studie versuchte, Lee (2009) unter Verwendung eines größeren Datensatzes zu replizieren, lieferte jedoch Ergebnisse, die die Mosasauria als Schwesterklade der Warane bestätigten.[69]

Die Diskrepanzen der Ergebnisse sind auf das hohe Maß konvergenter Evolution bei Schuppenkriechtieren zurückzuführen, die viel Raum für die Interpretation molekularer und morphologischer Daten schafft und Widersprüche erzeugt. Aus diesem Grund argumentierten einige Wissenschaftler, dass eine molekulare Perspektive vollständig aufgegeben werden sollte.[70][72] Dennoch versuchten Wissenschaftler, diese Schwierigkeiten zu klären. Ein Ansatz bot eine 2015 von Todd Reeder und mehreren Autoren von der San Diego State University durchgeführten Studie: Sie integrierte morphologische, molekulare und paläontologische Daten eng in einen großen Datensatz, um frühere Konflikte zu überwinden. Dies ergab eine neue morphologische Übereinstimmung mit molekularen Ergebnissen, die die Mosasauria als Schwesterklade der Serpentes bestätigten.[70] Ein anderer Ansatz wurde von dem Biologen R. Alexander Pyron von der George Washington University in einer Studie aus dem Jahr 2016 entwickelt; diese verwendete einen asymmetrischer Ansatz zur Interpretation einiger problematischer morphologischer Datensätze neben molekularen Daten, wodurch die Mosasauria ebenfalls als Schwesterklade der Serpentes bestätigt wurden.[73]

Quellen

Einzelnachweise

  1. William D. Conybeare: Fossil crocodiles and other saurian animals. In: James Parkinson: Outlines of oryctology. An introduction to the study of fossil organic remains; especially those found in the British strata: intended to aid the student in his enquiries respecting the nature of fossils, and their connection with the formation of the earth. Printed for the author, London 1822, S. 284–304, hier S. 298.
  2. Gideon Mantell: A Tabular Arrangement of the Organic Remains of the County of Sussex. In: A Tabular Arrangement of the Organic Remains of the County of Sussex. In: Transactions of the Geological Society of London. Series 2, Bd. 3, Nr. 1, 1829, ZDB-ID 352250-7, S. 201–216, hier S. 207, doi:10.1144/transgslb.3.1.201
  3. M. van Marum: Beschrijving der beenderen van den kop van eenen visch, gevonden in den St Pietersberg bij Maastricht, en geplaatst in Teylers Museum. Band 9. Verhandelingen Teylers Tweede Genootschap, 1790, S. 383–389 (niederländisch).
  4. a b c Mike Everhart: Mosasaurus hoffmanni-The First Discovery of a Mosasaur? In: Oceans of Kansas. 1999, abgerufen am 6. November 2019.
  5. a b c d e f g Florence F. J. M. Pieters, Peggy G. W. Rompen, John W. M. Jagt, Nathalie Bardet: A new look at Faujas de Saint-Fond’s fantastic story on the provenance and acquisition of the type specimen of Mosasaurus hoffmanni Mantell, 1829. In: Bulletin de la Société Géologique de France. Band 183, Nr. 1, 1. Januar 2012, ISSN 0037-9409, S. 55–65, doi:10.2113/gssgfbull.183.1.55 (geoscienceworld.org [abgerufen am 18. Februar 2021]).
  6. Peter Camper: XXVI. Conjecture relative to the petrifactions found in St. Peter's Mountain, near Maestricht. In: Philosophical Transactions of the Royal Society of London. Band 76, 1. Januar 1786, S. 443–456, doi:10.1098/rstl.1786.0026 (royalsocietypublishing.org [abgerufen am 18. Februar 2021]).
  7. a b c d e Florence F. J. M. Pieters: Napoleon's legacy: the rise of national museums in Europe, 1794–1830. Band 27. Berlin: G+H Verlag, 2009, ISBN 978-3-940939-11-1, Natural history spoils in the Low Countries in 1794/95: the looting of the fossil Mosasaurus from Maastricht and the removal of the cabinet and menagerie of stadholder William V, S. 55–72 (uva.nl [PDF]).
  8. Nathalie Bardet: The Mosasaur collections of the Muséum National d’Histoire Naturelle of Paris. In: Bulletin de la Société Géologique de France. Band 183, Nr. 1, 1. Januar 2012, ISSN 0037-9409, S. 35–53, doi:10.2113/gssgfbull.183.1.35 (geoscienceworld.org [abgerufen am 18. Februar 2021]).
  9. a b c d Eric Mulder: Maastricht Cretaceous finds and Dutch pioneers in vertebrate palaeontology. Royal Netherlands Academy of Arts and Sciences, 2004, S. 165–176 (researchgate.net).
  10. E. W. A. Mulder, B. Theunissen: Hermann Schlegel's investigation of the Maastricht mosasaurs. In: Archives of Natural History. Band 13, Nr. 1, Februar 1986, ISSN 0260-9541, S. 1–6, doi:10.3366/anh.1986.13.1.1 (euppublishing.com [abgerufen am 19. Februar 2021]).
  11. a b Mark Evans: The roles played by museums, collections and collectors in the early history of reptile palaeontology. In: Geological Society, London, Special Publications. 343. Jahrgang, Nr. 1, 2010, S. 5–29, doi:10.1144/SP343.2, bibcode:2010GSLSP.343....5E.
  12. a b c d e f g h i j k l m Hallie P. Street: A re-assessment of the genus Mosasaurus (Squamata: Mosasauridae). 2016, abgerufen am 19. Februar 2021 (englisch).
  13. a b c Mike Everhart: The Goldfuss Mosasaur. In: Oceans of Kansas. 2001, archiviert vom Original am 2. Juni 2019; abgerufen am 10. November 2019.
  14. a b September 10, 1804. In: Journals of the Lewis & Clark Expedition. Archiviert vom Original am 11. November 2019; abgerufen am 10. November 2019.
  15. Richard Ellis: Sea dragons : predators of the prehistoric oceans. University Press of Kansas, Lawrence, Kan. 2003, ISBN 0-7006-1269-6, S. 216.
  16. Robert W. Meredith; James E. Martin; Paul N. Wegleitner (2007). The largest mosasaur (Squamata: Mosasauridae) from the Missouri River area (Late Cretaceous; Pierre Shale Group) of South Dakota and its relationship to Lewis and Clark. The Geological Society of America. S. 209–214.
  17. James Ellsworth De Kay (1830). "On the Remains of Extinct Reptiles of the genera Mosasaurus and Geosaurus found in the secondary formation of New-Jersey; and on the occurrence of the substance recently named Coprolite by Dr. Buckland, in the same locality". Annals of the Lyceum of Natural History of New York. 3: 134–141.
  18. H. G. Bronn: Lethaea geognostica oder Abbildungen und Beschreibungen der für die Gebirgs-Formationen bezeichnendsten Versteinerungen. Stuttgart 1834, doi:10.5962/bhl.title.59080 (biodiversitylibrary.org [abgerufen am 19. Februar 2021]).
  19. W. B. Gallagher: Recent mosasaur discoveries from New Jersey and Delaware, USA: stratigraphy, taphonomy and implications for mosasaur extinction. In: Netherlands Journal of Geosciences. Band 84, Nr. 3, September 2005, ISSN 0016-7746, S. 241–245, doi:10.1017/S0016774600021028 (cambridge.org [abgerufen am 19. Februar 2021]).
  20. Eric W.A. Mulder: Transatlantic latest Cretaceous mosasaurs (Reptilia, Lacertilia) from the Maastrichtian type area and New Jersey. In: Geologie en Mijnbouw. Band 78, Nr. 3, 1. September 1999, ISSN 1573-9708, S. 281–300, doi:10.1023/A:1003838929257.
  21. Richard Harlan: Notice of the Discovery of the Remains of the Ichthyosaurus in Missouri, N. A. In: Transactions of the American Philosophical Society. Band 4, 1834, ISSN 0065-9746, S. 405–408, doi:10.2307/1004839.
  22. Richard Harlan: Notice of the discovery of Basilosaurus and Batrachotherium. In: Proceedings of the Geological Society of London. 3. Jahrgang, 1839, S. 23–24 (biodiversitylibrary.org).
  23. Richard Harlan: (Letter regarding Basilosaurus and Batrachotherium). In: Bulletin de la Société Géologique de France. 1. Jahrgang, Nr. 10, 1839, S. 89–90 (französisch, biodiversitylibrary.org).
  24. a b Mark Witton: The science of the Crystal Palace Dinosaurs, part 2: Teleosaurus, pterosaurs and Mosasaurus. In: Mark Witton.com. 2019, archiviert vom Original am 3. Juni 2019;.
  25. Mosasaurus. In: Friends of the Crystal Palace Dinosaurs. 2020, archiviert vom Original am 18. Juni 2020;.
  26. a b c d e f g h i Hallie P. Street, Michael W. Caldwell: Rediagnosis and redescription of Mosasaurus hoffmannii (Squamata: Mosasauridae) and an assessment of species assigned to the genus Mosasaurus. In: Geological Magazine. Band 154, Nr. 3, Mai 2017, ISSN 0016-7568, S. 521–557, doi:10.1017/S0016756816000236 (cambridge.org [abgerufen am 19. Februar 2021]).
  27. a b c Edward Drinker Cope: A new species of Clidastes from New Jersey. In: American Naturalist. 15. Jahrgang, 1881, S. 587–588 (biodiversitylibrary.org).
  28. a b c d e f g h i j k l m T. Ikejiri, S.G. Lucas: Osteology and taxonomy of Mosasaurus conodon Cope 1881 from the Late Cretaceous of North America. In: Netherlands Journal of Geosciences - Geologie en Mijnbouw. Band 94, Nr. 1, März 2015, ISSN 0016-7746, S. 39–54, doi:10.1017/njg.2014.28 (cambridge.org [abgerufen am 19. Februar 2021]).
  29. Ben Creisler: Mosasauridae Translation and Pronunciation Guide. In: Dinosauria On-line. 2000, archiviert vom Original am 2. Mai 2008;.
  30. Louis Dollo: Première note sur les Mosasauriens de Mesvin. In: Bulletin de la Société belge de géologie, de paléontologie et d'hydrologie. 3. Jahrgang, 1889, ISSN 0037-8909, S. 271–304 (französisch, biodiversitylibrary.org).
  31. a b c d e Theagarten Lingham-Soliar (2000). "The Mosasaur Mosasaurus lemonnieri (Lepidosauromorpha, Squamata) from the Upper Cretaceous of Belgium and The Netherlands". Paleontological Journal. 34 (suppl. 2): S. 225–237.
  32. Pablo González Ruiz, Marta S. Fernández, Marianella Talevi, Juan M. Leardi, Marcelo A. Reguero: A new Plotosaurini mosasaur skull from the upper Maastrichtian of Antarctica. Plotosaurini paleogeographic occurrences. In: Cretaceous Research. Band 103, November 2019, S. 104166, doi:10.1016/j.cretres.2019.06.012 (elsevier.com [abgerufen am 19. Februar 2021]).
  33. a b c d e Dale A. Russell (1967). Systematics and morphology of American mosasaurs (PDF). 23. Bulletin of the Peabody Museum of Natural History. pp. 1–124.
  34. a b Daniel Madzia: Dental variability and distinguishability in Mosasaurus lemonnieri (Mosasauridae) from the Campanian and Maastrichtian of Belgium, and implications for taxonomic assessments of mosasaurid dentitions. In: Historical Biology. Band 32, Nr. 10, 25. November 2020, ISSN 0891-2963, S. 1340–1354, doi:10.1080/08912963.2019.1588892 (tandfonline.com [abgerufen am 19. Februar 2021]).
  35. a b N. Bardet, X. Pereda Suberbiola, S. Jouve, E. Bourdon, P. Vincent: Reptilian assemblages from the latest Cretaceous – Palaeogene phosphates of Morocco: from Arambourg to present time. In: Historical Biology. Band 22, Nr. 1-3, März 2010, ISSN 0891-2963, S. 186–199, doi:10.1080/08912961003754945 (tandfonline.com [abgerufen am 19. Februar 2021]).
  36. a b c d e f g h i Nathalie Bardet, Xabier Pereda Suberbiola, Mohamed Iarochene, Fatima Bouyahyaoui, Baadi Bouya: Mosasaurus beaugei Arambourg, 1952 (Squamata, Mosasauridae) from the Late Cretaceous phosphates of Morocco. In: Geobios. Band 37, Nr. 3, Mai 2004, S. 315–324, doi:10.1016/j.geobios.2003.02.006 (elsevier.com [abgerufen am 19. Februar 2021]).
  37. Johan Lindgren, Michael W. Caldwell, Takuya Konishi, Luis M. Chiappe: Convergent Evolution in Aquatic Tetrapods: Insights from an Exceptional Fossil Mosasaur. In: PLoS ONE. Band 5, Nr. 8, 9. August 2010, ISSN 1932-6203, S. e11998, doi:10.1371/journal.pone.0011998, PMID 20711249 (plos.org [abgerufen am 2. März 2021]).
  38. a b c d e f g Michael W. Caldwell: A challenge to categories: “What, if anything, is a mosasaur?” In: Bulletin de la Société Géologique de France. Band 183, Nr. 1, 1. Januar 2012, ISSN 1777-5817, S. 7–34, doi:10.2113/gssgfbull.183.1.7 (geoscienceworld.org [abgerufen am 2. März 2021]).
  39. a b c d Johan Lindgren, Michael J. Polcyn, Bruce A. Young: Landlubbers to leviathans: evolution of swimming in mosasaurine mosasaurs. In: Paleobiology. Band 37, Nr. 3, 2011, ISSN 0094-8373, S. 445–469, doi:10.1666/09023.1 (cambridge.org [abgerufen am 28. Februar 2021]).
  40. a b c D.V. Grigoriev: Giant Mosasaurus hoffmanni (Squamata, Mosasauridae) from the Late Cretaceous (Maastrichtian) of Penza, Russia. In: Proceedings of the Zoological Institute RAS. 318. Jahrgang, Nr. 2, 2014, S. 148–167 (zin.ru [PDF]).
  41. a b c d e f g h Theagarten Lingham-Soliar: Anatomy and functional morphology of the largest marine reptile known, Mosasaurus hoffmanni (Mosasauridae, Reptilia) from the Upper Cretaceous, Upper Maastrichtian of The Netherlands. In: Philosophical Transactions of the Royal Society of London. Series B: Biological Sciences. Band 347, Nr. 1320, 30. Januar 1995, S. 155–180, doi:10.1098/rstb.1995.0019 (royalsocietypublishing.org [abgerufen am 20. Februar 2021]).
  42. Federico Fanti, Andrea Cau, Alessandra Negri: A giant mosasaur (Reptilia, Squamata) with an unusually twisted dentition from the Argille Scagliose Complex (late Campanian) of Northern Italy. In: Cretaceous Research. Band 49, 1. Mai 2014, ISSN 0195-6671, S. 91–104, doi:10.1016/j.cretres.2014.01.003 (sciencedirect.com [abgerufen am 20. Februar 2021]).
  43. Michael Everhart; John W.M. Jagt; Eric W.A. Mulder; Anne S. Schulp (2016), Mosasaurs- how large did they really get?, 5th Triennial Mosasaur Meeting – a global perspective on Mesozoic marine amniotes
  44. Louis Dollo: Nouvelle note sur l'osteologie des mosasauriens. In: Bulletin de la Société belge de géologie, de paléontologie et d'hydrologie. 6. Jahrgang, 1892, ISSN 0037-8909, S. 219=259 (französisch, biodiversitylibrary.org).
  45. Michael J. Polcyn, Louis L. Jacobs, Ricardo Araújo, Anne S. Schulp, Octávio Mateus: Physical drivers of mosasaur evolution. In: Palaeogeography, Palaeoclimatology, Palaeoecology. Band 400, April 2014, S. 17–27, doi:10.1016/j.palaeo.2013.05.018 (elsevier.com [abgerufen am 20. Februar 2021]).
  46. Michael D. D'Emic, Kathlyn M. Smith, Zachary T. Ansley: Unusual histology and morphology of the ribs of mosasaurs (Squamata). In: Palaeontology. Band 58, Nr. 3, Mai 2015, ISSN 0031-0239, S. 511–520, doi:10.1111/pala.12157 (wiley.com [abgerufen am 20. Februar 2021]).
  47. Carolyn Gramling: Ancient sea monster battle revealed in unusual fossil. In: Science. 26. Oktober 2016, ISSN 0036-8075, doi:10.1126/science.aal0310 (sciencemag.org [abgerufen am 20. Februar 2021]).
  48. a b M.W. Caldwell, G.L. Bell: Of German princes and North American rivers: Harlan’s lost mosasaur snout rediscovered. In: Netherlands Journal of Geosciences. Band 84, Nr. 3, September 2005, ISSN 0016-7746, S. 207–211, doi:10.1017/S0016774600020989 (cambridge.org [abgerufen am 21. Februar 2021]).
  49. a b c d Takuya Konishi, Michael G. Newbrey, Michael W. Caldwell: A small, exquisitely preserved specimen of Mosasaurus missouriensis (Squamata, Mosasauridae) from the upper Campanian of the Bearpaw Formation, western Canada, and the first stomach contents for the genus. In: Journal of Vertebrate Paleontology. Band 34, Nr. 4, 7. Juni 2014, ISSN 0272-4634, S. 802–819, doi:10.1080/02724634.2014.838573 (tandfonline.com [abgerufen am 21. Februar 2021]).
  50. A.S. Schulp, H.B. Vonhof, J.H.J.L. van der Lubbe, R. Janssen, R.R. van Baal: On diving and diet: resource partitioning in type-Maastrichtian mosasaurs. In: Netherlands Journal of Geosciences - Geologie en Mijnbouw. Band 92, Nr. 2-3, September 2013, ISSN 0016-7746, S. 165–170, doi:10.1017/S001677460000010X (cambridge.org [abgerufen am 28. Februar 2021]).
  51. Anne S. Schulp; Michael J. Polcyn; Octavio Mateus; Louis L. Jacobs; Maria Lusia Morais; Tatiana da Silva Tavares (2006). "New mosasaur material from the Maastrichtian of Angola, with notes on the phylogeny, distribution, and paleoecology of the genus Prognathodon" (PDF). Publicaties van Het Natuurhistorisch Genootschap in Limburg: 57–67. ISSN 0374-955X.
  52. a b Clint A. Boyd (2017). "A New Addition to the Cretaceous Seaway of North Dakota" (PDF). Geo News. Vol. 44 no. 1. North Dakota Geological Society. pp. 20–23.
  53. Mike Everhart: Samuel Wilson's Mosasaurus horridus. In: Oceans of Kansas. 2001, abgerufen am 23. November 2019.
  54. M. W. Caldwell: Ontogeny, anatomy and attachment of the dentition in mosasaurs (Mosasauridae: Squamata). In: Zoological Journal of the Linnean Society. Band 149, Nr. 4, April 2007, ISSN 1096-3642, S. 687–700, doi:10.1111/j.1096-3642.2007.00280.x (oup.com [abgerufen am 28. Februar 2021]).
  55. Anusuya Chinsamy, Cemal Tunoǧlu, Daniel B. Thomas: Dental microstructure and geochemistry of Mosasaurus hoffmanni (Squamata: Mosasauridae) from the Late Cretaceous of Turkey. In: Bulletin de la Société Géologique de France. Band 183, Nr. 2, 1. März 2012, ISSN 1777-5817, S. 85–92, doi:10.2113/gssgfbull.183.2.85 (geoscienceworld.org [abgerufen am 28. Februar 2021]).
  56. Johan Lindgren, Hani F. Kaddumi, Michael J. Polcyn: Soft tissue preservation in a fossil marine lizard with a bilobed tail fin. In: Nature Communications. Band 4, Nr. 1, Dezember 2013, ISSN 2041-1723, S. 2423, doi:10.1038/ncomms3423 (nature.com [abgerufen am 28. Februar 2021]).
  57. Theagarten Lingham-Soliar: Unusual death of a Cretaceous giant. In: Lethaia. Band 31, Nr. 4, 29. März 2007, S. 308–310, doi:10.1111/j.1502-3931.1998.tb00520.x (wiley.com [abgerufen am 1. März 2021]).
  58. Halle P. Street; Michael W. Caldwell (2016), A reexamination of Mosasaurini based on a systematic and taxonomic revision of Mosasaurus (PDF). 5th Triannual Mosasaur Meeting- a global perspective on Mesozoic marine amonites. May 16–20. Abstract. p. 43-44.
  59. a b Halle P. Street. "Reassessing Mosasaurini based on a systematic revision of Mosasaurus". Vertebrate Anatomy Morphology Palaeontology. 4: 42. ISSN 2292-1389.
  60. a b Aaron R. H. Leblanc, Michael W. Caldwell, Nathalie Bardet: A new mosasaurine from the Maastrichtian (Upper Cretaceous) phosphates of Morocco and its implications for mosasaurine systematics. In: Journal of Vertebrate Paleontology. Band 32, Nr. 1, Januar 2012, ISSN 0272-4634, S. 82–104, doi:10.1080/02724634.2012.624145 (tandfonline.com [abgerufen am 1. März 2021]).
  61. Daniel Madzia, Andrea Cau: Inferring ‘weak spots’ in phylogenetic trees: application to mosasauroid nomenclature. In: PeerJ. Band 5, 15. September 2017, ISSN 2167-8359, doi:10.7717/peerj.3782, PMID 28929018 (peerj.com [abgerufen am 1. März 2021]).
  62. Tiago R. Simões, Oksana Vernygora, Ilaria Paparella, Paulina Jimenez-Huidobro, Michael W. Caldwell: Mosasauroid phylogeny under multiple phylogenetic methods provides new insights on the evolution of aquatic adaptations in the group. In: PLOS ONE. 12. Jahrgang, Nr. 5, 3. Mai 2017, ISSN 1932-6203, S. e0176773, doi:10.1371/journal.pone.0176773, PMID 28467456, PMC 5415187 (freier Volltext), bibcode:2017PLoSO..1276773S (plos.org).
  63. Gorden L. Bell: A Phylogenetic Revision of North American and Adriatic Mosasauroidea. In: Ancient Marine Reptiles. Elsevier, 1997, ISBN 978-0-12-155210-7, S. 293–332, doi:10.1016/b978-012155210-7/50017-x (elsevier.com [abgerufen am 1. März 2021]).
  64. a b Alessandro Palci: On the Origin and Evolution of the Ophidia. 2014, doi:10.7939/R3NG4H314 (ualberta.ca [abgerufen am 2. März 2021]).
  65. a b Jack L. Conrad: Phylogeny And Systematics Of Squamata (Reptilia) Based On Morphology. In: Bulletin of the American Museum of Natural History. Band 310, 3. Juni 2008, ISSN 0003-0090, S. 1–182, doi:10.1206/310.1 (bioone.org [abgerufen am 2. März 2021]).
  66. Charles Lewis Camp (1923). "Classification of the Lizards". Bulletin of the American Museum of Natural History. 48 (11): 289–481. hdl:2246/898.
  67. a b Michael S. Y. Lee: The phylogeny of varanoid lizards and the affinities of snakes. In: Philosophical Transactions of the Royal Society of London. Series B: Biological Sciences. Band 352, Nr. 1349, 29. Januar 1997, ISSN 0962-8436, S. 53–91, doi:10.1098/rstb.1997.0005, PMC 1691912 (freier Volltext) – (royalsocietypublishing.org [abgerufen am 2. März 2021]).
  68. Jacques A. Gauthier, Maureen Kearney, Jessica Anderson Maisano, Olivier Rieppel, Adam D.B. Behlke: Assembling the Squamate Tree of Life: Perspectives from the Phenotype and the Fossil Record. In: Bulletin of the Peabody Museum of Natural History. Band 53, Nr. 1, April 2012, ISSN 0079-032X, S. 3–308, doi:10.3374/014.053.0101 (bioone.org [abgerufen am 2. März 2021]).
  69. a b John J. Wiens, Caitlin A. Kuczynski, Ted Townsend, Tod W. Reeder, Daniel G. Mulcahy: Combining Phylogenomics and Fossils in Higher-Level Squamate Reptile Phylogeny: Molecular Data Change the Placement of Fossil Taxa. In: Systematic Biology. Band 59, Nr. 6, 1. Dezember 2010, ISSN 1076-836X, S. 674–688, doi:10.1093/sysbio/syq048 (oup.com [abgerufen am 2. März 2021]).
  70. a b c Tod W. Reeder, Ted M. Townsend, Daniel G. Mulcahy, Brice P. Noonan, Perry L. Wood: Integrated Analyses Resolve Conflicts over Squamate Reptile Phylogeny and Reveal Unexpected Placements for Fossil Taxa. In: PLOS ONE. Band 10, Nr. 3, 24. März 2015, ISSN 1932-6203, S. e0118199, doi:10.1371/journal.pone.0118199, PMID 25803280, PMC 4372529 (freier Volltext) – (plos.org [abgerufen am 2. März 2021]).
  71. M. S. Y. Lee: Hidden support from unpromising data sets strongly unites snakes with anguimorph ‘lizards’. In: Journal of Evolutionary Biology. Band 22, Nr. 6, Juni 2009, S. 1308–1316, doi:10.1111/j.1420-9101.2009.01751.x (wiley.com [abgerufen am 2. März 2021]).
  72. N. B. Ananjeva: Current State of the Problems in the Phylogeny of Squamate Reptiles (Squamata, Reptilia). In: Biology Bulletin Reviews. Band 9, Nr. 2, 1. März 2019, ISSN 2079-0872, S. 119–128, doi:10.1134/S2079086419020026.
  73. R. Alexander Pyron: Novel Approaches for Phylogenetic Inference from Morphological Data and Total-Evidence Dating in Squamate Reptiles (Lizards, Snakes, and Amphisbaenians). In: Systematic Biology. 11. August 2016, ISSN 1063-5157, S. syw068, doi:10.1093/sysbio/syw068 (oup.com [abgerufen am 2. März 2021]).

Literatur

  • Richard Ellis: Sea Dragons. Predators of the Prehistoric Oceans. University Press of Kansas, Lawrence KS 2003, ISBN 0-7006-1269-6.
Commons: Mosasaurus – Sammlung von Bildern, Videos und Audiodateien